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ABSTRACT Visualization of classification uncertainty of the medical materials is very significant, as dif-
ferent classifications may lead to different visualization results, and different results may cause completely
different diagnosis or pre-operative planning decisions, and thus have different consequences to patients.
Traditional Direct Volume Rendering (DVR) enables medical experts to visualize the classification uncer-
tainty by random adjustment of the transfer function. However, three main problems exist by using this
method: first, the resulting renderings do not indicate any quantitative information about the classification
uncertainty of different materials; second, the resulting renderings are randomly revealed by random
adjustment of the TF; third, both classification task and optical property assignment task are mixed together
in one step. These problems may make this method (1) fail to enable medical experts to make accurate
diagnosis or pre-operative planning decision; (2) unable to provide medical experts with a clear concept
of how medical volume data are classified. To address these problems, we proposed a probabilistic slider
system, which compared to the traditional DVR, enables medical experts to make more accurate diagnosis or
pre-operative planning decision, and have a clearer concept of how the medical volume data being classified.

INDEX TERMS Medical visualization, material classification, uncertainty, direct volume rendering,
decision support.

I. INTRODUCTION
In medical visualization, classification is a very important but
complex task, and uncertainty exists in classification, which
for the same dataset, may lead medical experts to make com-
pletely different diagnosis or pre-operative planning deci-
sions, and thus may have significantly different consequences
to a patient. On the other hand, DVR has been accepted as a
routine tool in clinical work, which enablesmedical experts to
visualize the classification uncertainty by random adjustment
of Transfer Function (TF). However, using DVR to visualize
classification uncertainty has three main problems: (1) its
results could not indicate any quantitative information. This
could mislead medical experts to assume that the observed
result is the true case, although it may be not because of
classification uncertainty, and thus make inappropriate or
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even wrong diagnosis or pre-operative planning base on the
result. Also, for multiple results, they cannot inform the user
which one would more likely happen; (2) its results are
revealed randomly because of random adjustment of the TF.
This could result in some results that play important roles
in diagnosis or pre-operative planning may be lost, and thus
lead medical experts to make inappropriate or even wrong
diagnosis or pre-operative planning. Also, for arbitrary one
material, this may be impossible to reveal its two extreme
cases (maximum and minimum probabilities of occurrence),
which can be used as boundary conditions to make a deci-
sion; (3) it mixes classification and optical property assign-
ment tasks together, and thus makes medical experts unclear
about how medical volume data being classified. To address
these problems, we presented a probabilistic slider system,
which can be used to visualize classification uncertainty in
medical volume data. Compared to traditional DVR, it has
the following advantages: (1) it generates results that could
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quantitatively indicate the probability of occurrence of arbi-
trary one material; (2) it enables to reveal all possible appear-
ances of arbitrary one material in a quicker and systematic
way; (3) it enables to reveal the extreme cases of arbitrary one
material, which can be used as boundary conditions to make
a decision; (4) it enables more easily removing or adding
materials for rendering; (5) it separates the classification task
and optical property assignment task that are usually mixed
in TF. As a result, it enables medical experts to make more
accurate diagnosis or pre-operative planning decision, and
have a clearer concept of how the medical volume data being
classified.

II. RELATED WORK
Our research falls into the field of uncertainty visual-
ization, which has been identified as one of the main
challenges in the visualization community [1]–[3]. Many
techniques have been proposed to contribute to this field
over the past years. Brodlie et al. [4] and Potter et al. [5]
presented two reviewworks on summarizing and categorizing
the state-of-the-art uncertainty visualization techniques. Both
works categorize these techniques based on the dimension
(0D—3D) and type (scalar, multifield, vector, tensor) of data
to be visualized. However, as their categorizing works are
based on the characteristics of data rather than the char-
acteristics of techniques, the techniques that are essentially
the same technique could be divided for different data.
In comparison, Lei et al. [6] presented a review work which
summarizes and categorizes uncertainty visualization tech-
niques based on their characteristics. Their work divided
the state-of-the-art techniques into the following four main
categories:
•Glyph. This method first encodes uncertainty to glyphs,

and then distributes and displays these glyphs on data. Prob-
ably the most classic and simple example of this method is
error bar, which uses statistics such as mean, lower bound
and upper bound of errors to encode error bars, and then
distributes and displays them on the data. Another classic
example is box plot [7], which in its most basic form uses
five summary statistics including upper bound, lower bound,
upper quartile, lower quartile and median to encode box
plots, and then distributes and displays them on the data.
Other examples include [8]–[15]. The advantages of the glyph
method are simple and easy to understand, but its disadvan-
tage is that it could easily cause problems such as visual
clutter.
•Visual variable encoding. This method uses various visual

variables e.g., positions, shapes, brightness, color, texture,
direction, etc. to encode uncertainty. For example, color is one
of the most common visual variable, which can encode uncer-
tainty by mapping them to different uncertainties [16]–[21].
Another example is transparency, which can also be used to
encode uncertainty by mapping them to different uncertain-
ties [22]–[24]. Other examples include [25]–[29]. The advan-
tage of the visual variable encoding method is that it could
enable users to quickly identify the magnitude and region of

uncertainty, but its disadvantage is that visual variables need
to be selected carefully to effectively express uncertainty.
•Geometry. This method uses the distribution or attributes

of generated geometries e.g., points, lines, surfaces, grids,
volumes, etc. to encode uncertainty. One example is the
spaghetti plot proposed by Potter et al. [30], which utilizes
the distribution of lines that compose the spaghetti plot to
encode the uncertainty of ensemble data. Other examples
include [31]–[37]. The advantages of this method is that it is
intuitive, easy to understand, and can be used to encodemulti-
ple uncertainties by using complex geometries. Its disadvan-
tage is that the generated geometries could easily occlude the
visualization results of those certain data.
•Animation. This method uses parameters relevant to

animation e.g., speed, range of movement, sequence of move-
ment, etc. to encode uncertainty, and users have to persis-
tently observe the animation to find out the magnitude and
region of uncertainty. One classic example is the animated
visual vibration technique proposed by Brown [38], which
utilizes the amplitude of a curved surface to encode uncer-
tainty. Other examples include [39], [40]. The advantage of
animation is that it expresses uncertainty in a more vivid way.
Its disadvantage are that: compared to those static uncertainty
visualization techniques, it needs longer time for users to
understand; also, it could cause visual fatigue because of the
movement and flickering in animation.

While a number of works have been proposed as men-
tioned above, little works have been focused on uncertainty
visualization in medical data that include a large amount of
uncertainty, ranging from medical imaging step over several
data processing steps, to the final rendering step. This is
extremely significant for medical experts to make more accu-
rate diagnostic decision. Lundstrom et al. [39], [40] presented
a work that utilizes the display speed of animation to enable
medical experts to visualize the classification uncertainty
in medical volume data. However, a disadvantage of their
method is that it could cause visual fatigue. In contrast to their
method, our method will not cause this problem. Recently,
Ristovski et al. [41] presented a work that identify what types
of uncertainty exist in medical visualization and what their
characteristics are in terms of mathematical models. Such a
work provides us a solid foundation to explore uncertainty
visualization techniques in medical data so as to enable med-
ical experts to make more accurate diagnosis.

There also have been many theories developed and pro-
posed for measuring the uncertainty, such as the extended
fuzzy sets, evidence theory, D numbers theory and informa-
tion quality. However, as our research focuses on uncertainty
visualization, they are out of the scope of our research.

III. PROBABILISTIC SLIDER
The workflow of Probabilistic Slider can be summarized in
Fig. 1. It is clear that this workflow consists of in total of
four steps, which are intensity transformations, Spatial Fuzzy
C-means (SFCM) classification, material optical property
specification and query-based color encoding, and volume
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FIGURE 1. The workflow of probabilistic slider.

rendering, respectively. The following four subsections intro-
duce each of these steps in detail.

A. INTENSITY TRANSFORMATIONS
Given the original medical volume data in which there is an
intensity value i(x, y, z) associated with each voxel (x, y, z),
the first step of our workflow is to apply intensity transfor-
mations to it to obtain the transformed medical volume data.
As a result, for each voxel (x, y, z) in the transformed medical
volume data, it has a transformed intensity value i′(x, y, z).
The reason of applying intensity transformations is simple
but not trivial: they could not only enhance the contrast of
medical data, but also allow users to filter out those uninter-
ested volume data while reserving the interested volume data.
This will benefit our workflow’s second step, which aims to
produce a good classification result [42]. Thus, the intensity
transformations can be considered as a pre-processing oper-
ation prior to classification. Fig. 2 demonstrates the effects
of intensity transformations for Bruce and CT Neck datasets,
respectively. In particular, Fig. 2(a)-2(c) demonstrate how
the intensity transformations are able to enhance the contrast
among different medical materials, while Fig. 2(d)-2(f) show
how they allow users to filter out uninterested materials such
as skin and soft tissues (note how these materials are removed
from the dataset) while keeping the interested materials such
as thyroid tumor and carotid arteries.

In this research, three intensity transformation methods
have been applied to transform the original medical volume
data, as listed below:
•The Sigmoid function. This is also referred to as Logistic

function, which can be modeled as Equation (1):

i′ = c
1

1+ e−
i−ω
σ

(1)

where i represents the intensity values of original medical
volume data; i′ represents the transformed intensity values;
c is a constant, and it refers to a range into which the trans-
formed intensity values could fall; both ω and σ are two
user-adjustable parameters of this function, and they repre-
sent the center and width of the intensity value distribution of
original medical volume data, respectively.
•Automated Contrast Optimization. For users with less

experience of intensity transformations, we provide them

FIGURE 2. The effects of intensity transformations. In particular,
(a)-(c) show how the intensity transformations can enhance the contrast
among different medical materials for the Bruce dataset, and (d)-(f) show
how they allow users to filter out uninterested materials and only reserve
the interested materials for the CT Neck dataset.

with the Automated Contrast Optimization method, to help
them quickly and automatically enhance their data’s contrast.
This method has two variations. The first variation is to form
a newmaximum andminimum boundary of data by removing
an identical user-specified percentage of total voxels from
both sides of histogram. The second variation is to from a new
maximum and minimum boundary of data by removing one
user-specified percentage of total voxels from the left side of
histogram, and removing another user-specified percentage
of total voxels from the right side of histogram.
•Interactive Intensity TF. To provide users with greater

flexibility of intensity transformations, a more general inten-
sity TF interface has been designed, where users can form any
TFs by moving, adding or deleting their nodes. In addition,
the histogram of original medical volume data is displayed
as background of this interface to guide users to form their
TFs.

B. SPATIAL FUZZY C-MEANS CLASSIFICATION
Given the transformed medical volume data obtained from
the intensity transformations, the second step of the work-
flow is to apply the SFCM classification method on them
so as to obtain N classified probabilistic volume data. Here
N represents the number of classifications determined by
users, and it usually depends on the number of materials
incorporated in the transformed medical volume data e.g.,
if there are five materials incorporated in the transformed
medical volume data, then N could be 5; however, users
could specify an arbitrary number for N rather than 5, and
in those cases, materials to be classified are either merged or
subdivided. During the classification, each voxel’s intensity
value i′(x, y, z) in the transformed medical volume data is
transformed to N probability values p

(
i′ (x, y, z) ∈ MA

)
, . . . ,

p(i′(x, y, z) ∈ MN ), which represent the possibilities that
this voxel’s intensity value belongs to each of these materials
MA,. . . , MN .
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For the classification, we use the SFCM clustering method
proposed by Chuang et al. [43] and extends it for volume data.
This method can be summarized as follows:

(1) Assign an initial guess value for each cluster center ci;
(2) Given each cluster center ci from step (1), update the

probability value pij (also known as membership value) of
each voxel’s intensity value vj belonging to each cluster ci,
by using Equation (2):

pij =
1∑N

k=1 (
‖vj−ci‖
‖vj−ck‖

)
2/(m−1) (2)

where N represents the number of clusters (one cluster cor-
responds to one classification);m is a constant parameter and
it controls the fuzziness of the resulting classification; m = 2
is used in this work; ‖‖ refers to the norm.

(3) Given the probability value pij from step (2), calculate
the spatial function for each voxel’s intensity value vj in each
cluster ci, by using Equation (3):

hij =
∑

k∈NB(vj)
pik (3)

where NB(vj) represents a cube window centered on the
voxel with intensity value being vj (NB refers to the word
‘‘neighbor’’). In this work, a 5 × 5 × 5 window is used to
calculate the spatial function hij.
(4) Given the probability value pij from step (2) and the

spatial function hij from step (3), re-calculate the probability
value p′ij (which is the final probability value at each iter-
ation) of each voxel’s intensity value vj belonging to each
cluster ci, by using Equation (4):

p
′

ij =
ppijh

q
ij∑N

k=1 p
p
kjh

q
kj

(4)

where p and q are constant parameters to control the relative
importance of both functions. In Chuang et al.’s work [43],
they point out that when p = q = 1, SFCM shows the
best clustering results. Thus p = q = 1 is used in this
work.

(5) Given the re-calculated probability value p′ij from
step (4), update each cluster center ci, by using
Equation (5):

c
′

i =

∑#of voxels
j=1 p

′m
ij vj∑#of voxels

j=1 p
′m
ij

(5)

(6) If
∥∥c′i − ci∥∥ < ε (here ε refers to the convergence cri-

terion, which is a constant), then stop iteration; otherwise
ci= c′i, and proceed to the next iteration from step (2) to
step (6).

Fig. 3 shows the classification effects of SFCM for the
Breast Tumor dataset under different N . More specifically,
in Fig. 3(a), N= 4, and in Fig. 3(b), N= 5. Note how the
breast tumor as illustrated in Fig. 3(a) is classified as more
refined materials as shown in Fig. 3(b).

FIGURE 3. The classification effects of SFCM for the Breast Tumor dataset
under different number of classifications. In (a), N = 4, and in (b), N = 5.

C. MATERIAL OPTICAL PROPERTY SPECIFICATION AND
QUERY-BASED COLOR ENCODING
Given N classified probabilistic volume data, the workflow’s
third step consists of two sub-steps: (1) users specify optical
property RGBα for each material classified as one cluster so
as to generate the optical property Look-up Table (LUT), (2)
a query needs to be formed, so that based on the query we
can color each voxel. As a result, the colored volume data are
generated, with each voxel being assignedwith an appropriate
color.

For the material optical property specification sub-step,
users could choose any optical property but not gray for a
material, because gray is reserved for use to indicate those
voxels whose maximum probability concurrently belong to
more than one material. The advantages of allowing users
themselves to customize each material’s property optical is
obvious: it is easier for them to interpret the query feedback
by examining the optical properties in the final images.

For the query-based color encoding sub-step, there are
two types of query to be formed: implicit query and explicit
query. Each type of query has its own color encoding method,
as introduced below.

1) IMPLICIT QUERY-BASED COLOR ENCODING
An implicit query is automatically formed by our system,
and the color encoding based on the query is as follows:
for each voxel, we try to find out to which material it most
likely belongs to (by comparing its N probability values),
and we assign its color with that material’s color. In this way,
we could present users a MaxProbView, which shows a most
possible result of the data to be visualized. One case here
deserves special mentioning: sometimes it is possible that
some voxels most likely belong to more than one material,
and in that case, the above-mentioned way of assigning color
to a voxel is useless. As a solution to this problem, we assign
gray with 50% transparency to those voxels, so that when
gray areas appeared on the final images, they indicate that
the voxels included in these areas most likely belong to more
than one material.

2) EXPLICIT QUERY-BASED COLOR ENCODING
An explicit query can be formed by users through dragging
the material sliders when holding down the left button of
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mouse, as shown in Fig. 5. The color encoding based on
the query for each voxel is as follows: (1) if this voxel’s
probability of belonging to the currently queried material
match the query, then it is colored as the color of the currently
queried material; (2) otherwise we will find out to which
material it most likely belongs to. If it most likely belongs
to only one material but not the currently queried material,
then it is colored as that material’s color; if it most likely
belongs to more than one material, then it is colored as the
gray with 50% transparency. Here one case deserves special
mentioning: it is possible that this voxel’s probability of
belonging to the currently queried material does not match
the query, and thus it cannot be colored as the color of
the currently queried material; however, it may most likely
belong to the currently queried material, and thus should have
been colored as the color of currently queried material. This
is a conflict, and it could result in that when the currently
queried material’s color appeared on the final images, users
cannot determine whether it matches the query, or it most
likely belongs to the currently queried material. To resolve
the conflict so that the currently queried material’s color
appeared on the final images only indicates match of the
query, we assign transparent for this voxel. As a result of
explicit query-based color encoding, we could present users
another ExplicitProbView, which combines a query-match
result for the currently queried material, and a most possible
result for other materials.

D. VOLUME RENDERING
Given the colored volume data generated from the previous
step, the final step is to apply ray casting rendering on them
to obtain 2D resulting images. One thing deserves special
mentioning here: instead of using trilinear interpolation, the
nearest neighbor interpolation is used to obtain each sam-
ple’s optical property. This is because trilinear interpolation
may introduce non-user-specified optical properties to the
final images, which could prevent users from interpreting the
results. However, the nearest neighbor interpolation will not
cause such an issue.

IV. IMPLEMENTATION
The system has been completely implemented, which con-
sists of two separate sub-systems. The first sub-system is an
interface used for generating classification (as illustrated by
the left big box in Fig. 1), and it implements the first two
steps mentioned in the workflow. The second sub-system is
a visualization interface (as illustrated by the right big box
in Fig. 1), which takes the classification result generated
from the first sub-system as input, and finally display the
visualization results. It implements the last two steps of the
workflow. The following two subsections introduce the two
sub-systems, respectively.

A. CLASSIFICATION GENERATION INTERFACE
Fig. 4 shows a Matlab implementation of the classifica-
tion generation interface, which consists of four modules,

FIGURE 4. An overview of classification generation interface.

as shown from left to right, with each module having both
function part and its corresponding preview part. The first
module is loading images module, where users could load
an original medical volume data expected to explore, and
the ‘‘Preview – Original Images’’ window displays the cor-
responding results slice by slice. The second module is slice
selector module, where users could specify a subset of the
loaded original medical volume data to explore, in case they
are only interested in features on a subset. But of course, they
could reserve the original medical volume data to explore.
The ‘‘Preview – Selected Images’’ window shows the cor-
responding results slice by slice. The third one is inten-
sity transformation module, which can be any of the three
methods mentioned in Section III.A (Fig. 4 only shows the
Sigmoid method out of the three methods) and is speci-
fied by users. Users adjust the parameters associated with
their specified method in this module, and the ‘‘Preview
– Transformed Images’’ window shows the corresponding
results slice by slice after intensity transformation. The fourth
one is SFCM classification module, where users need to
specify five parameters of the SFCM method mentioned
in Section III.B for classification. After convergence of this
method, a defuzzification process is applied, where each
voxel is assigned to a specific cluster to which it most likely
belongs, and the ‘‘Preview – Seg. Results’’ window shows
the corresponding classification results slice by slice. Here
the iteration number parameter deserves special mentioning,
it is used as an optional convergence criterion in addition to
the threshold parameter, and enables users to terminate the
classification if the number of iterations in classification has
been reached.

The classification generation interface sub-system is
designed so that users can repeatedly refine parameters to
obtain a satisfied classification result. For each module’s pre-
view part, users could use scrollbar to navigate through differ-
ent slices and position mouse cursor on a specific pixel at a
slice to inspect its intensity values. Finally, this sub-system
produces a text file, which lists names of the N classified
probabilistic volume data to be loaded into the visualization
interface sub-system.

B. VISUALIZATION INTERFACE
Fig. 5 shows a GPU-accelerated QT and CUDA imple-
mentation of the visualization interface, which has a very
simple layout. To obtain renderings in the MaxProbView and
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FIGURE 5. An overview of visualization interface. The left view is the
MaxProbView, and the right view is the ExplicitProbView.

TABLE 1. The information of datasets used in this research.

ExplicitProbView, users need to perform the following steps:
first, they need to specify an above-mentioned text file to
load corresponding data, and this can be done by using the
Open option under File menu. Second, as illustrated at the
right bottom corner of Fig. 5, for each material (or cluster),
users need to specify an optical property for it by clicking its
corresponding optical property button. Optionally, they could
also type in a name for each material e.g., air, tumor, in case
there are too many materials to remember. As a result of these
two steps, renderings appear in the MaxProbView. Third,
users now could perform explicit queries for certain material
by dragging its slider. As a result, renderings corresponding
to the queries appear in the ExplicitProbView. Both views are
arranged side by side for ease of comparison, and for each
view, it can be rotated, translated and zoomed in or out, so that
users can easily observe data from all perspectives.

V. RESULTS AND DISCUSSION
To demonstrate the usefulness of the probabilistic slider,
we applied it to four datasets and compared it with the tradi-
tional DVR. Table 1 summarizes the information of the four
datasets used in this research.

In clinical work, accurate assessment of the extent of a
breast tumor is a very important task, and different assessment
results may have significantly different impacts on a patient.
This is because the breast tumor is surrounded by many
complex breast tissues, and any damage of these breast tissues
may result in serious consequences to the patient. If we have
removed the breast tumor with excessive tissues, then the
patient may get injured or lose certain functions e.g., feeding.
However, if we have removed it incompletely, then it may
regrow, and the patient has to repeatedly undergo painful and
expensive operations. Fig. 6(a) shows a visualization result
of the Breast Tumor dataset by using traditional DVR, which
has two problems: (1) it could not indicate any quantitative

FIGURE 6. (a) shows a rendering of Breast Tumor dataset using
traditional DVR. Green represents breast tumor, red represents vessels,
and yellow represents other breast materials. (b)-(d) show breast tumor’s
three probability query results (from left to right, the breast tumor’s
probabilities are 99%, 50% and 1%, respectively) in our system’s
ExplicitProbView.

information of how likely the green part is the breast tumor.
This tends tomisleadmedical experts to assume that the green
part shown on the result is true case of the breast tumor,
although it maybe not because of the classification uncer-
tainty, and thus make inappropriate or even wrong diagnosis
or pre-operative planning decision based on this result. For
experienced medical experts, they may adjust TF to evaluate
other possible results of the breast tumor. However, when
they inspect the results, they cannot be informed which one
would more likely happen; (2) it is revealed randomly due to
random adjustment of the TF. Suppose it is true case of the
breast tumor but not revealed because of the random adjust-
ment, then medical experts may never make appropriate or
correct diagnosis or pre-operative planning decision. Fig. 6(b)
to Fig. 6(d) show three possible results from our system’s
ExplicitProbView. In contrast to Fig. 6(a), it is clear that our
three results could indicate the likelihoods of the green part
being breast tumor. Also, the three results are revealed in
a systematic method, by dragging the breast tumor’s slider
to query its probabilities. Compared to TF-based random
adjustment, it is possible and quicker to use this systematic
method to reveal all possible appearances of the breast tumor,
which enables medical experts to make more comprehensive
diagnosis or pre-operative planning. Moreover, as illustrated
in Fig. 6(b) and Fig. 6(d), for each material such as the
breast tumor, our system enables to reveal its two extreme
cases, which could be used as boundary conditions to make a
diagnosis and pre-operative planning decision.
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FIGURE 7. Renderings of CT Neck dataset in our system. Green represents
thyroid tumor, red represents carotid arteries, and white represents bone.
(a) shows the most possible appearance for thyroid tumor, carotid
arteries and bone in the MaxProbView. (b)-(d) show thyroid tumor’s three
probability query results (from left to right, the thyroid tumor’s
probabilities are 99%, 90% and 50%, respectively) in the
ExplicitProbView.

FIGURE 8. (a) shows a rendering of Renal Angiography dataset using
traditional DVR (with shading enabled). (b)-(d) show vessel’s three
probability query results (from left to right, the vessel’s probabilities are
50%, 25% and 5%, respectively) in our system’ ExplicitProbView.

The second example is to assess the extent of thyroid tumor
in relation to carotid arteries. Medical experts could start the
assessment by first inspecting the result from our system’s
MaxProbView, as illustrated in Fig. 7(a), which gives an

FIGURE 9. Renderings of Bruce dataset in our system. Green represents
gray matter, red represents white matter, and yellow represents
cerebrospinal fluid. (a)-(c) show gray matter’s three probability query
results (from left to right, gray matter’s probabilities are 90%, 50% and
15%, respectively) in relation to the most possible white matter in the
ExplicitProbView. (d)-(f) show white matter’s three probability query
results (from left to right, white matter’s probabilities are 99%, 15% and
1%, respectively) in relation to the most possible gray matter in the
ExplicitProbView. (g) shows the most possible appearance of both gray
and white matters in the MaxProbView. (h)-(j) show the most possible
appearance of a single material (from left to right: gray matter, white
matter and cerebrospinal fluid) in the MaxProbView.

overview of the most possible appearance for all materials,
and then drill down to the extent of thyroid tumor by dragging
its slider for queries, and inspect the corresponding results in
the ExplicitProbView, as illustrated in Fig. 7(b) to Fig. 7(d).
Compared to traditional DVR, our system generates results
that indicate quantitative extent of the thyroid tumor. It could
also reveal all possible appearances as well as the two extreme
cases of the thyroid tumor. Both cannot be done by using
traditional DVR.
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The third example is to determine if there is a vessel
stenosis, as illustrated by thewhite arrow in Fig. 8(a), which is
DVR of a Renal Angiography dataset. Using traditional DVR
for such a task is risky, as it may not reveal the true result
because of random adjustment of the TF, and thus makes
medical experts determine that there is a stenosis. As a result,
patient has to undergo an unnecessary operation. In compar-
ison, our system enables medical experts to systematically
explore the task, and thus could reveal all possible results in
regard to the stenosis. Fig. 8(b) to Fig. 8(d) show the results
from our system’s ExplicitProbView, and it is clear from these
results that there is no stenosis.

A final example is to distinguish gray matter and white
matter of a human brain, which is a common clinical ques-
tion. Using traditional DVR to explore such a task is time-
consuming, and may be impossible to reveal a complete
relationships between the gray matter and white matter. Also,
it may be impossible to reveal the two extreme cases of
the gray or white matter, which could be used as boundary
conditions to make a diagnosis or pre-operative planning.
In contrast, our system’s ExplicitProbView enables medi-
cal experts quicker and easier to explore the relationships
between gray matter and white matter from two perspectives:
(1) exploring all possible appearances of the gray matter in
relation to the most possible white matter, as illustrated in
Fig. 9(a) to Fig. 9(c); (2) exploring all possible appearances of
the white matter in relation to the most possible gray matter,
as illustrated in Fig. 9(d) to Fig. 9(f). Moreover, for arbi-
trary one material such as white matter, our system enables
to reveal its two extreme cases, as illustrated in Fig. 9(d)
and Fig. 9(f), which could be used as boundary conditions
for diagnosis or pre-operative planning decision. Fig. 9(g)
shows the result from our system’s MaxProbView, which
indicates the most possible appearance of both gray matter
and white matter. One thing deserves final mentioning is that
compared to traditional DVR, our system enables more easily
removing or adding materials for rendering, by simply setting
transparency of each material. This feature is very useful for
cases such as medical experts are interested in exploring the
possible appearances of only one material, as illustrated in
Fig. 9(h) and Fig. 9(j).

VI. CONCLUSION
This paper presented a probabilistic slider system, which
can be used to visualize classification uncertainty in medical
volume data. Compared to traditional DVR, it has the fol-
lowing advantages: (1) it generates results that could quan-
titatively indicate the probability of occurrence of arbitrary
one material; (2) it enables to reveal all possible appear-
ances of arbitrary one material in a quicker and systematic
way; (3) it enables to reveal extreme cases of arbitrary one
material, which can be considered as boundary conditions
of a decision; (4) it enables more easily removing or adding
materials for rendering; (5) it separates the classification task
and optical property assignment task that are usually mixed
in TF. As a result, it enables medical experts to make more

accurate diagnosis or pre-operative planning decision, and
have a clearer concept of how the medical volume data being
classified.

From the color encoding methods mentioned in
Section III.C one may notice that currently our system only
enables users to form a single query for a material e.g.,
p (MA)≥90% by dragging its slider, and do not enables to
combine multiple slider values to form a compound query
e.g., p (MA) ≥ 90% AND p (MB) ≥ 80%. Our next step
is to extend the current work to achieve compound query.
As mentioned in [41], many types of uncertainty do exit in
medical visualization, but not much research is focused on
solving this problem. Therefore, another future work that we
would like to conduct is to solve the uncertainties problems
involved in medical visualization.
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