
Received January 31, 2021, accepted February 4, 2021, date of publication February 8, 2021, date of current version February 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3057690

DSF: A Distributed SDN Control Plane Framework
for the East/West Interface
BASEM ALMADANI , ABDURRAHMAN BEG , AND ASHRAF MAHMOUD , (Member, IEEE)
Department of Computer Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Corresponding author: Abdurrahman Beg (g201703830@kfupm.edu.sa)

This work was supported by the Real-Time Embedded Systems Lab, Department of Computer Engineering, and King Fahd University of
Petroleum and Minerals.

ABSTRACT The ever-increasing number of network-capable devices places a massive burden on modern
networks. Communication infrastructure should provide quality-of-service essentials in terms of high-
bandwidth capacity, scalability, resiliency, and security. Programmable networks are viewed as the prevailing
method of encountering the challenges introduced by the accelerated expansion. The ability of software-
defined networking (SDN) to separate the control plane from the data plane and enable the programmability
of the network creates new ways to architect the network. The centralization of control logic introduces
complexities in large-scale, distributed networks such as performance bottlenecks and reliability. Distributed
SDN controllers have been proposed to overcome the performance concerns. The lack of a communication
standard among distributed controllers, referred to as the East/West interface, presents a challenge in the
adoption of SDN in large-scale, distributed networks. In this paper, we propose Distributed SDN control
plane Framework (DSF) - a framework for the East/West interface for heterogeneous, distributed SDN
controllers to synchronize topologies using a standardized data-centric real-time publish/subscribe paradigm
known as the Data Distribution Service (DDS). Distributed control plane architectures are proposed using
DSF: flat, hierarchical, and T-model. The DSF interface is implemented on multiple SDN control plane
platforms to evaluate performance: Floodlight and Open Network Operating System (ONOS) controllers.
Test cases with different configurations are designed for performance evaluation of the proposed interface in
homogeneous and heterogeneous SDN control planes. In addition, a performance comparison is presented
of DSF-based ONOS controllers versus Atomix-based ONOS cluster solutions.

INDEX TERMS SDN, distributed controllers, East/West interface, RTPS, ONOS.

I. INTRODUCTION
Present-day and future networks face an ever-increasing
demand of providing fast and reliable interconnectivity
among a growing number of network capable devices, esti-
mated to reach 29.3 billion by the year 2023 [1]. Enterprise
and Data Center Networks (DCNs) further the concern by
necessitating Quality-of-Service (QoS) essentials in terms of
high-bandwidth capacity, scalability, resiliency, and security.
The concept of programmable networks is perceived as a
method of revolutionizing communication operations and
realizing the preceding objectives.

Software-defined networking (SDN) [2] is a pro-
grammable network concept designed to overcome the limi-
tations of conventional networks such as configuration and

The associate editor coordinating the review of this manuscript and

approving it for publication was Tawfik Al-Hadhrami .

management complexity, lack of scalability, and vendor
lock-in. SDN proposes a programmable network control,
decoupled from forwarding. The concept basis on two main
characteristics: separation of the control and data planes and
programmability of the control plane [3]. Control functions
are transferred from data forwarding devices to a logically
centralized network entity, the controller. The programma-
bility of SDN is derived from the instructions given to the
controller via application programming interfaces (APIs).
Network-wide traffic forwarding decisions can be set by the
controller simplifying network configuration, policy enforce-
ment, and evolution [4].

Controllers are categorized into two classifications: cen-
tralized and distributed architectures. The initial kind of
controller was physically-centralized and provided a simpli-
fied design choice. As networks expanded, the architecture
became a focal point for performance bottlenecks and single

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 26735

https://orcid.org/0000-0002-5875-154X
https://orcid.org/0000-0002-3562-2446
https://orcid.org/0000-0001-9043-2568
https://orcid.org/0000-0001-7441-604X


B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

FIGURE 1. SDN divides network functions into control and data planes.
Controllers represent the administrator platform of each data plane
domain, synchronizing topologies to enable data packets to flow
between data plane domains. In this illustration, N number of domains
over WAN communication is displayed.

point of failures [5]. Large-scale network deployments, such
as DCNs, containing tens of thousands of network elements
overwhelmed the single physically-centralized controller [6].
NOX [7], a physically-centralized controller, serves 30K
flow requests per second with a latency of 10 ms. Scala-
bility and performance concerns of controllers took center
stage of SDN adoptability [8], [9]. Consequently, concur-
rent physically-distributed controllers were introduced in the
form of logically-centralized and logically-distributed control
planes.

Logically-centralized control plane comprises several
physically-distributed controllers cooperating to resolve a
singular, consistent view of the network domain as illus-
trated by Fig. 1. The architecture requires tight synchro-
nization between controllers. Logically-distributed control
planes were designed to expand SDN to support large-scale,
distributed networks where a logically-centralized controller
governs a domain of forwarding elements within a large
global domain network and participates in inter-domain com-
munication with other controllers. The primary use of this
category of controllers is in wide area networks (WANs)
and globally distributed data centers. For example, the cloud
providers and SD-WAN pioneers Microsoft [10] and Google
[11] run services from data centers distributed around the
world and require efficient inter-data center exchange over
complex infrastructure and protocols (e.g., BGP and MPLS)
that administer the traffic.

The issue of scalability in the control plane persists
throughout the classifications of SDN due to the distributed
structure. The method for communication among the dis-
tributed entities, known as the East/West interface, is an
important problem discussed in the literature; highlighted
in particular was the absence of a communication standard
among inter-domain SDN entities [12]–[14].

In this paper, an adaptive framework for the East/West
interface is proposed, referred to as Distributed SDN con-
troller Framework (DSF). DSF uses a standardized data-
centric Real-Time Publish/Subscribe (RTPS)model. Features
of DSF compared to previous East/West techniques is pre-
sented. A series of experiments are conducted to analyze

the performance of the proposed interface in differing SDN
controller platforms in homogeneous and heterogeneous net-
works.

A. PROBLEM STATEMENT
Distributed SDN control planes require tight synchronization
of network topology information to maintain a holistic view
of the network, enabling route optimization of data pack-
ets from endpoint-to-endpoint in large-scale, distributed net-
works. Techniques of exchanging network state information
in the literature vary with a wide range of protocols in the
East/West interface. Some methods lack the capability of
cross-platform coordination, while others in scalability. Fur-
ther, previous works primarily demonstrate the network state
synchronization in networks with homogeneously distributed
control planes. This paper aims to outline and demonstrate
the use of a standardized approach in the East/West interface
by implementing an adaptive data-centric RTPS standard for
large-scale, distributed SDN control planes in homogeneous
and heterogeneous networks.

The remainder of the paper is organized as follows:
Section II reviews related works. Section III presents the
proposed DSF interface. Section IV details the communica-
tion model utilized in the proposed framework. Section V
describes the implementation of the DSF interface in dif-
fering SDN controllers and the experiment test cases. The
results of the experiments are discussed in SectionVI. Finally,
Section VII concludes the paper and describes possible future
investigations.

II. RELATED WORKS
East/West interface solutions for distributed SDN controllers
fall under two categories: logically-centralized or logically-
distributed control planes. A summary of the primary tech-
niques for both categories is provided in this section. Table 1
presents a comparison between previous East/West tech-
niques and the DSF interface proposed in this article. Table 2
compares between publish/subscribe models used by previ-
ous East/West techniques and the data-centric RTPS solution
utilized by the DSF interface.

A. LOGICALLY-CENTRALIZED CONTROL PLANE
HyperFlow [15] is a distributed event-based control plane
for OpenFlow, providing a logically-centralized process
implemented as an application for NOX [7], a physically-
centralized controller. The application aims to synchronize
controllers network-wide views using an event propagation
system based on publish/subscribe paradigm. The system
utilizes WheelFS [16], a distributed file system designed to
enable wide-area storage for distributed applications. Con-
trollers poll file directories, referred to as channels, for
changes by subscribing to the data channel, control channel,
and the controllers personal channel. The subscribed infor-
mation consists of state changes in the network used to build
and maintain the overall view of the network. A consistent
network-wide view in all the controllers is a strict requirement

26736 VOLUME 9, 2021



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

for HyperFlow. WheelFS is used for scaling distributed con-
trollers. However, distributed file systems are broker-based
systems becoming focal points for performance bottlenecks.
The use of brokers increases the risk of network performance
degradation in case of failure. Brokers in WheelFS are the
distributed file storage nodes.

Another approach studied was the use of distributed sys-
tems principles as in Onix [17], which is a cluster of
one or more physical servers providing one or more Onix
instances. Onix function involves maintaining a distributed
Network Information Base (NIB), which is a data structure
storing network state information. NIB is the core of the
Onix control and the basis for the distribution model. Control
logic for network behavior is exposed to the network via
Onix APIs and state information can be distributed using a
transactional persistent database which is replicated to dis-
tribute state updates. The method has massive performance
limitations suited only for slowly changing network state.
Onix offers the use of memory-only distributed hash tables
for dynamic networks with high-rates of state changes. Onix,
like HyperFlow, is highly dependent on having a consistent,
network-wide view in all the controllers. Onix is not suitable
for dynamically changing, large-scale networks due to the
limitations of replicating the transactional persistent database
across all controllers in real-time.

The authors of [18] propose OpenDaylight (ODL), a clus-
ter of cooperating controllers providing network resiliency,
reliability, and scalability. ODL builds data structure trees
using Yang modeling language and Model-Driven Service
Abstraction Layer (MD-SAL). The MD-SAL has four pri-
mary tasks: route remote procedural calls between processes,
a subscription-based mechanism for notification delivery,
route and coordinate data reads, and manage mounts which
are instances of MD-SAL. The Akka framework, specified in
[19], is used to synchronize information between the cluster
of controllers. ODL clustered controllers are limited due to
the vast number of control/flow packets generated among
larger clusters [20].

Similar to ODL, authors of [21] propose Open Network
Operating System (ONOS), an open-source platform main-
tained by The Linux Foundation. ONOS is a cluster of
cooperating distributed controllers designed for scalability,
high performance, and high availability. Holistic topology is
maintained by a distributed data structure administrated by
elements in the cluster. ONOS uses RAFT [22] consensus
algorithm to map each data forwarding entity to its master
controller. The RAFT algorithm enables the replication of
the distributed data structure, administrates over election pro-
cess of a new leader if an element fails in the cluster, and
restores the controller state post-repair. Clusters are managed
byAtomix distributed system framework. Atomix is an event-
driven reactive Java framework for coordinating distributed
systems with fault tolerance [23]. ONOS suffers from chal-
lenges ODL and other cluster-based distributed controller
systems face in terms of control/flow packets transmissions
as clusters increase in size.

B. LOGICALLY-DISTRIBUTED CONTROL PLANE
In [25], the authors propose DISCO, a DIstributed SDN
COntrol plane for multi-domain SDN networks. A distributed
control channel is utilized by agents plugged into domain
controllers to exchange inter-domain network-wide informa-
tion. They tested the proposal in three use cases: inter-domain
topology disruption, end-to-end priority service, and virtual
machine migration. Advanced Message Queuing Protocol
(AMQP) [27] is used as the East/West interface protocol
for inter-domain controller communication. The client-server
mode of AMQP is used, limiting scalability with network
growth. Limitations of the AMQP publish/subscribe method
is further detailed in Table 2.

Authors of [28] study logically-distributed controllers
intended for large multi-domain networks. They propose an
East/West interface called Communication Interface for Dis-
tributed Control plane (CIDC) for communication between
controllers in a logically-distributed SDN control plane. The
CIDC interface is used by each controller to synchronize
its status and services with its distributed peers. Simulation
results of various large networks show improved results in
terms of delay, overheard, CPU, and memory performance.
CIDC uses a custom event-driven protocol for the East/West
interface and the paper lacks a detailed performance evalua-
tion of the broker-based model. CIDC brokers enable topol-
ogy synchronization: Consumer, Producer, DataUpdater, and
DataCollector. Disadvantages of the broker-based models
include lack of simultaneous read/write operations, limited
scalability, and presents a risk of a single point of failure.

III. PROPOSED DISTRIBUTED SDN CONTROL PLANE
FRAMEWORK - DSF
DSF is an adaptive framework for the East/West interface
designed for heterogeneous, distributed control planes to
synchronize topologies using a standardized communication
protocol. The malleable and modular architecture of the DSF
interface enables implementation in a diverse array of SDN
controller platforms. The proposed framework employs a
data-centric RTPS model known as the DDS standard [31]
for the East/West interface.

An overview of the DSF framework in a heterogeneous,
distributed SDN control plane with a flat model architec-
ture is presented in Fig. 2. A description is provided of the
three types of distributed control plane strategies enabled by
the DSF interface: flat, hierarchical, and T-model. Control
plane entities communicate within the network domain by
implementing DomainParticipants hosted by DSF compo-
nents. The framework is vendor-agnostic to the selection
of the DDS implementation and adaptive to the program-
ming language of the controller platform. To enable topol-
ogy synchronization, adherence to a messaging protocol is
required, referred to as topics. The figure further describes
the channel used by controller participants to read and write
samples of network state information topics, referred to as the
data space.

VOLUME 9, 2021 26737



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

TABLE 1. Comparison of features between previous East/West techniques and the proposed DSF interface.

TABLE 2. Comparison of publish/subscribe models in previous East/West techniques compared to RTPS-DDS used by the proposed DSF interface.

A. DESIGN OBJECTIVES OF THE ARCHITECTURE
The following are the objectives of the framework architec-
ture:

1) SCALABILITY
A primary objective of the framework is to present a scalable
inter-domain SDN solution for data center and enterprise net-
works. In addition, scalability is a major concern for networks
that function with strict delay constraints in a large cluster of
nodes. A distributed solution has the capability of providing
required performance objectives. The proposed framework
should deliver a consistent view of the network to its partici-
pating controller entities to fulfill the aforementioned target.
This is accomplished through the design of dissemination

strategy of synchronization information in distributed control
plane architectures detailed in section III-C.

2) HETEROGENEITY
The architecture should demonstrate the capability of ven-
dor and platform agnosticism of the control plane entity,
enabling a diverse portfolio of network participants. In addi-
tion, the framework should grant various implementations of
the DDS standard to co-exist within this architecture.

3) RELIABILITY
The framework should withstand and overcome fail
case scenarios, providing continued service in strenu-
ous circumstances. Reliability and robustness are key

26738 VOLUME 9, 2021



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

FIGURE 2. The proposed DSF interface utilizes a standardized
data-centric real-time publish/subscribe (RTPS) protocol to communicate
over a domain data space, enabling distributed SDN controllers to
synchronize regardless of underlying platform differences.

non-functional requirements for data center and enterprise
networks.

4) SECURITY
Security is key to the integrity of the framework. It should
provide secure, encrypted end-to-end data exchange between
authenticated participants. The DSF interface enables this
capability through the DDS security plugins described in
section IV-D.

5) TIMELINESS
Some networks function under strict timescales and require
the architecture to provide QoS guarantees for controller-to-
controller information exchange.

B. DESIGN OBJECTIVES OF THE EAST/WEST INTERFACE
The East/West interface is the communication protocol
between inter-domain control plane entities.

1) MODULARITY
The framework describes a modular design for implement-
ing the East/West interface. The primary benefit of modular
design is the separation of tasks carried out by each com-
ponent. This isolation of network function allows for the
DSF modules to interact with specific core internal modules
and complete prescribed tasks. The task of the framework
modules remains consistent regardless of the implementation
platform of the controller. The task description of the DSF
modules is provided in section III-D. In addition, the modular
design supports test cases to be carried out on individual com-
ponents to confirm expected behavior during development.

2) PERFORMANCE
In Section V, the controller platforms implemented with
DSF interface are presented. A distinguishing aspect of the
controller selection is the multi-threading capacity. A con-
troller monitors a vast number of links for changes within
a local domain of data forwarding entities. The use of mul-

tiple threads to asynchronously monitor local and global
link updates improves performance. The East/West interface
should run concurrently to controller southbound administra-
tive responsibilities to maintain a real-time view of the overall
network topology.

C. DESIGNING NETWORK STATE DISSEMINATION
STRATEGY
Early physically-centralized controllers managed the full
holistic view of the network. Individual controllers in the
distributed control plane maintain only a portion of the
holistic view referred to as the local domain. To enable
data forwarding between local domains and to present a
logically-centralized control plane to the northbound appli-
cations, a holistic view must be maintained by at least
one of the participating controllers. This requires controllers
to exchange local domain network information with one
another.

The strategy used to disseminate network state information
among inter-domain distributed controllers is classified into
two models: flat model and hierarchical model [32]. The pro-
posed framework operates in both types of distributed control
plane topologies. The framework additionally is capable of
functioning in a hybrid combination of the two models for
large-scale, geographically distributed networks, labeled by
this study as the T-model.

1) FLAT MODEL
The DSF framework shown in Fig. 2 depicts a flat model, also
referred to as a horizontal architecture. Distributed controllers
in this topology behave as peer nodes. Nodes publish local
network state changes into the domain data space with prede-
fined topic structure and QoS attributes. The topic structure
is detailed in section III-E and the QoS attributes in section
IV-C. Nodes are subscribed to the network state information
updates of all other peers. The updates are stored at individual
nodes from which a global view of the administrative domain
of the network is built andmaintained. In the flat model, every
node maintains its global view of the network.

2) HIERARCHICAL MODEL
Fig. 3 describes the proposed framework employed in a hier-
archical control plane model, also referred to as a vertical
architecture. Distributed controllers follow a chain of com-
mand in a tree-topology structure. Child nodes update gov-
erning parent nodes of their local state information through
publish/subscribe topic samples applied with QoS attributes.
The parent stores and combines the state information of the
child domains, generating a holistic view. The parent node is
a child node of a larger administrative domain entity and the
combined view is then shared with those upper-tier entities,
known as global controllers. A global controller is the root
of the tree where the state information of local and adminis-
trative domains are collected. The global controller generates
the global view for northbound network management appli-
cations.

VOLUME 9, 2021 26739



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

FIGURE 3. DSF framework in a hierarchically distributed controller architecture is illustrated. Parent controllers administrate over child
controllers per respective administrative domain. Link updates flow vertically in a tree-topology structure between parent/child controllers.
The global controller is the root of the tree maintaining a holistic view of the network for northbound applications managing flow control.

3) T-MODEL
This article proposes a hybrid architecture, referred to as
the T-model, designed for large-scale distributed networks
expanding multiple geographical locations. T-model uses the
vertical distribution of state information for local hierarchical
networks and horizontal distribution for global flat networks
in large-scale global networks. The network state informa-
tion moves through the hierarchy in a vertical fashion from
child to parent controllers until it reaches the root of the
geographic administrative domain. Once the holistic view of
the respective domain is formed at the root, the domain view
is then disseminated horizontally among peer nodes for each
root global controller to attain and construct the holistic view.
Fig. 4 presents an example of the described model using DSF
interface as the East/West protocol between control plane
entities.

D. CONTROLLER ARCHITECTURE AND MODULES
This section presents the modular controller components
interacting with the DSF interface. The function of the inter-
face modules remains identical in varying controller plat-
forms, demonstrated between two controller platforms in the
implementation section. Fig. 5 describes a controller architec-
ture installed with DSF interface. Controller components are
tasked with managing data plane forwarding entities via the
southbound interface such as the OpenFlow protocol. DSF
components interact with controller internal components to
synchronize topologies due to link changes in the local and
global domains.

1) PUBLISHER
The function of the Publisher is tomonitor the TopologyMan-
ager module using the Interface component. A link update

is generated when a topology event occurs at the Topology
Manager. The sub-module TopologyService updates listener
entities of the link change. The Publisher module receives this
link update and forwards it to the relevant Data Writer entity
within the DSF module. The entity then creates a sample of
the update following the topic data structure assigned with
QoS attributes. This sample or notification is then published
into the data space of the specified domain.

2) SUBSCRIBER
The Subscriber module receives link update notifications
from the global domain which matches its subscription of
the topic data structure and QoS attributes. Data Reader
participants within the Subscriber reads samples from the
data space matching with the predefined subscriptions. The
module then updates the Topology Manager of the received
samples through the Interface DSF module.

3) TOPOLOGY MANAGER
This component administrates the local and global view of the
network, generating link updates from local domain events
and receiving updates from global domains through the Sub-
scriber. The component maintains the topology instance of
the network, providing access to network management appli-
cations through the northbound API. The implementation of
this module is dependent on the architecture of the controller
platform. The primary function of network topology mainte-
nance remains consistent across platforms.

4) INTERFACE
The task of coordinating between DSF modules and core
internal modules of the controller is performed by the Inter-
face. Two primary sub-components of the Interface is the

26740 VOLUME 9, 2021



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

FIGURE 4. DSF in T-model distributed controller architecture. Hybrid of the hierarchical and the flat model for large and geographically
distributed networks. Global controllers are the root of each tree-topology structure for multi-administrative local domains, sharing a
holistic view of their tree with global nodes via the flat model.

FIGURE 5. The controller architecture of the proposed DSF is presented.
Shown on the left side is a subset of controller specific components,
while the DSF framework modular components are presented on the
right. The DDS Plugin module is the major component of DSF which
encapsulates the Publisher and Subscriber sub-components, each
containing one or more Data Writer/Data Reader entities respectively.

listener and the service. The listener is an interface imple-
mented by the Topology Manager module. When a global
link update event arrives at the Subscriber, the service sub-
component notifies all modules implementing the listener,
thus notifying the Topology Manager of the update. DSF
modules and core internal modules may directly interact
without using an intermediary Interface module depending
on the architecture of the controller.

E. LINK UPDATE MESSAGE PROTOCOL (LUMP)
LUMP is the messaging protocol in the DSF framework to
communicate link updates among inter-domain controllers.
The data structure is dependent upon the southbound protocol
used by the implementation of the DSF interface. For exam-
ple, OpenFlow [33] is a southbound communications proto-
col or an API that provides access to data plane or forwarding
entities over the network. Published samples of OpenFlow-
based controllers are structured with the following message
format:

• nodeID: Represents controller ID. This information is
used to distinguish between controllers participating in
the domain for logging purposes.

• operation: Describes the operation of the link discovery
update. The operation consists of the link status between
data plane entities: link up, down, removed or updated.

• srcMAC: Provides the source MAC address.
• srcPort: Provides the source port number.
• dstMAC: Provides the destination MAC address.
• dstPort: Provides the destination port number.
• latency: Provides the latency of the uni-directional
exchange between data plane entities.

• type: Provides the link type between data plane forward-
ing entities: internal, external, tunnel or invalid.

IV. DATA-CENTRIC REAL-TIME PUBLISH/SUBSCRIBE
MODEL
An overview of the data-centric RTPS DDS standard [31],
[34] is provided in this section describing core functionalities
and components. QoS attributes provided by the standard
and its capability of delivering reliable, secure, and time-
sensitive data exchange is elaborated. The primary merit of
using data-centric RTPS paradigm in the SDN control plane
domain is the enabling of a large number of participants
to communicate asynchronously and in real-time in contrast
to client/server-based or broker-based models which typi-
cally incur additional processing delays, limit simultaneous
read/write operations, and introduce a risk of single point
of failures. In addition, secure end-to-end data connectivity
is ensured by DDS through the security plugins enabling
authentication, encryption, access control, and logging capa-
bilities.

The data-centricity focus of DDS allows the system to
decide what data to preserve and control how that data
is shared. DDS implements a virtual store, known as the
DomainGlobal Data Space as displayed in Fig. 6. To the indi-
vidual network node, the global data space looks like native

VOLUME 9, 2021 26741



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

FIGURE 6. The RTPS-DDS communication architecture highlights the function of the domain data space. The domain data
space enables peer-to-peer communication with predefined topic structures and QoS profiles. DomainParticipants include
Publisher and Subscriber components with one or many Data Reader/Data Writer entities which read/write samples with
QoS attributes respectively.

memory accessed via an API. The unit of data exchanged in
the global data space is a sample of a specific topic, a data
structure tied to a specific set of QoS attributes known as a
QoS profile. This profile describes the data samples’ non-
functional requirements. DDS is unique in its monitoring of
non-functional requirements of data it controls, such as relia-
bility, time-constraints, and durability. Using QoS properties,
DDS is capable of providing a consistent view of the shared
data to all participating peers in the system.

An entity joining the domain data space implements a
DomainParticipant consisting of a set of Publisher and Sub-
scriber entities, each capable of containing one or moreData
Writers and Data Readers. Data Writers and Data Readers
publish and subscribe data samples with specific data struc-
tures and QoS profiles.

A. DESCRIPTION OF KEY ATTRIBUTES OF THE RTPS-DDS
MODEL
Listed are the key factors that encompass the functional
attributes of the model:

• Publish/Subscribe paradigm: Needed for discovery and
management of new features, and for incoming/outgoing
data among inter-domain controllers.

• Lifecycle awareness: DDS standard monitors the infor-
mation status and activity for its application systems.
For example, first and last sample updates for each topic
instance.

• Relational data modeling: DDS mimics data man-
agement of Relational Database Management System
(RDMS). Tailored requests are enabled by DDS through
its reliance on structure-related topics in terms of time
and content settings used by the filters.

• Reliable multi-cast: User Datagram Protocol (UDP)
sockets are utilized for multi-cast. Enabling real-time
streaming of data in contrast to the typical Transmis-
sion Control Protocol (TCP) sockets in the client/server
approach.

B. ENTITIES WITHIN THE MODEL
The RTPS-DDS model contains the following entities:

• Domain: Data publishing/subscription is handled per-
domain basis, and domains are virtually separated from
each other. Participants of one domain cannot share
information with participants in another domain.

• Topic: Topics are data structures that define the sample
information to be exchanged. A Data Writer and Data
Reader are connected indirectly through the shared topic
samples. For example, a distributed set of sensors may
publish information about a specific topic, e.g., temper-
ature data updates.

• Publisher: A publisher is a set of Data Writers updating
new samples of the topics that are subscribed to by
Data Readers. It may filter samples generated and share
only information about the topic should a predefined
threshold be met. This QoS feature decreases the load
on the network.

• Subscriber: The subscriber is a set of Data Readers
receiving new samples of the data topics that it is inter-
ested in.

• Discoverer: Endpoint Discovery Phase (EDP) and Par-
ticipant Discovery Phase (PDP) are discovery phases
within DDS that enable new participants joining the
domain to dynamically discover the other participants
and their endpoints in the domain.

C. QUALITY-OF-SERVICE ATTRIBUTES IN DSF
FRAMEWORK
The following QoS attributes of DDS are proposed for the
DSF interface:

• Reliability: This attribute defines the level of reliability
the Service provides. ’Reliable’ value is opted for DSF
due to the impact of each link update on the routing of
the data packet.

• Durability: The attribute expresses if the data should
persist after writing time. The value ’Transient’,

26742 VOLUME 9, 2021



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

’Transient-local’, or ’Persistent’ is suitable for instances
of DSF application with dynamically joining SDN con-
trollers per domain, otherwise, the ’Volatile’ value is
selected.

• History: An important QoS attribute for the framework
when multiple new link updates are generated before
the former ones are communicated to subscribers. This
attribute assists in administrating a queue. ’Keep-all’
value is selected for the framework for the importance
of transmitting all intermediate link updates.

• Resource limits: Resource limits attribute defines the
resources allocated to the Service for queuing samples
on both Publisher and Subscriber entities.

• Lifespan: This attribute indicates to the Service the max-
imum time the sample is valid after beingwritten into the
network domain. This cleans up the network of previous,
perhaps obsolete, link update samples in DSF.

D. SECURITY
Object Management Group (OMG), the body which formal-
ized the DDS standard, provides a formal security specifica-
tion for DDS [35] which describes the Security Model and
Service Plugin Interface (SPI) architecture for DDS imple-
mentations, decoupling security aspects into a set of plugins:

• Authentication: The plugin ensures DDS entities, the
SDN controllers, are authenticated with set credentials.
The purpose is to avoid data contamination from unau-
thenticated participants.

• Access Control: The plugin monitors and administrates
access control permissions for DDS topics, domains, etc.
for authenticated participants.

• Cryptography: The plugin enables encryption, digest,
message authentication codes, and key exchange (pub-
lic/private keys). The aim is to preserve the integrity and
confidentiality of the data.

• Logging: This plugin provides the capability to log all
security events, inclusive of expected behavior and all
violations of security policies and errors. The key aim
of this plugin is to enable auditing to analyze methods
to improve availability.

This set of security plugins enable different implementa-
tions of the proposed framework to define policies based on
their own security objectives.

V. IMPLEMENTATION
The implementation aims at assessing the performance and
adaptive capabilities of the proposed interface in multi-
domain control plane environments. The DSF interface is
implemented on Floodlight (FL) and Open Network Oper-
ating System (ONOS) controller platforms.

Experiment test cases were designed to measure perfor-
mance metrics in different configurations. Test cases include
performance evaluation of FL and ONOS controllers imple-
mented with DSF interface, performance evaluation of DSF-
based ONOS compared to Atomix-based ONOS cluster,

List. 1. LUMP topic data structure converted from OpenFlow data types.

FIGURE 7. The DSF controller algorithm is described by the control flow
logic of the system. Two concurrent monitoring states occur after the
initialization stage from which local and global link updates are
processed towards the Topology Manager to construct the holistic view of
the network.

a case study of a multi-organization heterogeneous data cen-
ter network, and Markov chain analysis of controller state
transitions and traffic analysis of RTPS packet transmissions.

LUMP communication protocol is used for topology syn-
chronization between the controllers. The interface definition
language (IDL) data structure in C language of the protocol
is shown in listing 1. The OpenFlow data types listed in the
commented green text are not supported by DDS libraries
used for this evaluation and required translation to primitive
data types.

A. CONTROL FLOW LOGIC OF THE DSF INTERFACE
Fig. 7 describes the flow of control logic in DSF-based con-
troller platforms. At the initial state, the controller periodi-
cally sends Link Layer Discovery Protocol (LLDP) packets
encapsulated in a Packet-out message to its directly con-
nected data plane forwarding entities (routers/switches). The
forwarding entity receiving the packet reads the instructions
on the Packet-out message to forward the packet to a specific
neighboring peer. The neighbor then forwards the packet via

VOLUME 9, 2021 26743



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

FIGURE 8. ONOS controller consists of a modular architecture [36]
divided by network function. DSF module is inserted into the internal
modules during run time as an application. Similarly, OpenFlow
southbound API is installed in run time to connect to Mininet OpenFlow
data plane entities. DSF module interfaces with internal modules to listen
for link changes and update the topology module.

Packet-in message to the controller. The controller verifies
the uni-directional link between the two peers with its records
determining if it is an existing, new, updated, or deleted link
in case of no reply. If a change has occurred, a link discovery
update list is generated by the controller.

The link discovery update list is observed by two mod-
ules in the controller: the internal Topology Manager and
DSF Publisher. The Topology Manager updates the topology
instance of the controller and the Publisher forwards the
update to the DDS Plugin module within the DSF framework.
The DDS Plugin converts the update into a topic sample and
writes it into the global data space through the Data Writer
sub-module with predefined QoS attributes.

Simultaneously, the controller listens for new samples of
link discovery updates in the global data space published
by peer controllers via DSF module Subscriber. The Data
Reader entity of the DDS Plugin module filters the received
samples with the link discovery update topic structure and
QoS attribute requirements. Once matched, the sample is
forwarded to the Topology Manager to update the network
topology instance, calculating new possible shortest routes.

B. CONTROLLER ARCHITECTURE OF FL AND ONOS WITH
DSF INTERFACE
FL architecture in Fig. 5 describes DSF components coordi-
nating with internal core components using the DSF module
Interface. The Interface, as described previously, monitors
internal modules for link updates and notifies the Publisher.
The Publisher sends the link update as a DDS sample using
LUMP topic structure to the global data space. The Sub-
scriber receives link update samples from the data space,
the Interface notifies the internal module Topology Manager
of the global link update.

ONOS architecture with DSF interface is presented
in Fig. 8. The DSF module interacts with internal modules
using a topology listener and service, sub-components of the
Interface. DSF module listens to Topology internal module
for a link Event to occur. Event is an abstracted module that
describes link events. Events compromise of Link module
abstractions. DSF module extracts the link update informa-
tion from the Link instance, converts the data to OpenFlow
structure using OpenFlow API libraries, and creates a DDS

TABLE 3. Physical host specification.

TABLE 4. Virtual machine specification.

TABLE 5. Software specification.

sample in the LUMP message structure using DDS libraries.
It then publishes the DDS sample using the Publisher sub-
component within the DSF module.

C. PHYSICAL HOST, VIRTUAL MACHINE AND SOFTWARE
SPECIFICATIONS
Table 3 lists the specifications of the physical host machine
used for the emulation and Table 4 lists the specifications of
the virtual machines (VMs) that host SDN controllers and
the SDN emulator. Versions of Ubuntu operating systems for
VMs differed due to SDN controller platform dependencies.
Main memory assigned to VMs also varied based on the test
case configurations elaborated in the experiment description.

Software specifications for the experiments and analysis
of performance measurements are listed in Table 5. Two
SDN controllers with DSF interface were emulated. Markov
analysis tool is a Java application written in this project
to automate the process of generating the probability state
transition matrices from experiment logs to analyze SDN
controller state transitions, described further in experiment
descriptions.

D. PERFORMANCE METRICS
The following performance metrics are measured in the
experiments:

• Network Convergence Point (NCP): The time taken for
the network to converge into one consistent, holistic
topology after a link discovery update sample is pub-
lished into the domain data space.

• Topology Update Delay (TUD): The time taken for the
link update packet to reach the peer controller to update
the holistic view of the network.

26744 VOLUME 9, 2021



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

• RTPS Packet Transmissions (Packets/sec): The number
of RTPS packets generated and transmitted per second.

E. MODELING NCP
Network convergence point is modeled in this section as a
metric describing the time for a set of processes in a pub-
lish/subscribe technique to receive notifications. Publish/sub-
scribe methods can be classified into two types: broker-based
and broker-less models [40]. DSF architecture enables SDN
controllers to communicate in a peer-to-peer fashion through
the use of a data-centric RTPS paradigm, thus following
a broker-less model with no intermediary entities. Broker-
based models use intermediary entities to facilitate commu-
nication, such as queues in AMQP and file storage nodes
in WheelFS publish/subscribe methods described in Table 2.
In a distributed SDN environment, each control plane entity is
a decoupled process. The decoupled processes communicate
through a channel known as the domain data space. A dis-
tributed system consists of a set of processes as denoted by
(1). ∏

= {p1, p2, . . . px} (1)

A subscription σ is a pair of process p applied with filter
φ, where the p is subscribed to all other processes publishing
samples through the specified filter is denoted by (2). The
filter consists of both the topic structure and the QoS profile
attached to the sample in DSF.

σ = (φ, p) where p ∈ ∏ (2)

There are four main operations in a publish/subscribe
model: publish, subscribe, unsubscribe and notification [41].
A notification n matches the filter φ if each property of n
matches all constraints detailed in φ. That is to say, both topic
structure and QoS profile of nmatches the filter. Equation (3)
denotes the principle of notification nmatching a subscription
σ .

n @ σ.φ (3)

In the event of a publication occurring, the service dis-
seminates the notification to interested subscribers which are
processes whose subscriptions matches the notification as
described by (3). The time it takes for notification n to reach
an individual process pi is Tpi, we denote the delay as 1i.
Suppose a set of subscribers {px , py, pz} are interested in n.
We can denote the total delay for the dissemination of n to the
set of interested subscribers as the maximum of those delays
as seen in (4):

Tncp = max{1x ,1y,1z} (4)

Therefore, by measuring the time taken to reach network
convergence point (4), we evaluate the performance of DSF in
the implementation. The objective is to measure the delay in
the dissemination of link update packets within the network
as the number of SDN controller nodes increases.Minimizing
this delay is essential for controller entities to maintain a

TABLE 6. Test Case Parameters - FL.

real-time, holistic view of the network. In reality, however,
an additional processing delay is incurred while generating
the holistic view. This processing delay is dependent upon
the controller platform and an assumption is made that this
delay is measured within 1i, the time for notification n to
reach process pi.

F. EXPERIMENT DESCRIPTION
The experiments are divided into three primary test cases:
performance evaluation of DSF-based controller platforms in
homogeneous networks, a case study of a multi-organization
heterogeneous DCN, andMarkov chain analysis of controller
state transitions and traffic analysis of RTPS packet transmis-
sions.

1) TEST CASE 1 - PERFORMANCE EVALUATION OF
DSF-BASED CONTROLLER PLATFORMS IN HOMOGENEOUS
NETWORKS
The primary objective of this test case is to evaluate the per-
formance of the DSF interface implemented in FL and ONOS
controllers in homogeneous networks. The secondary objec-
tive is to provide a performance comparison between DSF
interface and industry-used techniques. The technique we
compare against is Atomix distributed cluster management
framework. Atomix-based ONOS cluster networks are com-
pared against DSF-based ONOS networks. The performance
evaluation is characterized by capturing measurements of
network convergence point and topology update delay after a
link update event. The number of controllers is incrementally
increased per network configuration to the maximum capac-
ity of the physical host machine.

Table 6 lists the parameters of the Floodlight-DSF homo-
geneous network experiments. A pair of VMs hosts the
controllers while a third contains the Mininet SDN emula-
tor. Mininet assigns each remote controller two data plane
switches and a host device per switch, referred to as the local
domain. Hosts are used for Internet ControlMessage Protocol
(ICMP) ping tests between local domains administrated by
peer control plane entities for verification of the network
topology synchronization. Multiple controllers are hosted per
VM to maximize the number of controllers emulated in the
network with the physical host machine capabilities, reaching
12 FL controllers over two VMs. The number of controllers
in the network configuration increased incrementally by one
per VM. 10 repetitions are conducted per configuration to

VOLUME 9, 2021 26745



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

FIGURE 9. Experiment design on the physical host is illustrated. Each of the Y numbers of virtual machine instances runs
an X number of controllers, leading to an X*Y number of total data plane domains on Mininet SDN emulator, a host is
assigned to southbound forwarding switches. The experiments are conducted based on the test case parameters explained
in the experiment description section.

TABLE 7. Test Case Parameters - ONOS.

estimate the variability of the results due to experimental
error.

Table 7 lists the configuration for the ONOS-DSF homoge-
neous network experiments. Each ONOS controller requires
2 GB of main memory per VM. Mininet assigns each remote
controller two data plane switches and a host device per
switch. Mininet VM and six ONOS controllers VMs exhaust
the main memory capacity of the physical host machine. Due
to the relatively small-scale network emulation, a comprehen-
sive scalability performance evaluation of the DSF interface
is not performed in this work. Instead, we prioritize illustrat-
ing consistency of the interface in homogeneous networks
and adaptive nature in heterogeneous networks described in
the second test case.

To provide a comparison between the DSF interface and
alternative methods of topology synchronization, we mea-
sure the performance of DSF-based ONOS networks and
Atomix-based ONOS cluster networks. Atomix is a clus-
ter management framework that uses brokers to synchro-
nize controller states, referred to as agents. Three agents are
configured for Atomix-based ONOS cluster networks. Both

methods of ONOS inter-controller communications incre-
mentally increase by one controller up to six emulations
of each platform with Mininet VM emulating the network.
This provides a baseline performance comparison of DSF
interface, expected to synchronize networks in real-time, but
compromise performance for consistency and flexibility of
adapting to heterogeneous control plane platforms compared
to homogeneous distributed systems.

Fig. 9 describes the design of the emulation environment
for the various configurations of test cases. EachVMcontains
one or more sets of controllers, with each controller admin-
istrating over a local domain of data forwarding devices. The
network is emulated by Mininet on a separate VM. A python
script creates the network on Mininet VM, linking the hosts
with their assigned switches and switches with their remote
controllers via IP address and port number paired ID using
TCP connection.

2) TEST CASE 2 – CASE STUDY - MULTI-ORGANIZATION
HETEROGENEOUS DATA CENTER NETWORK
In this case study, a collaboration agreement between multi-
ple organizations is assumed requiring data sharing capabili-
ties between inter-domain data center networks, e.g., content
delivery networks. Participating organizations utilize differ-
ent control plane platforms for their specific data center SDN
implementation. In this case study, we assume Floodlight and
ONOS platforms. Fig. 10 describes the DCN with organiza-
tions cooperating with heterogeneous controller platforms.
Data plane entities forward content between domains with

26746 VOLUME 9, 2021



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

FIGURE 10. Multi-organization heterogeneous DCNs emulated with
organizations using different SDN control plane platforms, ONOS and FL.
DSF interface is implemented on each platform to enable topology
synchronization and performance is measured as the number of
controllers from each platform is increased.

flow configurations determined by the controller platforms
synchronizing network topologies.

DSF interface is implemented in each controller platform
to enable topology synchronization. The test case captures
performance metrics as the number of SDN controllers per
platform increases per organization. The experiment design
consists of controllers hosted on separate VMs assigned with
data forwarding and host devices by a Mininet VM. 10 repe-
titions of the experiments are conducted of the three network
configurations: X = 1, 2, and 3, where X is the number of
DSF implemented controllers per platform: FL and ONOS.

3) TEST CASE 3 - MARKOV CHAIN ANALYSIS OF STATE
TRANSITIONS AND RTPS PACKET TRANSMISSIONS
MEASUREMENT
This test case is designed to provide two primary insights in
the performance analysis of the DSF interface: Markov chain
of controller state transitions and RTPS packets transmission
measurement.

The Markov chain analysis experiments measure the prob-
ability of state transitions in DSF-based controllers in net-
work configurations with 4, 8, and 12 controllers. For each
configuration, an experiment is conducted for 30 minutes to
record state transitions. The log from the experiment is then
processed by a custom Markov chain analysis tool written
for this work to generate the probability transition matrix.
The matrix describes the DSF-based controller state behavior
during steady-state conditions in different network configu-
rations. Link updates are not simulated from external sources
but are generated in steady-state conditions as the cost of links
in terms of latency changes and new optimal shortest routes
are calculated.

RTPS packet transmissions are captured using Wireshark
network packet analyzer tool for experiments containing 2, 4,
and 8 DSF-based controllers. The objective is to analyze the
number of RTPS packets transmitted over 120 seconds time
period and during link update events. A further experiment is
conducted to compare all packets transmitted versus RTPS

transmissions in an 8-controller network configuration for
traffic analysis.

VI. RESULTS AND DISCUSSION
The analysis of results is separated into the following sec-
tions: analysis of NCP, analysis of TUD, Markov chain anal-
ysis of DSF controller state transitions, analysis of RTPS
packet transmissions, and performance evaluation of NCP.

A. ANALYSIS OF NETWORK CONVERGENCE POINT
Fig. 11 describes the time taken for networks to converge
into a single, holistic topology after a link discovery update
packet is published by a control plane entity. The y-axis
describes the time elapsed till NCP for test cases: homo-
geneous DSF-based controller platforms of FL and ONOS
networks in Fig. 11a and Fig. 11c respectively, homogeneous
Atomix-based ONOS cluster networks in Fig. 11d, and het-
erogeneous data center networks compromising of both DSF-
based platforms in the same configuration in Fig. 11b.

Fig. 11a shows FL-DSF networks converge within half-a-
second to six-tenths of a second on average as the number of
controllers per network configuration increases. The standard
error of the mean (SEM) of the 10 repetitions is roughly equal
between the different network configurations except for the
network with two FL-DSF controllers which takes less than
half-a-second to converge. This performance remains consis-
tent in DSF implemented heterogeneous networks compro-
mised of FL andONOS controllers described by Fig. 11b. FL-
DSF delays the time to reach convergence in all three DCN
configurations. This observation is elaborated in the analysis
of the topology update delay metric in the next subsection.

Observations of the ONOS-DSF networks in Fig. 11c
clearly demonstrates that the performance of the DSF inter-
face does not contribute to the delay in NCP significantly.
DSF-based ONOS networks converge to a single, holistic
topology within 35 milliseconds on average as the number
of controllers increases. The SEM observed for the con-
figurations on average account for 5 milliseconds or less.
Furthermore, the delay to reachNCP inONOS-DSF networks
remains consistent as the number of controllers increases in
the network. The consistency of the DSF interface measured
in FL-DSF platforms attests to this observation.

Comparison of performance between DSF-based ONOS
networks and Atomix-based ONOS cluster networks is
shown by Fig. 11c and Fig. 11d respectively. We observe that
an increase in average NCP occurs as the number of ONOS
controllers increases in the Atomix-based cluster networks
while DSF-based networks consistently converge within 23-
35 milliseconds. In addition, the time to reach NCP mea-
sured in DSF-based ONOS networks is less than Atomix-
based ONOS networks when the number of controllers in
the configuration is four or more and the time to reach NCP
is equal between both configurations at three controllers.
Atomix-based networks observe a higher variance in time to
NCP between experiments when the number of controllers
in configurations is higher, this is also noted in the TUD

VOLUME 9, 2021 26747



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

FIGURE 11. Results of 10 repetitions of time taken for networks to converge into a single, holistic view after a link discovery
update event occurs is displayed. Networks configurations include a) FL-DSF, b) DCN-DSF, c) ONOS-DSF, and d) ONOS-cluster
with differing numbers of controllers per configuration.

metric analysis. Cluster-based distributed systems incur a
higher number of control packets to synchronize each entity
as participants in the network increases. Atomix agents are
the brokers in the cluster synchronizing ONOS controllers
and maybe the performance bottleneck for larger cluster con-
figurations.

The performance in terms of NCP depends on the SDN
control plane platform as expressed by the results in Fig. 11.
ONOS is a highly optimized,multi-threaded platform capable
of running concurrent modules efficiently as compared to FL.
DSFmodules in ONOS react in real-time in ONOS regardless
of controller state as opposed to FL which has a delayed
response in DSF module activity. DSF interface performs
consistently in both platforms as the number of controllers
increases. The future scope of the study for DSF interface
performance evaluation is performing a large-scale emulation
of SDN controller platforms to observe the limits of the data-
centric RTPS model.

B. ANALYSIS OF TOPOLOGY UPDATE DELAY
Fig. 12 describes the time taken for controller entities to
receive and process a topology update sample. The y-axis
describes the time delay till the topology update is received
and processed at controllers in test case configurations:
homogeneous DSF-based controller platforms of FL and
ONOS networks in Fig. 12a and Fig. 12b respectively, homo-

geneous Atomix-based ONOS cluster networks in Fig. 12c,
and heterogeneous data center networks compromising of
both DSF-based platforms in Fig. 13.

In Fig. 12a (i), the average topology update delay from
10 repetitions is shown for each FL controller entity in a 4-
controller configuration of the network. The mean delay to
receive the link update is between a quarter of a second and
half-a-second for each control plane entity. In 8 and 12 con-
troller configurations shown by Fig. 12a (ii) and Fig. 12a (iii)
respectively, the TUD remains consistent at approximately
a quarter of a second. This measurement can be explained
by the limitations of the FL controller platform. The opti-
mization of the platform to run its modules concurrently and
monitor changes in real-time effects the DSF interface. This
is confirmed by the TUD measurements taken in DSF-based
ONOS controllers presented in Fig. 12b.

The TUD at each ONOS controller implementing DSF
interface in network configurations with 3, 4, and 6 con-
trollers is described by Fig. 12b (i), (ii), and (iii) respectively.
ONOS-DSF controllers in Fig. 12b (i) differed by a margin
of 17 milliseconds in TUD over 10 repetitions, this may be
attributed to the error margins in experimentation at these
timescales. ONOS-DSF results in Fig. 12b (ii) if compared
to FL-DSF in a similar configuration in Fig. 12a (i) shows
that the ONOS-DSF platform performs significantly better in
terms of TUD, indicating optimized concurrent function of
modules compared to FL. Fig. 12b (iii) results show a highly

26748 VOLUME 9, 2021



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

FIGURE 12. The topology update delay of the link update packet to be received and processed by homogeneous controller platforms
in 10 repetitions for network configurations a) FL-DSF, b) ONOS-DSF, and c) ONOS-cluster with differing number of controllers per
configuration.

FIGURE 13. The topology update delay of the link update packet to be received and processed by heterogeneous controller platforms
in a multi-organization data center network in 10 repetitions for configurations a) 2-controller, b) 4-controller, and c) 6-controller.

consistent network where 5 of 6 control plane entities
receives the TUD between 25-30 milliseconds while the sixth
processes the TUD even faster than its peers at 15 millisec-
onds over 10 repetitions. An overall consistent, real-time
topology synchronization is observed in these configurations
using the DSF interface.

The TUD at each ONOS controller administrated by
Atomix-based cluster management brokers in network con-

figurationswith 3, 4, and 6 controllers is described by Fig. 12c
(i), (ii), and (iii) respectively. In Fig. 12c (i), both con-
trollers in the 2-controller cluster receive and processes the
link update within 3 milliseconds of each other on average.
A similar pattern is observed for the 4-controller configura-
tion in Fig. 12c (ii). In configurations with a fewer number
of controllers, it is noted that Atomix-based clusters syn-
chronize faster with three Atomix agents. However, as the

VOLUME 9, 2021 26749



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

FIGURE 14. Markov chain analysis of DSF controller state transitions from patterns extracted from experiment logs in
configurations a) 4-controller, b) 8-controller, and c) 12-controller.

entities within the cluster increases, some controllers receive
and process the update with a larger delay as described by
Fig. 12c (iii) where controllers with ID C4, C5, and C6 take
over 40 milliseconds. In contrast, the proposed DSF interface
implemented on ONOS controllers in the same configuration
receives and processes the update within 30 milliseconds,
shown by Fig. 12b (iii).
The TUD to receive and process link updates in het-

erogeneous DCN network configurations with 2, 4 and 6
controllers is described by Fig. 13a, Fig. 13b, and Fig. 13c
respectively. The configurations include 1, 2, and 3 con-
trollers from each DSF-based SDN platform. The analysis
of NCP results implies that the DCN-DSF configuration
topology synchronization time is dependent upon the FL
controller processing time. The results in this figure confirm
the behavior as ONOS controllers are able to process the
link update within 30 milliseconds, while FL controllers take
a significantly longer time, ranging between two-tenths and
four-tenths of a second.

C. MARKOV CHAIN ANALYSIS OF DSF CONTROLLER STATE
TRANSITIONS
Markov chain models of DSF-based controller state transi-
tions in network configurations with 4, 8, and 12 controllers
is described by Fig. 14a, Fig. 14b, and Fig. 14c respectively.
An analysis of the experiment log showed a state transition
pattern between three primary controller states: local, global,
and publish.

The local state is one of two topology update states which
occurs when the local link discovery protocol triggers a link
update from a data plane entity administered by the controller.
As described by the control flow diagram presented in Fig. 7,
the next phase of the controller logic is to update topology
followed by publishing the link update throughDSFmodules,
this is known as the publish state. The transition probability
is 1.0 due to each link update requiring a publish event,
as shown by the 4-controller configuration Markov chain

model in Fig. 14a. The second topology update state is known
as the global state. This state is triggered by a subscription
event from the DSF module, Subscriber, which listens for
peer controller link updates. This is the most frequented state
as observed by the transition probabilities due to individual
controller listening to all link updates by peer controllers to
maintain a consistent view of the network.

An interesting observation is made for configurations with
a higher number of DSF controllers in Fig. 14b and Fig. 14c.
The probability of state transition between local and publish
state p is expected to equal 1.0. However, p is observed to be
0.8 and 0.83 respectively. A closer inspection of the Markov
chain models provides an insight into the cause. From the
local state, the only other state the controller transitions to
is global at a probability of 1 − p or 0.2 and 0.17 respec-
tively. The implication of this observation is that after a local
update is discovered and before the update is published by
the Publisher DSF module, the controller state transition is
interrupted by receiving a global update from theDSFmodule
Subscriber. Once the global update state is achieved, the con-
troller transitions from global to publish state to complete the
publication of the prior local update.

The transition probabilities between states were generated
through a custom Java application written to automate the
extraction of state information from the experiment log file,
analyze state transition patterns, and generate the probability
transition matrix. The following stages of processing occur
in the analysis tool: extraction of the transition pattern from
the log file, counting the number of unique states (C) from
the transition pattern to create a double array of size C-by-
C, the summation of the number of state-to-state transitions,
and generating the probability transition matrix by dividing
the summation C-by-Cmatrix by the total count of transitions
from each state.

Fig. 16 displays the analysis output of the Markov chain
tool from a log of an experiment with an 8-controller config-
uration. A total of 262 state transitions is observed in total

26750 VOLUME 9, 2021



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

FIGURE 15. RTPS events trace versus time for the network configurations: 2, 4, and 8 controllers respectively. After initialization of
the network, link update events occur as link changes are discovered by the LLDP process over a time period of 136 seconds.

FIGURE 16. Markov chain analysis tool automates the process of
extracting the probability transition matrix from the experiment log file.
The figure illustrates the process extracted from an 8 controller
configuration experiment conducted over 30 minutes resulting
in 262 state transitions.

TABLE 8. Factors and their levels for DSF interface NCP study.

for this configuration. For 4 and 12 controller configurations,
122 and 389 state transitions are observed over a time period
of 30 minutes in steady-state conditions.

D. ANALYSIS OF RTPS PACKET TRANSMISSIONS
Fig. 15 describes an RTPS packet transmissions trace of
network configurationswith 2, 4, and 8 controllers over a time
period of 136 seconds captured by the Wireshark network
packet analyzer tool. During the initialization of the network,
all three configurations observe an increased volume of RTPS
packets in the network caused by controllers exchanging their
own initial set of data plane entity links. The network with
the largest set of controllers reaches the highest packets/sec
value at around 27 RTPS packets/second. The RTPS events
after the initialization state reduce by a significant amount

and stabilize by t= 34 seconds, periodically exchanging link
updates due to link cost discoveries in terms of latency. When
a link update is triggered during the experiment by simulating
a link failure, RTPS messages in the network peak again
before converging to the single, holistic view. Note in this
experiment the link failure occurred at different times.

Fig. 17 displays the packet activity trace over time of
all packets transmitted in the network compared to RTPS
events in an 8-controller network configuration. RTPS events
make up a small fraction of the packets transmitted during
the initialization process of the network at t = 12 seconds.
During a link update event, occurring at approximately t =
118 seconds, RTPS events make up the majority of packet
activity in the network before returning to steady-state.

Fig. 18 presents the behavior of the network during a link
update event at t = 3 seconds between three network con-
figurations with 2, 4, and 8 controllers. Configurations with
a higher number of controllers transmit more packets/sec in
the network, approximately 34 and 11 RTPS packets/sec for
configurations 8 and 4 controllers respectively compared to
8 RTPS packets/sec for configuration with 2 controllers. All
three configurations stabilize by t= 8 seconds. Regardless of
the network configuration, background RTPS control packet
mechanisms continue after the link update is transmitted and
have no influence on the network convergence time.

E. PERFORMANCE EVALUATION OF NCP
For a thorough performance evaluation of NCP via DSF inter-
face, we opted to perform a Two Factor Full Factorial Design
with Repetitions [42]. The factors that affect performance are
the DSF-based SDN controller platforms and the number of
SDN controllers. Each factor contains multiple levels. Table 8
shows the factors and their respective levels evaluated for the
performance study.
yijk = Response (observation) in the kth replication

of experiment with factors A=No. of Controllers and
B=Controller Platforms at levels i=3, j=2, and r=10, respec-
tively, where r is the number of repetitions.
µ =Mean response

VOLUME 9, 2021 26751



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

TABLE 9. Analysis of variation (ANOVA) of network convergence point from a Two Factor Full Factorial Design with Repetitions.

FIGURE 17. Packet activity trace over time of RTPS events compared to all packets in the network in an 8-controllers configuration.
RTPS events count for a small percentage of all packets generated in the initialization process of the network. During a link update
event, RTPS packets make up the majority of traffic before returning to the normal state.

FIGURE 18. RTPS trace over time comparison between a differing number
of controller configurations in the network. The comparison begins at the
discovery of a link update by the LLDP process, describing the number of
RTPS packets/sec generated to converge the network over a period
of 16 seconds.

αi = Effect of factor A at level i
βj = Effect of factor B at level j
γABij = Interaction between factors A and B
γeijk = Experimental error

Allocation of variation [43] for the aforementioned facto-
rial design is described by the equation below:

6ijky2ijk = abrµ2
+ br6jα

2
j + ar6iβ

2
i + r6ijγ

2
ij +6ijke2ijk

The results of the ANOVA in Table 9 provides insight into
the factors affecting the NCP in the network. The variation of
NCP due to the number of controllers is 0.9% from 10 repeti-
tions of the experiments in multiple configurations on both
controller platforms. In contrast, the variation of NCP due
to controller platforms is 81.3%, confirming the behavior
observed in the analysis of performance metrics captured.
Experimental errors account for 17.1% of the variation in
NCP. DSF interface performance behavior is significantly
dependent upon the controller platform it is implemented on.

Another insight from the ANOVA table is the interaction
between the factors affecting NCP measurements. The inter-
action between the controller platform and the number of
controllers accounts for 0.6% of the variation in NCP.

From these observations of variation, it can be deduced
that the DSF interface performs consistently in the East/West
domain as the number of controllers is scaled up despite the
constraints of the controller platform.

VII. CONCLUSION & FUTURE WORKS
In this paper, the limitations of distributed SDN control plane
were highlighted. The lack of a standardized communica-
tion method for East/West interfaces among distributed SDN
controllers is a primary concern for the adoption in het-
erogeneous, multi-domain network environments. The paper
proposed the use of a data-centric RTPS communication
model among control plane entities to overcome the outlined
limitations, referred to as DSF - a distributed SDN control

26752 VOLUME 9, 2021



B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

plane framework. In DSF, control plane entities, arranged
in parent/child (vertical) or peer-to-peer (horizontal) manner
exchanged link discovery updates in the proposed LUMP
message format to synchronize the holistic topology main-
tained by participating entities, enabling routing of data plane
packets over multiple domains. Performance evaluation of
DSF interface implemented on Floodlight and ONOS con-
troller platforms was conducted in homogeneous and het-
erogeneous networks. The experiment test cases consisted of
controllers maintaining a single, holistic view of the network
by exchanging link updates with an increasing number of
control plane entities. The performance metrics collected
and analyzed showed that the proposed East/West interface
behaved consistently as the number of controllers increased
and topology synchronization occurred in real-time, relative
to the optimization of the controller platform selected.

Future research includes investigating a data-centric real-
time publish/subscribe communication model to enable
northbound applications to access the controllers to perform
SDN control optimizations. Network optimization techniques
such as artificial intelligence to gather, store and process long-
term traffic flow patterns to create predictionmodels of future
traffic for pre-emptive fast handovers, mobility, and more.
In addition, investigating availability techniques in DSF-
based control plane networks, creating new topic structures
and QoS profiles for controller-to-controller polling. Further-
more, a comprehensive performance study of the quality-of-
service attributes of the data-centric RTPS-DDS communi-
cation paradigm in the DSF interface needs to be studied in
a large-scale emulation to identify the key factors affecting
performance in a distributed, multi-domain environment.

ACKNOWLEDGMENT
The authors would like to thank the members of the Real-
Time Embedded Systems Lab, Department of Computer
Engineering, and King Fahd University of Petroleum and
Minerals for their support.

REFERENCES
[1] ‘‘Cisco annual Internet report—Cisco annual Internet report

(2018-2023) White Paper,’’ Cisco Systems, Inc., San Jose, CA, USA,
White Paper C11-741490-01. Accessed: Dec. 21, 2020. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[2] ‘‘Software-defined networking: The new norm for networks,’’ Open
Netw. Found., Palo Alto, CA, USA, White Paper, May 2013. Accessed:
Dec. 23, 2020. [Online]. Available: https://opennetworking.org/sdn-
resources/whitepapers/software-defined-networking-the-new-norm-for-
networks/

[3] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, ‘‘A survey on
software-defined networking,’’ IEEE Commun. Surveys Tuts., vol. 17,
no. 1, pp. 27–51, Jun. 2015.

[4] H. Kim and N. Feamster, ‘‘Improving network management with software
defined networking,’’ IEEE Commun. Mag., vol. 51, no. 2, pp. 114–119,
Feb. 2013.

[5] D. Kreutz, F. M. V. Ramos, and P. Verissimo, ‘‘Towards secure
and dependable software-defined networks,’’ in Proc. 2nd ACM SIG-
COMM Workshop Hot Topics Softw. Defined Netw. (HotSDN), 2013,
pp. 55–60.

[6] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, ‘‘On scalability of
software-defined networking,’’ IEEE Commun. Mag., vol. 51, no. 2,
pp. 136–141, Feb. 2013.

[7] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, ‘‘NOX: Towards an operating system for networks,’’ ACM
SIGCOMMComput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul. 2008.

[8] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, ‘‘Are we ready for SDN? Implemen-
tation challenges for software-defined networks,’’ IEEE Commun. Mag.,
vol. 51, no. 7, pp. 36–43, Jul. 2013.

[9] M. Karakus and A. Durresi, ‘‘A survey: Control plane scalability issues
and approaches in software-defined networking (SDN),’’ Comput. Netw.,
vol. 112, pp. 279–293, Jan. 2017.

[10] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, ‘‘Achieving high utilization with software-driven WAN,’’
in Proc. ACM SIGCOMM Conf. SIGCOMM, Aug. 2013, pp. 15–26.

[11] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat,
‘‘B4: Experience with a globally-deployed software defined wan,’’ ACM
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3–14, Sep. 2013.

[12] H. I. Kobo, A.M. Abu-Mahfouz, and G. P. Hancke, ‘‘A survey on software-
defined wireless sensor networks: Challenges and design requirements,’’
IEEE Access, vol. 5, pp. 1872–1899, 2017.

[13] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, ‘‘Software-defined networking: A compre-
hensive survey,’’ Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[14] N. Shah, P. Giaccone, D. B. Rawat, A. Rayes, and N. Zhao, ‘‘Solutions
for adopting software defined network in practice,’’ Int. J. Commun. Syst.,
vol. 32, no. 17, p. e3990, Nov. 2019, doi: 10.1002/dac.3990.

[15] A. Tootoonchian and Y. Ganjali, ‘‘Hyperflow: A distributed control plane
for openflow,’’ in Proc. Internet Netw. Manage. Conf. Res. Enterprise
Netw., vol. 3, 2010, pp. 1–6.

[16] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F. Kaashoek, and
R. T. Morris, ‘‘Flexible, wide-area storage for distributed systems with
WheeLFS,’’ in Proc. NSDI, 2009, pp. 43–58.

[17] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, ‘‘Onix:
A distributed control platform for large-scale production networks,’’ in
Proc. OSDI, vol. 10, 2010, pp. 1–6.

[18] J. Medved, R. Varga, A. Tkacik, and K. Gray, ‘‘OpenDaylight: Towards
a model-driven SDN controller architecture,’’ in Proc. IEEE Int. Symp.
World Wireless, Mobile Multimedia Netw., Jun. 2014, pp. 1–6.

[19] Akka: Build Concurrent, Distributed, and Resilient Message-Driven Appli-
cations for Java and Scala | Akka. Accessed: Nov. 12, 2020. [Online].
Available: https://akka.io/

[20] D. Suh, S. Jang, S. Han, S. Pack, T. Kim, and J. Kwak, ‘‘On performance
of OpenDaylight clustering,’’ in Proc. IEEE NetSoft Conf. Workshops
(NetSoft), Jun. 2016, pp. 407–410.

[21] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar, ‘‘ONOS: Towards
an open, distributed SDN OS,’’ in Proc. 3rd Workshop Hot Topics Softw.
Defined Netw., 2014, pp. 1–6.

[22] E. Sakic and W. Kellerer, ‘‘Response time and availability study of RAFT
consensus in distributed SDN control plane,’’ IEEE Trans. Netw. Service
Manage., vol. 15, no. 1, pp. 304–318, Mar. 2018.

[23] Atomix—A Reactive Java Framework for Building Fault-Tolerant
Distributed Systems. Accessed: Nov. 12, 2020. [Online]. Available:
https://atomix.io/

[24] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ‘‘ZooKeeper: Wait-free
coordination for Internet-scale systems,’’ in Proc. USENIX Annu. Tech.
Conf., 2010, vol. 8, no. 9, pp. 1–14.

[25] K. Phemius, M. Bouet, and J. Leguay, ‘‘DISCO: Distributed multi-domain
SDN controllers,’’ in Proc. IEEE Netw. Oper. Manage. Symp. (NOMS),
May 2014, pp. 1–4.

[26] Floodlight Controller—Project Floodlight. Accessed: Sep. 14, 2020.
[Online]. Available: https://floodlight.atlassian.net/wiki/spaces/floodlight-
controller/overview

[27] S. Vinoski, ‘‘Advanced message queuing protocol,’’ IEEE Internet Com-
put., vol. 10, no. 6, pp. 87–89, Nov. 2006.

[28] F. Benamrane, M. Ben Mamoun, and R. Benaini, ‘‘An east-west interface
for distributed SDN control plane: Implementation and evaluation,’’ Com-
put. Electr. Eng., vol. 57, pp. 162–175, Jan. 2017.

[29] B. Lee, S. H. Park, J. Shin, and S. Yang, ‘‘IRIS: The openflow-based
recursive SDN controller,’’ inProc. 16th Int. Conf. Adv. Commun. Technol.,
Feb. 2014, pp. 1227–1231.

[30] S. H. Yeganeh and Y. Ganjali, ‘‘Kandoo: A framework for efficient and
scalable offloading of control applications,’’ in Proc. 1st Workshop Hot
Topics Softw. Defined Netw. (HotSDN), 2012, pp. 19–24.

VOLUME 9, 2021 26753

http://dx.doi.org/10.1002/dac.3990


B. Almadani et al.: DSF: A Distributed SDN Control Plane Framework for the East/West Interface

[31] G. Pardo-Castellote, ‘‘OMG data-distribution service: Architectural
overview,’’ in Proc. 23rd Int. Conf. Distrib. Comput. Syst. Workshops,
2003, pp. 200–206.

[32] Y. E. Oktian, S. Lee, H. Lee, and J. Lam, ‘‘Distributed SDN controller
system:A survey on design choice,’’Comput. Netw., vol. 121, pp. 100–111,
Jul. 2017.

[33] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[34] DDS Portal—Data Distribution Services. Accessed: Nov. 16, 2020.
[Online]. Available: https://www.dds-foundation.org/

[35] About the DDS Security Specification Version 1.1. Accessed:
Nov. 16, 2020. [Online]. Available: https://www.omg.org/spec/DDS-
SECURITY/

[36] Overview (ONOS Java API (2.4.0)). Accessed: Nov. 16, 2020. [Online].
Available: http://api.onosproject.org/2.4.0/apidocs/

[37] Mininet Overview—Mininet. Accessed: Oct. 12, 2020. [Online]. Available:
http://mininet.org/overview/

[38] R.-T. Innovations. Software System Integration With Connext DDS
Professional | RTI. Accessed: Oct. 12, 2020. [Online]. Available:
https://www.rti.com/products/connext-dds-professional

[39] Wireshark. Go Deep. Accessed: Oct. 15, 2020. [Online]. Available:
https://www.wireshark.org/

[40] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, ‘‘The many
faces of publish/subscribe,’’ ACM Comput. Surveys, vol. 35, no. 2,
pp. 114–131, Jun. 2003.

[41] R. Baldoni, R. Beraldi, S. T. Piergiovanni, and A. Virgillito, ‘‘On the
modelling of publish/subscribe communication systems,’’ Concurrency
Comput., Pract. Exper., vol. 17, no. 12, pp. 1471–1495, Oct. 2005.

[42] R. Jain, The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Modeling.
New York, NY, USA: Wiley, 1991.

[43] E. R. Girden, ANOVA: Repeated Measures, no. 84. Newbury Park, CA,
USA: Sage, 1992.

BASEM ALMADANI received the B.Sc. degree
in computer engineering from KFUPM, in 1997,
and the M.Sc. degree in industrial automation and
the Ph.D. degree from the Institute for Automa-
tion, Montan University of Leoben (MUL), Aus-
tria, in 1999 and 2005, respectively. He joined the
SABIC International Team to manage industrial
automation project in Vienna, Austria. He joined
KNAPP Systems Integration in 2001, Leoben,
Austria, as a Logistics Automation Specialist. He

was the Chairman of the Computer Engineering Department, KFUPM,
from 2009 and 2014, where he is currently the Director of the Alfozan
Academy, for Leaders Development in Non-Profit Sector Program. His
areas of research interests include real-time systems integration, distributed
systems, middleware, the IIoT, and IR 4.0.

ABDURRAHMAN BEG received theB.Sc. degree
in computer science from Universiti Tenaga
Nasional, Malaysia, in 2013, and the M.Sc. degree
in computer networks from the King Fahd Uni-
versity of Petroleum and Minerals, Saudi Arabia,
in 2020. His research interests include software-
defined networking, mobile and wireless net-
works, machine learning, cybersecurity, and IoT.

ASHRAF MAHMOUD (Member, IEEE) received
the B.Sc. degree in electrical and computer
engineering from Kuwait University, in 1990,
the M.Eng. degree in engineering physics
(computer systems) from McMaster University,
Hamilton, ON, Canada, in 1992, and the Ph.D. in
systems and computer engineering from Carleton
University, Ottawa, ON, Canada, in 1997. From
1997 to 2002, he was with the Nortel Networks
Research and Development, where he focused on

the development and evaluation of radio resource management algorithms
for broadband and 3G networks. Since 2002, he has been with the Computer
Engineering Department, King Fahd University of Petroleum and Minerals,
Dhahran, Saudi. His research interests include performance evaluation and
simulation techniques, mobile and wireless sensor networks, and the IoT.

26754 VOLUME 9, 2021


