
Received January 15, 2021, accepted January 27, 2021, date of publication February 8, 2021, date of current version February 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3057616

Pedestrian- and Vehicle-Detection
Algorithm Based on Improved
Aggregated Channel Features
JIE HUA 1, YING SHIA1, CHANGJUN XIE 1, (Member, IEEE), HUI ZHANG2, AND JIAN ZHANG1
1School of Automation, Wuhan University of Technology, Wuhan 430070, China
2Intelligent Transportation Systems Research Center (ITSC), Wuhan University of Technology, Wuhan 430070, China

Corresponding authors: Hui Zhang (zhanghuiits@whut.edu.cn) and Jian Zhang (jian_zhang@whut.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2019YFB1600800, and in
part by the National Natural Science Foundation of China under Grant U1764262 and Grant 51805388.

ABSTRACT In advanced driver-assistance systems (ADAS), the accuracy and real-time performance
of pedestrian- and vehicle-detection algorithms based on vision sensors are crucial for safety. Here,
a lightweight detection algorithm based on aggregated channel features (ACFs),consisting of a context
pixel ACF (CP-ACF) pedestrian detector and a multiview ACF (Mv-ACF) vehicle detector, is proposed
to rapidly and precisely understand road scenes. The former fuses local and context information to improve
the robustness to pedestrian deformation, while the latter contains a number of subclass detectors to alleviate
intraclass differences due to different viewing angles. Compared to the original ACF, the CP-ACF pedestrian
detector reduces the average miss rate (AMR) by 6.34%. TheMv-ACF vehicle detector improves the average
precision (AP) by 40.26% on average at easy, moderate and hard levels. This remarkable effectiveness is due
to the spectrum clustering of multiview samples and the resulting integration of these subclass detectors via
confidence score calibration, which reduces the intraclass differences of vehicles. Since feature extraction
takes up 68.8% of the total detection time, a mechanism of feature sharing between pedestrian and vehicle
detectors is advanced to reduce the time spent in feature extraction. A strategy based on ground-plane
constraints (GPCs) is proposed to control false detection of pedestrians and vehicles by incorporating road
prior information, which reduces the AMR by 1.07% for CP-ACF pedestrian detectors and improves the AP
by 0.27% on average for Mv-ACF vehicle detectors. Thus, the proposed algorithm can effectively control
false detection by road prior information.

INDEX TERMS Pedestrian and vehicle detection, ACF, anti-deformation, multiview, ground plane con-
straint, lightweight.

I. INTRODUCTION
Alongside the increase in profits in the automobile indus-
try in recent years, the frequency of traffic accidents has
grown due to various factors. Confronted with this challenge,
many automobile manufacturers are developing advanced
driver-assistance systems (ADAS), including various sensors
and algorithms. The accuracy and real-time performance of
pedestrian- and vehicle-detection algorithms based on vision
sensors are crucial since safety is a top priority.

Increasing effort has been devoted to improving the accu-
racy and real-time performance of detection algorithms.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhongyi Guo .

Recently, vision-based object detection has become a
research hotspot due to the compelling success of deep
learning [1]–[9]. The single-shot multibox detector (SSD)
and Faster region-based convolutional neural network
(R-CNN) algorithms are representative of algorithms with
high accuracy in detecting vehicles and pedestrians. How-
ever, since these large-scale deep learning-based models
need a very large number of parameters for fine-tuning,
the requirements in terms of computational resources and
memory are extremely high. Therefore, it is difficult to deploy
these models on resource-constrained devices, e.g., CPUs
or embedded gadgets. By contrast, statistical feature-based
object-detection methods are less time consuming and hence
more suitable. Dollár et al. [10] computed different types of
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feature channels in images and, together with the integrated
image, extracted the features of different orders; integral
channel features (ICFs) and cascade AdaBoost were used
to classify ICFs for pedestrian detection. Based on the
ICFs, aggregated channel features (ACFs) were proposed
in [11], and their calculation is identical to that of ICFs.
The difference is that a pixel lookup table is used in feature
extraction to improve the average precision (AP) of pedes-
trian detection. Based on the ACFs, filters have been added
in locally decorrelated channel features (LDCF) and other
algorithms [12]–[14] during feature presentation to fur-
ther improve the detection performance, but the compu-
tational complexity also increases. Furthermore, the ACF
algorithm and its variations are not applicable to simul-
taneous pedestrian and vehicle detection, not to mention
resource-constrained devices.

Compared with other statistical feature-based and deep
learning-based algorithms, the ACF algorithm exhibits better
real-time performance with a lower hardware requirement
despite lower detection performance. For instance, a hard-
ware detector based on ACFs designed in [15] achieved
relatively high performance for pedestrian detection. There-
fore, in this paper, an ACF-based algorithm is designed
for target-detection applications with resource-constrained
devices. Specifically, an object-detection algorithm is pro-
posed to successively eliminate one-category constraints
and to improve detection performance in road scenes.
To implement lightweight pedestrian and vehicle detection,
its two-class detection framework consists of a pedestrian
detector and a vehicle detector, which share some com-
mon features to improve real-time performance. In addition,
a strategy based on the ground plane constraint (GPC) is
adopted to augment the detection performance. In particular,
the two-class detection framework proposed in this paper
makes the following contributions:

(1) A multiclass object-detection framework is proposed
for statistical learning methods, which usually can only
accomplish one-class object detection through a detection
framework.

(2) A feature-sharing structure between pedestrian and
vehicle detectors is proposed that can reduce the total detec-
tion time of the algorithm.

(3) The pedestrian detector based on the context informa-
tion fusion method effectively handles the nonrigid deforma-
tion of pedestrians.

(4) The multiview vehicle detector reduces the intraclass
differences among vehicles.

(5) By using road prior information, postprocessing via
the GPC further improves the performance of pedestrian and
vehicle detectors.

The rest of the paper is organized as follows. First, related
work on pedestrian- and vehicle-detection methods is briefly
reviewed in Section II. Then, the basic framework is intro-
duced in Section III, and its defects are analyzed. Section IV
discusses improvement strategies for the basic framework.
The proposed two-class detection framework for pedestrians

and vehicles is evaluated in experiments in Section V, and
Section VI concludes the paper.

II. RELATED WORK
A. PEDESTRIAN DETECTION
Pedestrian detection is indispensable inADAS and unmanned
driving systems, and increasing research effort has been
devoted to this area. As a representative of gradient features,
a histogram of oriented gradients (HOG) feature [16] was
created to capture the outline and shape of a target. Although
the Haar-like wavelet feature [17] was successfully applied
for face detection, its performance in pedestrian detectionwas
not satisfactory. After fusion of the Haar-like wavelet feature
with motion features in [18], a fusion of various features was
deemed effective for augmenting detection performance [19].
In particular, ICFs and ACFs, which contain gradient, color
and texture information, were successively proposed in [10]
and [11].

In recent years, feature matching with classifiers has
received more attention [20]. In [21], matching the cas-
cade rejecter approach with HOG features greatly improved
accuracy and real-time performance. Multichannel Haar-like
features were used to distinguish different parts of humans
in [22], and a combination of a HOG support vec-
tor machine (SVM) and Haar-Cascade was considered to
improve robustness [23].

In the ACF algorithm, multiple channel features are
used with AdaBoost classifiers to achieve good detection
performance, but the nonrigid deformation of pedestrians
is still a problem. The LDCF [14], Checkerboards [13],
and non-neighboring features and neighboring features
(NNNF) [12] algorithms add different filtering operations
to the ACF algorithm to strengthen the feature presentation.
Although the addition of these algorithms alleviates the
problem of nonrigid deformation of pedestrians, the com-
putational complexity is severely increased, and thus, it is
difficult to implement these solutions on resource-constrained
devices, e.g., embedded gadgets.

B. VEHICLE DETECTION
Like pedestrian detection, vehicle detection is necessary in
ADAS and unmanned driving systems. Appearance informa-
tion was widely used as a low-level feature in early research
[24]. As a priori information, color is often used to detect
visual features such as lights [25] and license plates [26].
In addition, shadows due to local light changes can result
in the deformation or even the loss of a vehicle [27]. One
solution is to establish a color model by establishing color
components, e.g., contrast [28] and brightness [29], to iden-
tify or remove shadow areas. Edges can also be utilized to
improve detection performance [30].

In recent years, local features, e.g., HOG and Haar-like
features, have become prevalent in this field. HOG features
were first used in pedestrian detection to capture the gradient
structure with local shape features and then modified for
vehicle-detection applications [16]. Kim et al. [31] proposed
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FIGURE 1. Display of some data in the line-loss dataset.

the use of HOG features to not only improve detection perfor-
mance but also reduce computation time. Haar-like features
were originally used in face detection [16] and were then used
in [32] to capture the structure and edges in vehicle detection.
Subsequently, speeded-up robust features (SURF) [33] and
scale-invariant feature transform (SIFT) features [34] were
created. Matching feature classifiers with local features for
higher detection performance has recently become a research
hotspot. For instance, Cortes and Vapnik [35] combined HOG
features with SVM classifiers, and the ACF algorithm was
combined with AdaBoost classifiers in [11]. In the ACF algo-
rithm, color, brightness, gradient and other features are fused,
and matching with AdaBoost classifiers greatly improves
the detection performance. Although the ACF algorithm is
renowned for its high accuracy in vehicle detection, its ability
to discern different vehicles is still unsatisfactory. Addition-
ally, intraclass differences due to different perspectives are a
negative factor for vehicle detection.

The statistical feature-based algorithms cited above
involve only a one-category classifier and are not suitable for
simultaneous pedestrian and vehicle detection. In addition,
it is imperative to solve other problems, such as nonrigid
deformation of pedestrians, differences among vehicles and
intraclass differences related to perspective. Therefore, in this
paper, to implement a lightweight algorithm for simula-
tion pedestrian and vehicle detection on resource-constrained
devices, a delicate balance of the requirements for accu-
racy and real-time performance is considered. Specifically,
the ACF algorithm is first selected as the basic framework
based on its good performance in pedestrian and vehicle
detection. Then, some targeted strategies are proposed to
eliminate the one-category constraint to enhance its robust-
ness to pedestrian deformation and to reinforce its ability to
discern differences among vehicles and intraclass differences.

III. ACF OBJECT-DETECTION ALGORITHM
The flowchart of the ACF object-detection algorithm is
shown in Fig. 1. First, from the input image, ACFs are
extracted; based on these features, a multiscale fast feature
pyramid is constructed, and then a soft-cascade AdaBoost
classifier is used to obtain a series of bounding boxes that

FIGURE 2. ACFs of 10 channels.

may contain objects by sliding-window detection on the
feature pyramid. Finally, the most accurate bounding boxes
for the objects are located via a postprocessing procedure,
i.e., non-maximum suppression (NMS) [10]–[14], [16], [36],
[37]. In this section, the ACF object-detection algorithm is
introduced in detail, and its defects are analyzed.

A. ACF OBJECT-DETECTION ALGORITHM
1) ACF EXTRACTION
First, the features of different channels under the same res-
olution are obtained via several transformations of the same
input image, and n×n average pooling is performed to extract
lower-resolution features. Then, a smoothing filter is applied
for noise suppression. Finally, each pixel in the feature map is
marked as an ACF feature. In this paper, a total of 10 channels
are selected through experimental comparison [11]; the LUV
color space, gradient amplitude M, and 6-direction gradient
histogram Oi (i=1, 2, . . . , 6) are shown in Fig. 2.

2) CONSTRUCTION OF A FAST MULTISCALE FEATURE
PYRAMID
To alleviate the sensitivity problem of single-scale ACFs
brought by objects of multiple scales, a multiscale feature
pyramid is established by assuming that the feature channels
are correlated.

First, an image Is is obtained by using the resampling
function R and scaling image I to a scale of s; i.e.,

Is = R (I , s) (1)

Then, Is is subjected to a linear or nonlinear transformation�,
and the feature channelCs at the current scale s is represented
by

Cs = �(Is) = �(R (I , s)) (2)
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FIGURE 3. Schematic diagram of fast feature pyramid construction.

FIGURE 4. Soft-cascade AdaBoost detection.

which is derived as

Cs ≈ R
(
Cs′ , s/s

′
)
· (s/s′)−λ� (3)

by using approximate extrapolation. In this approximate
expression, λ� is the approximate fixed coefficient of the
channel corresponding to the transformation �, which can
be obtained with the training data; Cs′ represents the feature
channel of the scale s′ closest to the scale s, as shown in Fig. 3.

3) SOFT-CASCADE AdaBoost CLASSIFIER WITH A SLIDING
WINDOW
As shown in Fig. 4, to detect objects of multiple scales,
a sliding window with a step size of 4 pixels is used to per-
form detection on all the layers of the pyramid. Within each
window, the features are fed to the soft-cascade AdaBoost.
Specifically, each weak classifier Gt (x) , t = 1, 2, · · · ,T is
well trained with its output as a decision score ht (x), and then
the accumulated total H (x) of these decision scores is

H (x) = H (x)+ αt · ht (x) (4)

where αt is the weighting coefficient of ht (x). If H (x) is
greater than a preset threshold, then this window is preserved
for coordinate correction, from which the accurate bounding
box of the object is acquired.

B. ANALYSIS OF THE ACF ALGORITHM
Although the classic ACF object-detection algorithm has
higher accuracy than the algorithm based on single-channel
features, the following shortcomings have hindered its appli-
cation in a wider range of tasks:

FIGURE 5. Pedestrian- and vehicle-detection framework based on feature
sharing.

(1) Only one kind of object is detectable. For instance,
the AdaBoost classifier is used to judge the existence of a sin-
gle type of object, e.g., pedestrians or vehicles, in each candi-
date window. However, ADASmust detect various objects for
safe driving, so the classic ACF object-detection algorithm is
inadequate for this emerging technology.

(2) Its accuracy in pedestrian or vehicle detection is still
unsatisfactory for practical application. For example, in the
problem of pedestrian deformation, the movement and pos-
ture of a pedestrian can greatly change his or her features and
render them undetectable. In addition, the feature change or
intraclass difference brought by a different perspective has a
significantly negative effect on vehicle detection.

(3) False detection should be further controlled. As a
postprocessing tool to remove redundant detection windows,
NMS uses only the features within the window, but neglecting
the context information can result in false detections.

IV. PROPOSED ACF OBJECT DETECTION
Confronted with the aforementioned shortcomings, a two-
class detection framework based on feature sharing is
proposed.

A. TWO-CLASS DETECTION FRAMEWORK AND DATA
AUGMENTATION
1) TWO-CLASS DETECTION FRAMEWORK
Feature extraction from images is generally the most
time-consuming step in object detection. Traditionally, fea-
ture extraction in pedestrian detection and in vehicle detection
in the same image are performed separately. Motivated by
the idea that feature sharing between these two classes is
expected to reduce the computation time, a pedestrian- and
vehicle-detection framework is proposed. As shown in Fig. 5,
this framework is divided into two phases, where ACF
sharing between pedestrian and vehicle detectors can signifi-
cantly improve the training efficiency. In addition, the frame-
work structure can be readily generalized for multicategory
object detection.

2) DATA AUGMENTATION
The detection accuracy can be increased by using a large
amount of data. Data augmentation can produce many
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FIGURE 6. Some pedestrian samples with different deformations.

FIGURE 7. Characteristics of the gradients for different n values.

additional samples for the class in the same underlying cate-
gory and is accomplished by perturbing the images of a given
dataset through transformations, including flipping, rotating,
cropping and scaling. In the classic ACF detection algorithm,
horizontal flipping is used for data augmentation. Specifi-
cally, the training samples are first scaled for standardization.
However, this flipping worsens object misalignment and can
result in lower detection accuracy. In the proposed algorithm,
horizontal flipping is directly replaced by multiscale data
augmentation. The training images are first scaled 1.1 times
horizontally and vertically, and then the object center position
is normalized. This multiscale augmentation procedure is
expected to improve the robustness.

B. DESIGN OF THE ANTI-DEFORMATION PEDESTRIAN
DETECTOR
As illustrated in Fig. 6, pedestrian deformation brought by
walking and posture is a massive challenge for the design of
pedestrian detectors.

In the classic ACF algorithm, regions of size n × n are
used to perform pixel pooling aggregation on feature chan-
nels, and n is a relaxation factor of robustness to pedestrian
deformation. For example, the gradient amplitude channels at
different values of n are compared in Fig. 7. As the value of n
increases, the resolution of the extracted features decreases,
and the pedestrian contour appears increasingly vague. With
respect to local features, since the value of n is fixed a priori,
missed detections will occur if the robustness of the detector
to large pedestrian deformations is inadequate. On the one
hand, as the value of n gradually increases, low-resolution
features can result in false detections. On the other hand,
more contextual information is included, and the robustness
to deformation increases.

Since n is constant in the classic ACF algorithm, the con-
text information may be insufficient in some cases, resulting
in weak deformation robustness. In this paper, context pixel
ACFs (CP-ACFs) are proposed. As shown in Fig. 8, 2 × 2
average pooling is first performed on the original 10 channels

FIGURE 8. CP-ACF extraction and classification process.

FIGURE 9. Vehicle images from different perspectives.

to obtain the ACF F2. Then, the ACF features F4×4 for the
4 × 4 regions are obtained via 2 × 2 average pooling on
F2×2, and the same procedure is repeated for the case ofF8×8.
Then, all of the F4×4 and F8×8 are upsampled to match the
resolution of F2×2 so that these ACFs can be aggregated into
a CP-ACF for all 30 channels to fuse the local and context
features. Finally, the soft-cascade AdaBoost classifiers can
adaptively choose the fused features of different regions in the
CP-ACF channels and strengthen the robustness to pedestrian
deformations.

C. DESIGN OF A MULTIVIEW VEHICLE DETECTOR
As shown in Fig. 9, large feature differences result from
various vehicles or different perspectives of the same vehicle.
In the classic ACF algorithm, a vehicle detector is trained
with images from all perspectives, but the difference among
them cannot be thoroughly captured; therefore, its detection
accuracy is not satisfactory. To solve this problem, a multi-
view ACF (Mv-ACF) vehicle detector is proposed. Each per-
spective provides a subclass detector consisting of a feature
extractor and a classifier. The Mv-ACF detector will undergo
training and testing phases.

1) TITLE
The training process of theMv-ACF vehicle detector is shown
in Fig. 10. The training samples are first clustered according
to the perspective, and then each subclass classifier is trained
with the extracted features from the corresponding perspec-
tive. Specifically, the first step is realized by clustering the
ACFs of these samples. Considering the very large num-
ber of ACFs, an unsupervised learning algorithm, K-means
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FIGURE 10. The training process of the Mv-ACF vehicle detector.

clustering, is used for classification. Due to its possible clus-
ter degradation, we use spectral clustering (SC) [12] as fol-
lows. 1) The similarity correlation matrix among the samples
is calculated, and then the feature vectors in a new feature
space are obtained via spectral decomposition of the matrix.
2) K-means clustering is performed on those vectors.

2) TESTING BASED ON CONFIDENCE SCORE CALIBRATION
Similar to the classic ACF algorithm, the ACFs and the
feature pyramid are shared by all the subclass detectors in
the Mv-ACF detector during the testing process. Since the
subclass detectors are trained with images from different
perspectives, confidence scores with different distributions
and bounding boxes with inconsistent geometric features,
e.g., aspect ratios, are obtained. Directlymerging these results
will add noise and result in NMS instability and accuracy loss.

To solve this problem, the confidence scores are cali-
brated to rationalize their distributions [24], [25]. Assume
thatDeti = {di1, di2, . . . , dij, . . . , dir} denotes the r detection
results of the i − th subclass detector and dij = {Rij, cij}
represents the j − th detection result consisting of a bound-
ing box Rij and a confidence score cij. The set mDeti =
{mdi1,mdi2, . . . ,mdiu, . . . ,mdir } is the calibration result,
where mdiu = {Riu, c′ij}. The purpose of confidence score
calibration is to make c′ij = gi(cij) ∈ [0, 1] via a calibration
function gi.We need to ensure that gi is an increasing function
and that the calibrated confidence score can be used for clas-
sification problems. In this paper, the following parametric
logistic regression is used to normalize the score [26]:

c′ij =
1

1+ exp (Ai · cij + Bi)
(5)

where the parameters Ai and Bi of the i − th subclass detec-
tor are obtained by minimizing the regularization maximum
likelihood

argmin
Ai,Bi

−

r∑
j=1

[tj log c′ij + (1− tj) log(1− c′ij)] (6)

By substituting (5) into (6), we obtain

argmin
Ai,Bi

r∑
j=1

[(tj−1)(Ai · cij+Bi)+log(1+exp(Ai ·cij+Bi))]

(7)

where tj =

{
r++1
r++2

, yj = +1
1

r−+2
, yj = −1

. Here, r+ and r− are the

numbers of positive and negative images, respectively, in the

FIGURE 11. Illustration of false pedestrian detection.

i − th subclass for training parameters Ai and Bi, yj is the
label of the j− th sample, yj = +1 represents the object, and
yj = −1 represents the background.

Regarding the feature-sharing strategy for the pedestrian-
and vehicle-detection framework in Fig. 5, the same 10 origi-
nal ACF channels are used for both theMv-ACF and CP-ACF
detectors. For the Mv-ACF detector, a 2× 2 average pooling
operation is used for feature extraction, while average pooling
sizes of 2 × 2, 4 × 4, and 8 × 8 are successively utilized to
extract features for the CP-ACF detector. Therefore, the fea-
tures used by Mv-ACF are included in those extracted by the
CP-ACF detector. Since the construction procedure of the fea-
ture pyramid is unchanged, the feature pyramid used by the
CP-ACF detector can be shared with the Mv-ACF detector.
In addition, k Mv-ACF subclass detectors can also directly
share that pyramid, making the final detection framework
more efficient.

D. FALSE-DETECTION CONTROL STRATEGY BASED ON
THE GPC
During sliding-window detection, as a postprocessing tool
to remove redundant detection windows, NMS adopted by
the classic ACF algorithm considers only features within that
window and ignores other context information, which is a
major source of false detection. As shown in Fig. 11, this
strategy considers only the visualization of the yellow bound-
ing boxes but cannot effectively eliminate the false-detection
objects marked by red circles.

The road prior information is helpful for controlling false
detection of pedestrians and vehicles. For the road scene,
the height H of the bounding box for 12,186 pedestrians and
15,891 vehicles in the Caltech [19] and KITTI [38] datasets
and the lower edge position coordinate Y of that bounding
box are calculated. Fig. 12 shows the relationship between
H and Y in the road scene, which conforms to the following
statistical law:

H = f (Y ) (8)

Accordingly, a simple control strategy for false detection via
the GPC is proposed. Concretely, for a candidate object, if the
relationship between H and Y cannot be fit by the above
equation, then a false detection of this object is judged.
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FIGURE 12. Statistics of the object height and lower edge position.

A regression model W is used to describe the statistical
relationship f between H and Y and can be obtained by using
an SVM to train the normalized H and Y of the samples.
During testing, we assume that a bounding box after NMS
is {x, y,w, h}, its lower edge position is y + h, the trained
regression model W is used to calculate h′, and the relative
error between h and h′ is defined as

E = abs(
h− h′

h′
) (9)

where abs(Â·) represents the absolute value operator. If the
value of E exceeds a preset threshold, then this bound-
ing box is marked as a false detection; otherwise, it is a
correct detection. The whole postprocessing procedure is
shown in Fig. 13. We first use K subclass detectors to
obtain the vehicle-detection results at K angles and calibrate
the confidence scores. Then, both the vehicle-detection and
pedestrian-detection results are processed via NMS. Finally,
we use the road-constraint strategy to modify the detection
results and obtain the final vehicle- and pedestrian-detection
results.

V. EXPERIMENT AND DISCUSSION
In this section, the dataset and the evaluation criteria are first
introduced, and then a comparative study is performed to
verify the effectiveness of the proposed strategies. All experi-
ments are supported by an Intel(R) Xeon(R) E5-2620 v4 CPU
and 32 GB of memory.

A. DATASETS AND EVALUATION CRITERIA
Datasets play a critical role in object detection since they
provide a benchmark for comparing competing algorithms.
Well-known datasets for pedestrian detection are the Caltech
and KITTI datasets, which contain pictures from noisy envi-
ronments, e.g., foggy, rainy and snowy conditions.

In the Caltech dataset, the training set and the testing set
contain 6 videos and 5 videos, respectively, at a resolution of
640×480. To expand the training set, the sampling frequency

FIGURE 13. Postprocessing in the pedestrian- and vehicle-detection
algorithm.

of the videos is increased threefold, and 12,823 images are
acquired. Similarly, the testing set includes 4024 images. Fur-
thermore, themiss rate (MR), false positives per image (FPPI)
and averageMR (AMR) are used to evaluate the performance
of the detectors.

KITTI is a well-known dataset for traffic scene analysis.
The training set and testing set contain 7481 and 7518 images,
respectively, at a resolution of 1242 × 375, while the labels
of the testing set are not officially released. Therefore, in this
paper, the training set is randomly divided into 10 parts, 9 of
which are used for training and the other for testing. In addi-
tion, the object labels in the KITTI dataset are grouped into
easy, moderate and hard levels based on the extent of occlu-
sion and truncation. In this paper, moderate-level images are
used for training, and then the images at all levels are tested.
The precision (P), recall (R) and AP are used as the evaluation
metrics.

The pedestrian detectors considered in this paper are eval-
uated based on the Caltech and KITTI datasets, but only the
KITTI dataset is used to assess the performance of the vehicle
detector as well as the proposed two-class detection frame-
work with the above evaluation criteria since the Caltech
dataset has no vehicle labeling.

B. EXPERIMENT ON THE PEDESTRIAN DETECTOR
1) TRAINING PARAMETER CONFIGURATION
An analysis of the Caltech dataset shows that the aspect ratio
of the bounding boxes of pedestrians is approximately 0.41.
Accordingly, the aspect ratio of the detection model is fixed
to 0.41, and the model size is fixed to 41 × 100 for the
pedestrian detector. To obtain more context information in
vehicle detection, the sliding-window size is set to 64×128 by
padding the model size, and its step size is 4. The false detec-
tions at the current epoch are selected as the negative training
samples in the next epoch. During the training of 4 epochs,
hard-example mining is performed for 3 epochs. The number
of weak classifiers at each epoch is alternately 64, 256, 1024
and 4096. The same configuration is used for the KITTI
dataset except that the model size and sliding-window size
are set to 20.5× 50 and 32× 64, respectively.
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FIGURE 14. The experimental results of data augmentation.

2) VERIFICATION OF THE DATA-AUGMENTATION STRATEGY
To investigate the impact of the proposed data-augmentation
strategy, the pooling block size of the ACFs and the depth
of the decision tree are set to 4 × 4 and 3, respectively.
The relationships between the MR and FPPI in three cases,
i.e., no augmentation, horizontal flipping augmentation and
the proposed multiscale augmentation, are shown in Fig. 14.
First, the MR decreases as the FPPI increases. Specifically,
when the criterion is strict for selecting the bounding box
of an object from candidate boxes, fewer false positives are
accompanied by a highMR; i.e., these two evaluation metrics
are negatively correlated. Second, a general increase in the
MR of the classic ACF algorithm is brought by horizontal
flipping augmentation, and the AMR increases from 25.1% to
29.87%, which conforms to the effect described in Section IV.
By contrast, it can be inferred that the robustness is reinforced
when the proposed multiscale augmentation is adopted since
the MR is the lowest and the AMR is 24.91%. Therefore,
this strategy will be used as the default in the following
experiments.

3) DETERMINING THE BASELINE
To study the effectiveness of the proposed algorithm,
the structure and parameters of the baseline model need to be
determined first. The AMRs of six decision trees with depths
of 1, 2, 3, 4, 5, and 6 are compared in Fig. 15. The AMR first
gradually decreases as the depth increases, but the trend is
reversed when the depth exceeds 5 due to saturation; i.e., the
lowest AMR is obtained when the depth is 5. Therefore,
the ACF model containing a decision tree with a depth of 5 is
chosen as the baseline model.

4) THE VALIDITY OF THE PROPOSED STRATEGIES
(1) The validity of the CP-ACF detector. To improve the
robustness to nonrigid body deformation, based on the
baseline model, pixel aggregations of 2 × 2 and 8 × 8
average pooling are taken to form the CP-ACF detector.
The CP-ACF detector has 30 channels and uses the same

FIGURE 15. AMRs of decision trees with different maximum depths.

FIGURE 16. CP-ACF and GPC experimental results.

parameters as the baseline model, and its performance is
shown in Fig. 16. The AMR of the CP-ACF detector is
20.27%, 1.38% lower than that of the baseline model. There-
fore, the fusion of different ranges of context and local infor-
mation is helpful for improving the robustness to nonrigid
body deformation.

(2) The validity of the GPC. To verify the effectiveness
of the GPC in controlling false detection, an SVM model
is trained by using three kernel functions, namely, linear,
polynomial and radial basis function (RBF) kernels, and then
the postprocessing of the GPC is applied. If the relative
error exceeds the preset threshold, whose optimal value is
0.38 according to an empirical test, then the corresponding
bounding box is false; conversely, if the relative error is less
than the preset threshold, then the corresponding bounding
box is true. The performance comparison is shown in Fig. 16.
All three kernel functions improve the accuracy of CP-ACF,
reducing AMR by 0.69%, 0.86%, and 1.07%. The RBF is
used by default in the following experiments because it out-
performs the others.
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FIGURE 17. Caltech test set algorithm comparison results.

TABLE 1. AP at different levels of the KITTI validation set.

5) COMPARATIVE STUDY OF PEDESTRIAN DETECTORS
The proposed CP-ACF pedestrian detectors are compared
with other mainstream pedestrian detectors based on statis-
tical features, such as Viola-Jones (V-J) [36], HOG [16],
LatSvm-V2 [37], ACF [11], LDCF [14], SpatialPooling+
[39], convolutional channel features (CCF) [40], and
Checkerboards [25]. These detectors are evaluated on the
Caltech dataset, and the comparison is shown in Fig. 17.
V-J, HOG and LatSvm-V2, whose AMRs are too high, are
not suitable for unmanned driving or ADAS. Compared with
the ACF and LDCF detectors, the CP-ACF detector reduces
the AMR by 10.56% and 5.6%, respectively. Although the
AMR of the CP-ACF detector is 0.73% higher than that of
the high-precision Checkerboards, it is less time consuming.

Fig. 18 shows the performance comparison between the
proposed ACF detector and the classic ACF detector on the
Caltech dataset. The former provides more accurate bounding
boxes for pedestrians and even detects a pedestrian missed
by the latter. Table 1 presents the comparison of ACF and
CP-ACF detectors on the KITTI dataset. Compared with
ACF, CP-ACF with the GPC improves the AP by 11.4%,
8.1%, and 6.6% for the easy, moderate and hard levels,
respectively. It can be concluded that the CP-ACF detector
outperforms the ACF detector on both datasets.

C. VEHICLE DETECTOR EXPERIMENT
1) TRAINING PARAMETER CONFIGURATION
The Mv-ACF detector clusters vehicle samples into k sub-
classes according to the number of perspectives and allocates
each subclass an individual training subset. Then, for each
training subset, the aspect ratio b of the detection model is set
to the median of the aspect ratios of all samples. By fixing

FIGURE 18. Evaluation of the pedestrian detectors on the Caltech dataset.

the height to h = 48, the size (w, h) of the vehicle-detection
model can be obtained by w = hÃ − − − b, and the sliding
window is padded as (w + w/8, h + h/8). When k is large,
the training for the detection models with default configura-
tions in these training subsets becomes extraordinarily time
consuming. Therefore, the maximum depth of the involved
decision tree is set to 2. During the training of 4 epochs,
bootstrapping is used for 3 epochs. The number of weak
classifiers at each epoch is alternately 32, 128, 512, and 2048.
All detectors for each perspective detector share the same
parameters except the training data and model size.

2) DETERMINING THE BASELINE
To verify the effectiveness of the proposed algorithm,
the structure and parameters of the baseline model need to
be determined. SC is used to divide the training samples into
6 groups with k = 1, 5, 10, 15, 20, 25, where k = 1 represents
the original ACF detector, which is chosen as the baseline.

3) THE VALIDITY OF THE PROPOSED STRATEGIES
(1) Effect of the number of subclasses k . To find an optimal
number of subclasses for the Mv-ACF detector to achieve
satisfactory performance, SC is adopted to divide the training
set into k subsets, which are then used to train the cor-
responding detectors. The PR and AP values when k =
1, 5, 10, 15, 20, 25 are compared in Fig. 19.
It can be seen that the AP roughly increases as k increases

at the easy, moderate and hard levels, while this trend changes
when k = 25. The reason for this phenomenon is that when
the number of subclasses is large, the number of samples in
each training subset becomes insufficient, which results in a
decline in accuracy. In addition, the detection slows when k
is large. Among these 6 values of k , the optimal values of
the AP at the 3 levels, which are 82.9%, 78.4%, and 60.7%,
respectively, are all obtained when k = 20. It is inferred
that the intraclass difference in a vehicle can be sufficiently
represented from 20 perspectives.
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FIGURE 19. Comparison of the PR and AP values for different numbers of subclasses.

FIGURE 20. Visualization of 20 subclass detectors.

Therefore, we choose k = 20 in the following experiment.
Fig. 20 shows the position weights from the perspective
of 20 subclass detectors. The larger the weight of a position,
the more attention is paid to its feature by the detector from
the corresponding perspective.

(2) The validity of SC. By using SC, the samples are
clustered into 20 categories to train the Mv-ACF detector,
which is compared with its counterpart that adopts classic
K-means clustering. The comparison of the AP values at
the easy, moderate and hard levels is shown in Table 2.
The AP values obtained by SC at the three levels are 0.9%,
1.9% and 1.4% higher, respectively, than those obtained by
classic K-means clustering because SC can map the ACFs of
samples to more classifiable features via spectral decomposi-
tion of the correlation matrix. In addition, the 15,891 vehi-
cle samples in the KITTI dataset are used to visualize the
SC. As shown in Fig. 21a, the average gradient channel for
each subclass exhibits different appearance characteristics.
Fig. 21b shows scatter plots of the samples with different
heights and widths, where each subclass is marked with an
individual color. The aspect ratios of the samples in the same
subclass are similar. Therefore, according to the perspective,
all of the samples can be clustered into different subclasses
to effectively mitigate the intraclass differences among
vehicles.

(3) The validity of the GPC and confidence score calibra-
tion. The effectiveness of the proposed GPC and confidence
score calibration with the SC strategy is verified in the case of
k = 20. The comparison results are shown in Table 2. When
the GPC strategy with a threshold of 0.35 is used, the AP
increases by 0.5%, 0.2% and 0.1% at the easy, moderate

FIGURE 21. (a) Average gradient channels of different subclasses;
(b) relation between the width and height of different subclass samples.

TABLE 2. AP at different levels of KITTI.

and hard levels, respectively. Then, via postprocessing of
the confidence score calibration, the AP further increases by
1.2% at the easy level, remains the same at the moderate level
and increases slightly at the hard level.

The aforementioned strategies, i.e., SC, multiview ACF
detection, GPC and confidence score calibration, all con-
tribute to improved accuracy for vehicle detection, and SC
is the top-ranked contributor.

4) COMPARATIVE STUDY OF VEHICLE DETECTORS
Table 2 also shows that the proposed Mv-ACF vehicle detec-
tor significantly improves the AP by 47.3%, 42.3%, and
30.7% at the three levels, respectively, compared with the
classic ACF detector because the clustering strategy of mul-
tiperspective samples effectively solves the problem of intra-
class differences.

Fig. 22 illustrates some detection results for the KITTI
dataset. The scores of the bounding boxes are normalized
after confidence score calibration, which facilitates the sub-
sequent analysis. Superior to the ACF detector, the Mv-ACF
detector successfully discovers more vehicles with different
perspectives.
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FIGURE 22. Test results of some vehicles in the KITTI dataset: (a) ACF test
results; (b) Mv-ACF test results.

TABLE 3. Stage time analysis of the KITTI test set.

D. TWO-CLASS DETECTION EXPERIMENT
1) THE VALIDITY OF FEATURE SHARING
To meet the real-time requirements of pedestrian and vehicle
detection, a strategy of feature sharing between pedestrian
and vehicle detectors is proposed. In the experiment based
on the KITTI dataset, the evaluation metric is the detection
time. The time spent in every step is shown in Table 3. The
total time of the proposed two-class detection approach is
0.414 s, 68.8% of which is consumed by feature extraction.
Therefore, the feature-sharing strategy can greatly reduce
the detection time, and this characteristic will be further
highlighted in the case of multiple-object categories. In addi-
tion, compared with the current mainstream neural net-
works, the algorithm presented in this paper has obvious
speed advantages, whether compared with the one-stage
object-detection network or the two-stage object-detection
network, as shown in Table. 4. In particular, the proposed
algorithm is 44.1% faster than You Only Look Once version 3
(YOLOv3), a one-stage object-detection network known for
its speed. With the same hardware configuration, the speed
advantage of the proposed detection algorithm is remark-
able, and it is particularly significant on resource-constrained
devices.

TABLE 4. Real-time statistics of different algorithms in the KITTI test set.

FIGURE 23. Two-class detection results on KITTI.

2) VISUALIZATION OF THE DETECTION RESULTS
Some detection results of the proposed algorithm on the
KITTI dataset are illustrated in Fig. 23. All of the detected
pedestrians and vehicles are marked with yellow and green
frames, respectively, and every missed object is manually
marked with a red ellipse. The proposed algorithm can simul-
taneously detect vehicles and pedestrians. Since all neigh-
boring objects can be detected, the proposed algorithm is
applicable in unmanned driving systems or ADAS.

VI. CONCLUSION
In this paper, simultaneous pedestrian and vehicle detec-
tion based on the ACF algorithm is studied for its appli-
cation in resource-constrained devices. To eliminate the
one-category constraint of the ACF algorithm, a multicat-
egory object-detection framework is proposed that consists
of a CP-ACF pedestrian detector and an Mv-ACF vehicle
detector. The former fuses local and context information to
improve the robustness to the deformation of pedestrians, and
the latter contains a number of subclass detectors to alleviate
intraclass differences due to different perspectives. SC is used
to determine the number of subclasses, and the results of
these subclass detectors are integrated via confidence score
calibration. A mechanism of feature sharing between the
pedestrian and vehicle detectors is advanced to reduce the
time spent in feature extraction. A strategy based on the
GPC is proposed to control false detection of pedestrians and
vehicles by incorporating road prior information.

By using the proposedmultiscale augmentation, the AMRs
of the classic ACF and CP-ACF detectors are reduced
by 4.96% and 1.38%, respectively. In terms of the AMR,
the CP-ACF pedestrian detector outperforms the V-J, HOG,
LatSvm-V2, ACF, LDCF, SpatialPooling+ and CCF algo-
rithms. By adopting the proposed SC and confidence score
calibration methods, the Mv-ACF vehicle detector improves
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the AP by 39.57% and the AMR by 0.43% on average at
the easy, moderate and hard levels compared with the base-
line. This improvement is mainly achieved by the clustering
strategy of multiperspective samples, which effectively deals
with intraclass differences among vehicles. After postpro-
cessing via the GPC, the AMRs of the CP-ACF pedestrian
detector and Mv-ACF vehicle detector are further reduced
by 1.07% and 0.27%, respectively, on average at the three
levels. The evaluation of feature sharing between pedestrian
and vehicle detectors shows that feature extraction takes up
68.8% of the total detection time, and thus, the proposed
mechanism saves a significant amount of time. The proposed
detection algorithm is confirmed to be more applicable to
resource-constrained devices than the current mainstream
neural networks due to its speed advantage. Promising results
that meet the requirements of ADAS or unmanned driving are
achieved in terms of accuracy and real-time performance with
hardware design or GPU hardware acceleration, whereas the
detection of small objects more accurately is a challenge that
remains for future work.
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