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ABSTRACT Speech impairment in Parkinson’s Disease (PD) has been extensively studied. Our under-
standing of speech in people who are at an increased risk of developing PD is, however, rather limited. It is
known that isolated Rapid Eye Movement (REM) sleep Behavior Disorder (RBD) is associated with a high
risk of developing PD. The aim of this study is to investigate smartphone speech testing to: (1) distinguish
participants with RBD from controls and PD, and (2) predict a range of self- or researcher-administered
clinical scores that quantify participants’ motor symptoms, cognition, daytime sleepiness, depression, and
the overall state of health. The rationale of our analyses is to test an initial hypothesis that speech can be
used to detect and quantify the symptoms associated with RBD and PD.We analyzed 4242 smartphone voice
recordings collected in clinic and at home from 92 Controls, 112 RBD and 335 PD participants. We used
acoustic signal analysis and machine learning, employing 337 features that quantify different properties
of speech impairment. Using a leave-one-subject-out cross-validation scheme, we were able to distinguish
RBD from controls (sensitivity 60.7%, specificity 69.6%) and RBD from PD participants (sensitivity 74.9%,
specificity 73.2%), and predict clinical assessments with clinically useful accuracy. These promising findings
warrant further investigation in using speech as a digital biomarker for PD and RBD to facilitate intervention
in the early and prodromal stages of PD.

INDEX TERMS Digital biomarkers, Parkinson’s disease, REM sleep behavior disorder, speech analysis,
statistical learning, smartphones, telemedicine.

I. INTRODUCTION
Neurological disorders pose an increasing burden to health
systems worldwide as leading sources of disability [1].
Parkinson’s Disease (PD) is characterized by a range
of progressively debilitating motor symptoms (including
bradykinesia, tremor, rigidity) and non-motor (e.g. cognitive,
neuropsychiatric, autonomic, sleep) symptoms [2]. Speech
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performance degradation is reported in the vast majority of
people diagnosed with PD and speech-related problems are
strongly associatedwith overall PD symptom severity [3], [4].

There is currently no known cure for PD, however, phar-
macological and surgical treatment can to some extent alle-
viate the symptoms and improve quality of life for most
People with PD (PWP) [5]. Regular monitoring of symp-
tom progression is indicated to optimize treatment regimens,
which has relied on expert-based clinical assessments and
PWP’s self-reports. Clinical assessment relies on established
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validated instruments (rating scales). One of the most
widely used instruments is the Movement Disorder Society
(MDS)-sponsored revision of the Unified Parkinson’s Dis-
ease Rating Scale (MDS-UPDRS) [2], which requires skilled
expert raters to administer. Even though this is well stan-
dardized and rater training is administered, similarly to other
expert-rated scales the MDS-UPDRS is known to be prone
to inter-rater variability [6]. Additionally, the time required
to administer the MDS-UPDRS often prohibits its routine
clinical use.

Expert administered clinical assessments provide a clini-
cal impression of symptom severity and are well-suited for
non-motor and motor-tasks that are more amenable to objec-
tive external assessment. However, it is crucial to consider the
PWP’s self-perception of symptom severity, since ultimately
different PWP have different needs [1]. The proliferation of
smartphones and smartphone apps has facilitated longitudinal
collection of Patient Reported Outcome Measures (PROMs)
for participant symptom self-reporting [7]–[9]. This further
motivates the need to use PROMs for PD management and
monitoring of the diverse range of PD symptoms.

In addition to clinically validated rating scales (expert-
based assessments and PROMs), the research community has
embraced the use of technology in the hope of facilitating
objective, sensor-based PD assessments [10]. These develop-
ments include the use of wearable sensors [11] and smart-
phones [12]–[14]. We have previously demonstrated the use
of sustained vowel ‘‘aaah’’ towards: (i) very accurate binary
differentiation of a matched control group versus PWP [15];
(ii) replication of MDS-UPDRS with greater accuracy than
the inter-rater variability [3], [16]–[18]; (iii) automatic assess-
ment of PD voice rehabilitation using the Lee Silverman
Voice Treatment (LSVT) [19]; (iv) distinguishing people with
genetic PD predisposition (Leucine-Rich Repeat Kinase 2
(LRRK2) mutations [20]), PWP, and matched controls; and
(v) using a large database of voice recordings collected over
a standard telephone network (sampling frequency 8 KHz) to
distinguish PWP from age- and sex-matched controls [21].

Voice abnormalities have been reported to precede the
onset of motor symptoms in PD [22]. Investigating the nature
and extent of vocal impairment in individuals who are at
risk of developing PD can provide a crucial opportunity to
intervene in the prodromal stages of the disease and facili-
tate potential recruitment of participants for neuroprotective
treatment trials aimed at slowing down or preventing con-
version to PD. Rapid Eye Movement (REM) sleep Behavior
Disorder (RBD) is among the strongest known predictors
of PD risk [23]. Isolated RBD is associated with high rates
of phenoconversion to a neurodegenerative disorder, includ-
ing PD, dementia with Lewy bodies, and multiple system
atrophy [24]. Isolated RBD is a parasomnia that is typically
characterized by dream enactments and excess muscle tone
during REM sleep [25]–[27]. Age and sex are the two most
common risk factors associated with RBD, whereby there
is a higher preponderance in males. The risk of develop-
ing a neurodegenerative syndrome, from the time of RBD

diagnosis, is estimated to be 33.1 at five years, 75.5% at ten
years, and 90.9% at 14 years, with a median conversion time
of 7.5 years [24]. The aforementioned reasons motivated our
decision to investigate the signs and extent of potential vocal
impairment in participants with isolated RBD.

For the assessment of RBD, a screening questionnaire is
sometimes employed (REMSleep Behavior Disorder Screen-
ing Questionnaire (RBDSQ)), and the gold standard for RBD
diagnosis is a polysomnography (PSG) test. Administering
full PSG incurs substantial logistical costs for the healthcare
service providers (as the participants need to be admitted
and monitored throughout the night at hospital). The average
cost of an overnight PSG test is estimated to be around USD
800 [28]. Voice analysis offers the exciting possibility to risk
stratify individuals and prioritize those who are most likely
to benefit from a PSG investigation.

The literature on investigating vocal impairment in individ-
uals with RBD is rather scarce. Using speech recordings (sus-
tained phonation, syllable repetition and monologue) from
16 RBD and 16 age- and sex-matched healthy controls, a sen-
sitivity of 96% and specificity of 79% has been reported [29].
Using 50 RBD, 30 PD and 30 healthy controls, an Area Under
the Curve (AUC) value of 0.69 (sensitivity 69.8%, specificity
64.7%) was achieved in discriminating RBD and controls
using smartphone-based speech, and a high correlation and
reliability were found between acoustic measures extracted
from a professional microphone and smartphone [30]. These
findings suggest that recordings collected from smartphones
and professional microphones could be of comparable qual-
ity. Using the speech dataset employed by Rusz et al. [30],
a classification of up to 66% between early PD and RBD
was reported by Benba et al. [31]. However, these studies on
speech-RBD have mainly relied on high-quality recordings,
collected in a laboratory under controlled acoustic conditions,
using small cohorts (typically fewer than 50 participants).
Thus, current studies, despite being promising, may be lim-
ited in drawing inferences and scaling findings for screen-
ing people with isolated RBD. Moreover, in the absence of
detailed clinical measures of key interest, studies thus far
have been unable to offer new insights into the relationship
between the extent of speech impairment and severity of
symptoms in RBD.

The aim of this study is to utilize smartphone speech
assessments to make the following three main contributions:
(1) differentiating cohorts of healthy controls (n = 92),
isolated RBD (n = 112), and PD (n = 335) participants using
sustained vowel phonations; (2) predicting diverse self- or
researcher-rated established validated clinical metrics assess-
ing symptom severity from a deeply phenotyped cohort;
(3) highlighting the benefits of deep clinical phenotyping to
fully maximize the application of smartphone speech eval-
uation for RBD and PD. We aim to provide an overview
of symptoms in RBD and early PD by bridging objective
data collected using smartphones (voice), clinical ratings
(e.g., MDS-UPDRS), and self-reports, with the ultimate aim
of contributing towards the development of a decision support
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tool for RBD and PD. The motor symptoms associated with
RBD are subtle, which makes it challenging to detect and
monitor granular changes. Our analysis is aimed at testing an
initial hypothesis that acoustic analysis of speech signals can
be used to detect and quantify the symptoms associated with
RBD and PD. This is relevant as the objective quantification
of symptom severity using voice can potentially help identify
and prioritize participants for PSG, and facilitate intervention
in the prodromal stage of PD. The novelty of our work lies
in assessing the relationship between speech impairment and
symptom severity in isolated RBD, with a focus on motor
symptoms, cognition, daytime sleepiness, depression, and the
overall state of health. To the best of our knowledge, this
is the largest dataset of smartphone-based voice recordings
collected from a deeply phenotyped RBD cohort.

The article is organized as follows. Section II presents
the study design and clinical data. Section III describes the
methodology focusing on voice segmentation, feature extrac-
tion and selection, statistical mapping, and model validation.
Section IV presents out-of-sample results for discriminating
the three groups (Controls, RBD, and PD) and predicting
PROMs and clinician-rated scores. Conclusions are presented
in Section V, and limitations of this study and plans for future
research are discussed in Section VI.

II. DATA
Voice recordings and clinical data were collected from par-
ticipants enrolled in the Oxford Discovery Cohort (further
details are discussed in Barber et al. [32]; Baig et al. [33];
Lo et al. [13]). PWPmet the United Kingdom PDBrain Bank
criteria for probable PD [34]. We included PWP for whom
the probability of PD was at least 90% (as ascertained by a
trained researcher) at their most recent clinic visit. Partici-
pants with isolated RBD were included if their PSG provided
evidence supportive of their clinical diagnosis, in keeping
with the International Classification of Sleep Disorders cri-
teria [35]. The study was prospectively approved by the local
UKNational Health Service Ethics research ethics committee
(10/H0505/71 and 16/SC/0108), in adherence with national
legislation and the Declaration of Helsinki. All participants
provided written informed consent before any study-related
procedures.

We used data from a cohort of 539 participants, com-
prising 92 Controls, 112 RBD, and 335 PWP. Participants
were provided smartphones installed with a fully customized
smartphone application that enabled the recording of a range
of diverse modalities including voice, gait, balance, dex-
terity, reaction time, rest tremor, and postural tremor [12].
We focused only on the voice task in this study, for which
the participants were provided with the instruction: ‘‘Hold
the phone to your ear, take a deep breath, and say ‘aaah’ at
a comfortable and steady, tone and level, for as long as you
can.’’ The sustained vowel phonations ‘‘aaah’’ (International
phonetic alphabet /a:/) were sampled at 44.1 kHz directly at
the smartphone, and the recordings were encrypted, times-
tamped, and uploaded to a secure online database.

During their in-clinic visit, in conjunction with clinical
assessments, participants performed the voice task under the
supervision of a trained researcher. Moreover, participants
were encouraged to take the smartphones home to perform the
voice task up to four times a day, for seven days. The duration
of each voice task was 20 seconds. Smartphone data collected
during the first clinic visit and subsequent home recordings
(performed within three months of their clinic visit) were
used for analysis. Our findings are thus not dependent on the
voice task being performed by participants under supervision
in clinic. In total, we identified 4242 phonations (nControls =
688, nRBD = 1359, nPD = 2195) from participants that
fulfilled the above inclusion criteria.

Along with speech, we collected various established clin-
ically validated metrics that are either expert rater-based
or PROMs-based, including the MDS-UPDRS (we report
both the motor MDS-UPDRS (part III, motor examination)
and the total MDS-UPDRS), Montreal cognitive assessment,
Epworth sleepiness scale, Beck depression inventory, and
visual analogue scale (details for each outlined below). In all
cases, the clinical assessment and the self-reports were col-
lected in addition to the speech data. Basic demographics and
participant information are summarized in Table 1.

TABLE 1. Summary Demographics and Participant Information.

A. MDS-UPDRS
TheMDS-UPDRS is one of themost widely usedmeasures to
quantify the severity of PD [2]. In this study, we use the motor
MDS-UPDRS (the third subscale of theMDS-UPDRS,which
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is also referred to as MDS-UPDRS part III) and the total
MDS-UPDRS, which constitutes of the following four sub-
scales: (I) nonmotor elements of PD, (II) nonmotor experi-
ences of daily living, (III) motor examination, and (IV) motor
complications. The motor MDS-UPDRS is administered by a
clinician and focuses on assessing the severity ofmotor symp-
toms. It comprises 33-items, whereby each item is scored
using the following points scheme: normal (0), slight (1),
mild (2), moderate (3), and severe (4). The maximum value
of the motor MDS-UPDRS is 132 points, and a higher score
represents more severe impairment. For the Discovery cohort,
part (IV) of the MDS-UPDRS was administered only for
the PD cohort. In this study, the total MDS-UPDRS was
computed as the sum of the first three subscales (which we
refer to as total MDS-UPDRS I-III).

B. MoCA
The Montreal Cognitive Assessment (MoCA) is a brief
10-minute screening test, which exhibits high sensitivity and
specificity in detecting the signs of Mild Cognitive Impair-
ment (MCI), which is a clinical state that may evolve to
dementia [36]. The MoCA is a 30-point test that evalu-
ates: short-term memory recall, visuospatial abilities, multi-
ple aspects of executive functions, attention, concentration,
workingmemory, language, and orientation to time and place.
A lower score is associated with a higher likelihood of MCI.
We used the total MoCA score that was adjusted for educa-
tion, whereby participants with≤ 12 years of education were
assigned an additional MoCA point [37].

C. ESS
The Epworth Sleepiness Scale (ESS) is a PROMs-based
questionnaire that assesses ‘daytime sleepiness’ [38]. The
test comprises 8-items, each rated on a 4-point scale (with
0 denoting ‘would never doze’ and 3 denoting ‘high chance
of dozing’), and the total ESS has a range of 0–24.

D. BDI
The Beck Depression Inventory (BDI) is a patient
self-reported test that is used to measure the symptoms and
severity of depression in persons aged ≥ 13 years. The BDI
was introduced in 1961 and has since undergone multiple
revisions [39]. In this study, we use BDI-II, which is a 21-item
multiple-choice inventory, in which each item is rated out
on a 4-point scale (0 to 3, where 3 indicates an extreme
form of each symptom) [40]. The total BDI-II score has a
range of 0 to 63, and the interpretation of this score is based
on the following guidelines: minimal range (0–13), mild
depression (14–19), moderate depression (20–28), and severe
depression (29–63).

E. EQ-5D-3L VAS
The Visual Analogue Scale (VAS) is a self-reported test used
to measure the participants’ health status on the day of the
interview [41]. Participants were asked to mark their health
status on a vertical scale, whereby the ‘Worst imaginable

health state’ corresponds to a score of 0 and ‘Best imaginable
health state’ equates to a score of 100.

F. RBDSQ
The RBD Screening Questionnaire (RBDSQ) is a PROMs-
based instrument which is based on a 10-item questionnaire
(with each response being either ‘yes’ or ‘no’) [42]. The range
is 0 to 13 points, where a higher score is associated with
a higher likelihood of clinical RBD. RBDSQ assesses sleep
behavior, focusing on a range of different nocturnal aspects,
including frequency and content of dreams, nocturnal motor
behavior, injuries, nocturnal awakenings, disturbed sleep, and
presence of any neurological disorder. Using a cut-off of 5
points (as a positive diagnosis of RBD), a sensitivity of 96%
and a specificity of 56% in discriminating RBD versus con-
trols has been reported [42].

III. METHODS
Our methodology is aimed at characterizing each sustained
vowel phonation to extract informative acoustic measures
(also referred to as features), determining a robust feature
subset using feature selection algorithms, and mapping the
selected feature subset onto the clinical outcomes of interest.
A schematic diagram illustrating the different key stages of
our modeling framework is provided in Fig. 1.

FIGURE 1. Schematic diagram illustrating the acquisition of the clinical
and voice data, and major steps involved in the analyses.

Following the confirmation of study group (Con-
trol/RBD/PD), quantification of symptom severity (using the

44816 VOLUME 9, 2021



S. Arora et al.: Smartphone Speech Testing for Symptom Assessment in REM Sleep Behavior Disorder and PD

clinical scores) and vocal assessment, as shown in Fig. 1 (step
A), the first step of our analyses undertook voice segmenta-
tion, which was aimed at identifying the voice segment that
corresponds to the sustained vowel phonation from the com-
plete duration of the voice recording (step B in Fig. 1). Using
the segmented phonation, we performed feature extraction,
which was aimed at characterizing different acoustic mea-
sures of the signal (step C in Fig. 1). The feature matrix (and
corresponding labels) were split into training data and testing
data using a leave-one-subject-out cross-validation scheme,
whereby all recordings except recordings from one partic-
ipant were used for training the model and for identifying
the most salient set of features, i.e., feature selection (step D
in Fig. 1). The process was repeated, iteratively leaving the
recordings from each participant out. We then performed
statistical mapping to establish the relationship between
the input features and the target label, whereby using the
trained model, predictions were generated for the test dataset
(one-by-one, for all participants) and the model accuracy
was validated using a performance score (step E in Fig. 1).
We now describe the different steps of our methodology in
more detail below.

A. VOICE SEGMENTATION
Compared to supervised laboratory collected recordings, data
acquired under non-controlled, free-living conditions yields
findings that are more scalable to the real-world environment.
Collecting data under non-controlled settings can, however,
give rise to data quality issues, such as background noise,
unexpected user behaviors, etc., which can potentially reduce
the interpretability and reliability of the analysis. To tackle
this issue, we developed an automated voice segmentation
algorithm to identify the most stable single 2-second seg-
ment of sustained phonation from the voice recordings. The
segmentation was based on the analysis of changes in fun-
damental frequency over different parts of the voice signal.
The fundamental frequency (F0) of the speech signals was
computed using the Sawtooth Waveform Inspired Pitch Esti-
mator (SWIPE) algorithm [43], which we had previously
demonstrated to be the most accurate F0 estimation algorithm
in sustained vowel /a:/ signals [44].

B. FEATURE EXTRACTION
We characterized each sustained vowel /a:/ phonation
using custom-built signal processing algorithms to com-
pute 337 acoustic measures. We have developed a toolkit
containing known and novel acoustic measures which we
have refined over the years, specifically for processing sus-
tained vowel /a:/ phonations [3], [16], [45], [46]. Briefly,
these acoustic measures aimed to quantify the deviation
from vocal fold periodicity (in terms of frequency the jitter
variants and in terms of amplitude the shimmer variants),
acoustic/turbulent noise, and articulator placement. For the
physiological background, rationale, and detailed algorith-
mic expressions for the computation of the acoustic mea-
sures please refer to our previous studies [6], [13]–[15].

TABLE 2. Breakdown of the 337 Acoustic Measures Used in This Study.

The MATLAB source code for the computation of the acous-
tic measures is freely available on the author’s (AT) website:
https://www.darth-group.com/software. Applying the speech
signal processing algorithms to the study cohort gave rise
to a 4242 × 337 feature matrix. These acoustic measures
are summarized in Table 2, whereas Table 3 for convenience
summarizes the key acoustic aspects we aim to quantify
using algorithmic processing and the corresponding acoustic
measures. We remark there are different approaches to cat-
egorizing the acoustic measures, and the proposed approach
serves as a useful methodological summary perspective. Also
note that some acoustic measures to a certain extent, quantify
aspects of more than one of the assigned categories.

C. FEATURE EXPLORATION AND STATISTICAL ANALYSIS
We explored the data using standard visualization tools in
the form of violin plots to get a succinct representation of
the underlying variable distributions. Subsequently, we com-
puted correlation coefficients to express the statistical associ-
ation between the acoustic measures and the clinical scales.
We used the non-parametric Spearman correlation coefficient
to account for a generic approach which does not require
data normality, and computed statistical significance at the
95% level (p-values) for the null hypothesis that the acoustic
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TABLE 3. Key Acoustic Aspects and Corresponding Acoustic Measures.

measures were not statistically correlated with the clinical
scales. We considered a relationship to be statistically strong
when the magnitude of the correlation coefficient R is at
least 0.3, using the empirical rule of thumb in biomedical
applications [47].

D. FEATURE SELECTION
Awell-known problem in practical data analytics is the curse
of dimensionality: a large number of features increases the
noise in the dataset and may be detrimental in the statistical
learning process [48]. Occam’s razor dictates that we should
aim to determine the most parsimonious statistical model,
i.e. develop a statistical learning model that is maximally pre-
dictive with theminimum number of features. There aremany
different strategies to perform Feature Selection (FS); for an
overview please refer to Guyon et al. [49]. Here, we used the
importance scores from the Random Forests (RF) algorithm
(see the following section) to rank the features and identify a
robust subset. This embedded FS approach has the advantage
that it is integral to the RF model building process alleviating
the need for an additional external step towards FS, and has
shown promising results in diverse applications [50].

E. STATISTICAL MAPPING
There are many statistical mapping algorithms in the
literature, and this continues to be an active area of
research. Here, we used RF [51] following the recommenda-
tion of Hastie et al. that tree-based ensembles are the best off-
the-shelf classifiers [48]. A key competitive advantage of RF
over some competing advanced statistical learning algorithms
is that RF is very robust to the choice of hyperparameters
(number of trees and number of features over which to opti-
mize). We used the standard settings for these hyperparam-
eters following Breiman’s recommendations [51]: 500 trees
and the square root of the number of features for split point
selection at each node. Moreover, to tackle class imbalance,

the votes cut-off for the classes was changed such that the
minority class had a lower cut-off (directly proportional to
the number of observations in that class) [52].

F. MODEL PERFORMANCE AND VALIDATION
To assess the statistical model performance and investi-
gate its performance in unseen data, we used the stan-
dard Leave-One-Subject-Out (LOSO) Cross-Validation (CV)
approach. Specifically, the statistical learning model was
trained using the samples of theN−1 unique participants, and
tested on the performance of correctly estimating the data for
the participant that was not used in the training phase. Using
LOSO, the process of model training and predicting was
repeated for a total of N times (one time for each participant).
Using all N labels and corresponding predictions, we report
the sensitivity and specificity for pairwise discriminations,
and the Mean Absolute Error (MAE) when referring to esti-
mating the clinical scores. The MAE values are summarized
in the form median ± Interquartile Range (IQR).
To discriminate the three groups (Controls, RBD and PD),

using only the features extracted from sustained phonations,
we performed the following pairwise comparisons: (1) Con-
trols versus PD, (2) Controls versus RBD, and (3) RBDversus
PD. For each pairwise comparison, we employed an ensem-
ble of classification trees using: (1) all available recordings,
(2) only male recordings, and (3) only female recordings.
Moreover, to investigate the effect of the data size on classifi-
cation accuracy, we performed the analyses using: (i) only a
single voice recording per participant (first voice recording
collected from each participant), and (ii) total number of
recordings contributed by a given participant. Since differ-
ent participants contributed a different number of recordings
in the testing scenario (ii), we performed model validation
such that each participant was assigned equal weight during
the model validation. Specifically, for a given participant,
we used amajority voting scheme to determine if the majority
of recordings were classified as belonging to either class 1 or
class 2, assigning the final estimate to the majority class for
that participant. This resulted in one label and one classifica-
tion per participant, which was subsequently used for assess-
ing the model performance. Additional details pertaining to
the analyses can be found in [3], [19], [45], [46], [53], and
references therein.

IV. RESULTS
Participants from the three groups (Controls, RBD, and PD)
were age-matched. Pairwise comparisons of age distributions
(Controls vs PD, Controls vs RBD, and RBD vs PD) rejected
the null hypothesis that the age distributions were signifi-
cantly different (using a two-sided Kolmogorov-Smirnov test
with 5% significance level). This helps garner confidence
that the findings of our study are not biased due to the
presence of presbyphonia as a potential confounding factor.
The Controls and RBD groups were male dominant. We start
our exploration by visualizing the underlying distributions of
the clinical scales for the three cohorts (see Fig. 2).
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FIGURE 2. Violin plots summarizing the distributions of the key clinical
metrics and comparing the three groups. The boxplot is embedded within
each violin plot, where the white circle denotes the median and the grey
box denotes the 25th percentile (lower end) and 75th percentile (upper
end). The horizontal line within each violin plot denotes the mean.
Clinical metrics are analysed across the three groups (Controls vs RBD,
RBD vs PD, and Controls vs PD) using the Mann–Whitney U test.
Statistically significant findings (p < 0.05) are marked using ∗.

TABLE 4. Discrimination Accuracies for the 3 Pairwise Comparisons Using
the Leave-One-Recording-Out Cross-Validation Scheme (Using
Only 1 Recording Per Participant).

The difference in all clinical metrics for the control and
PD cohorts were found to be statistically significant, while
this was not the case for MoCA and BDI for the RBD and
PD cohorts. To account for potential group differences in
sex, we stratified the data to present the results separately
for each pairwise group comparison, using all recordings,
only female recordings, and only male recordings. We next
focus on investigating the pairwise discrimination of the three
cohorts using speech signals. Using only a single recording
per participant (nControls = 92, nRBD = 112, nPD = 335),
the out-of-sample classification accuracy was slightly higher
for RBD versus PD, compared to the accuracy obtained in
discriminating Controls vs PD, and Controls versus RBD,
as shown in Table 4.

We chose the recording corresponding to the first speech
test performed by each participant in Table 4. For all three
pairwise comparisons, the accuracy obtained using all record-
ings and only male recordings were rather similar, while the
accuracy using only female recordings were poor. This can
be attributed to the fact that both RBD and Control cohorts
comprised very few female participants, and thus the analyses
using only female recordings are likely to be less reliable.

TABLE 5. Discrimination Accuracies for the 3 Pairwise Comparisons Using
the Leave-One-Subject-Out Cross-Validation Scheme (Using Total Number
of Recordings and Majority Assignment).

The out-of-sample classification accuracy obtained using
the total number of available recordings and a majority
assignment scheme (to assign equal weight to each partic-
ipant during the model validation) is presented in Table 5.
While we were able to distinguish RBD participants from
controls and PD with decent accuracies (Table 5), the dis-
crimination accuracy for Controls vs PD, was surprisingly
poor. Although this requires further investigation, a poten-
tial reason for poor discrimination accuracy using the con-
trol recordings could be that compared to the other two
cohorts, the number of control recordings were about half
and one-third of the total number of recordings from RBD
and PD participants, respectively. Moreover, only 39 controls
contributed more than one speech recording, as opposed to
76 RBD and 126 PD participants who performed multiple
speech tests.

In terms of discriminating Controls vs RBD, the results
of this study (as presented in Table 5, sensitivity 56.3% and
specificity 70.7%) are in broad agreement with previous find-
ings that were based on a smaller cohort which had reported
sensitivity 69.8% and specificity 64.7% [30].

To further explore reasons for the poor discrimination
accuracy, using all recordings for Controls vs PD, we under-
took additional analyses employing following schemes to
alleviate class imbalance issues: class weights, undersam-
pling the majority class, and RUSBoost [52], [54]. However,
the discrimination accuracy was not noticeably better using
these schemes.
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FIGURE 3. Heatmap summarizing the statistical associations for all
participants across the 337 features with the 6 clinical scales.

FIGURE 4. Heatmap summarizing the statistical association for the
stratified group cohorts across the 337 features with the 6 clinical scales.

Subsequently, we investigated the statistical associations of
the features with the clinical scales; to keep those concise the
results are summarized in Fig. 3 for all participants, and then
in Fig. 4 stratifying the data for the three cohorts. Collectively,
the findings in Figs. 3 and 4 suggest there are some sta-
tistically strong associations between the acoustic measures
and the clinical scales. In Figs. 3 and 4, the magnitude of
the Spearman correlation coefficients (using only one speech
recording per participant) was less than 0.5 and hence we
have compressed the scale presented in the range [−0.5 0.5],
whereby the order of the 337 features in the heatmap follows
the presentation in Table 2. In a few cases, strong correlations
were revealed only after stratifying the original dataset into
the group cohorts, which motivates the need to develop strat-
ified cohort-based models to estimate the different clinical
scales using speech. We defer more detailed elaboration on
the most strongly associated features with the clinical scales
and cross-comparisons for the Discussion.

Table 6 presents the out-of-sample LOSO results for each
of the clinical scales for the three cohorts. We have followed
themethodology outlined above assessing the performance of
the classifier both when using a single recording per partici-
pant, and also all available recordings with a majority voting
scheme on LOSO validation. The results were similar, and
here we present only the findings with a single recording per
participant.

TABLE 6. Out of Sample MAE Performance Across Clinical Scales.

FIGURE 5. LOSO MAE performance of the RF in predicting the motor
MDS-UPDRS as a function of the number of features presented into the
classifier. The corresponding symbol in each case indicates the median
and the bars the IQR.

Indicatively, we illustrate in Fig. 5 performance of RF
in predicting the motor MDS-UPDRS. The out-of-sample
model performance, as quantified using the MAE, is shown
as a function of the number of most salient features used
during the modelling. The order of the presented features
was determined using the ranked RF importance scores. For
brevity, we only illustrate the results for motorMDS-UPDRS.

Finally, for the RBD cohort, we explored how the acoustic
measures relate to the RBDSQ score. Table 7 presents the
correlation coefficients of the ten most strongly associated
acoustic measures with the RBDSQ score. Similarly, to the
preceding analyses, we have aimed to estimate RBDSQ pre-
senting the acoustic measures into RF for evaluating the
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TABLE 7. Correlation Coefficients of Acoustic Measures With RBDSQ.

model performance in a LOSO framework. Encouragingly,
we have found that the RBDSQ can be estimated accurately
for the RBD cohort (nRBD = 112) with a LOSO MAE of
(median ± IQR) 1 ± 1 RBDSQ points.

V. CONCLUSION
This study aimed to provide the first comprehensive investi-
gation of a diverse range of PD and RBD clinical scales when
using smartphone-based speech signal analysis. We have
found that speech can be used to estimate diverse PD and
RBD clinical scales with reported MAE that would make
these estimations clinically meaningful. We demonstrated
that RBDSQ can be estimated very accurately with a MAE
of (median ± IQR) 1 ± 1 points. Given that RBD is a
group that may convert to PD and that the RBDSQ quantifies
RBD symptoms, this finding may have important implica-
tions towards early assessment of prodromal symptoms in
PD prior to clinical diagnosis. Moreover, we were able to
distinguish RBD participants from both controls (sensitivity
60.7%, specificity 69.6%) and PD (sensitivity 74.9%, speci-
ficity 73.2%). These results could potentially indicate that
the vocal deficits in participants with isolated RBD might be
different than those with PD. These findings warrant longitu-
dinal studies to investigate speech impairment in participants
with RBD. While previous studies have typically focused on
speech analysis for PD, this study demonstrates that speech
provides the means towards clinically meaningful insights
into symptom severity displayed across the spectrum of both
PD and RBD. These results from a deeply clinically pheno-
typed cohort highlights that speech can potentially be used as
a digital biomarker for prodromal PD.

We emphasize that the PD cohort were at the early stages
of the disease with relatively mild symptoms as summarized
in MDS-UPDRS (see Table 1). Moreover, whilst previous
speech-RBD studies have employed lab-quality recordings,
we felt it was imperative to use recordings collected under
realistic environment settings to address issues regarding
scalability and generalizability of previous findings. It is for

this reason that we collected voice recordings under clinic-
and home-based settings via smartphones, from one of the
largest cohorts of RBD and PD participants. The data were
collected by participants themselves using a wide variety of
off-the-shelf consumer-grade smartphones (manufactured by
major international brands).

We explored the statistical associations (using Spear-
man correlation coefficients) of 337 features, which have
been used in similar problems when processing sustained
vowel /a:/ phonations in PD, with six widely used PD
clinical scales (see Fig. 3). We confirmed some of our
previous findings [3], [16], finding statistically strong asso-
ciations (|R| >0.3) between some of the acoustic measures
and the MDS-UPDRS (both motor MDS-UPDRS and total
MDS-UPDRS I-III). Interestingly, for some of the clinical
scales, we observed that statistical correlation became more
pronounced in stratified groups (see Fig. 4). Further work is
needed to verify these findings in larger Control, RBD and
PD cohorts.

RF derived feature rankings were sub-problem specific and
did not generalize across problems (results not shown), ver-
ifying what could have been expected also when visualizing
the statistical correlations summarized in Fig. 4. This tac-
itly suggests there are different underlying properties quan-
tified by the acoustic measures which were best tailored
for the estimation of the different clinical scales. Overall,
we found that a proportion of features from the VFER-family,
MFCCs and wavelet-based acoustic measures were statisti-
cally strongly correlated with the clinical scales (Fig. 4) and
were highly ranked using the RF importance scores. This is
broadly in agreement with our previous findings in related PD
applications [3], [19], [21].

VI. LIMITATIONS AND FUTURE WORK
Despite the promising findings reported herein, there are
some limitations of this study. Firstly, the quality of voice
samples collected using smartphones under clinic- and home-
based settings is likely to be of relatively worse quality com-
pared to data collected under acoustically highly controlled
lab-settings (e.g., double-walled sound booths), which poten-
tially translates into lower discriminatory accuracy for the
cohorts investigated. Secondly, this study relies on acoustic
signal analysis using only one type of sustained phonation
(‘‘aaah’’), which may not adequately encapsulate the whole
spectrum of speech symptoms in RBD and PD. It is plausi-
ble that acoustic analysis based on a multitude of sustained
phonation types, syllable repetition, and monologue, may
improve the efficacy of the biomarker and provide a more
complete understanding of the degree of speech impairment
in PD, such as soft speech (hypophonia), monotonous speech
with the lack of inflection (aprosody), and dysarthria in the
form of inability to separate syllables clearly (tachyphemia).
Thirdly, we collected data from only three groups (controls,
RBD, and PD), thereby not accounting for other parkinson-
ism and tremor disorders that may also exhibit comparable
patterns of impairment in speech. Therefore, the extent of
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our claims on the basis of the available data is restricted
to the differentiation of the three cohorts. The development
of a robust, reliable clinical decision support tool towards
differential diagnosis would require the use of a large sample
size across a wider range of related neurodegenerative dis-
orders. Finally, although we validated our statistical frame-
work on an independent test dataset, we used data from
only one cohort (Discovery cohort). Validation based on an
external independent cohort would have provided additional
reliability to these findings. Future studies could address
some of the aforementioned limitations. An interesting line
of future work would be to longitudinally monitor speech,
along with other motor and non-motor symptoms, with a
particular focus on participants with RBD who eventually
convert to an overt neurodegenerative disease. We envisage
the findings of this work would contribute towards the risk
stratification of individuals who are at the risk of developing
PD and assist in remote longitudinal monitoring of PD symp-
toms. Overall, this study extends the increasing evidence
presented in the research literature capitalizing on biomedical
speech signal processing towards the objective assessment of
RBD and PD.
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