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ABSTRACT In this study, an omnidirectional inverted pendulum (ODIP) is controlled based on a dual
Takagi—Sugeno (TS) fuzzy control scheme. The ODIP is a handmade system. It contains two subsystems.
The lower mechanism system includes a brushless rim motor, a system platform, batteries, and an encoder.
The upper mechanism system is mainly composed of a circuit system, a motor fixed platform, a motor, and
a flywheel. The proposed controller combines two fuzzy control approaches for ODIP system control with
disturbances and uncertainties. The core of the ODIP operating system is an embedded controller, which
executes real-world control processes. Moreover, to address the coupling problem, the shafts of the two
motors are oriented in orthogonal directions. Then, the two fuzzy controllers can be designed independently
without coupling. In the proposed controller, the Takagi—Sugeno fuzzy model is adopted for fuzzy modeling
of the ODIP. The conception of parallel distributed compensation (PDC) is utilized to develop fuzzy control
from TS fuzzy models. The format of linear matrix inequalities (LMIs) can formulate sufficient conditions.
The main contributions of this study are (1) the implementation of an ODIP and (2) the application of the
proposed dual Takagi—Sugeno (TS) fuzzy control scheme for real-time control of the ODIP. Finally, the
efficiency of the proposed control scheme is illustrated by the experimental results presented in this study.

INDEX TERMS Omnidirectional inverted pendulum, TS fuzzy control scheme, parallel distributed

compensation, linear matrix inequality, Lyapunov function, embedded controller.

I. INTRODUCTION

Modern control systems are characterized by actions that
require high speed and precision. This performance is typi-
cally realized by the use of machine-mounted devices with
motors. These transmission parts significantly slow the sys-
tem speed and system response. They also produce chatter
and friction. In some practical applications, actuation system
simplification is a popular research topic. It can reduce sys-
tem costs and energy consumption and simplify the mechan-
ical structure design. Systems where the number of actuators
is less than their degrees of freedom are referred to as under-
actuated systems.

The system control of an inverted pendulum has been
studied by many researchers. The inverted pendulum is an
underactuated system. The purpose of such a study is to
maintain pendulum balance when the pendulum is upright.
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Recently, many papers have discussed the extension applica-
tion of one-dimensional inverted pendulum control systems.
The most challenging task is to control this inverted pendu-
lum system when a cart is no longer on a setting rail.

Currently, intelligent control methodologies (fuzzy con-
trol, neural network, or expert systems) [1]-[9] provide a
natural framework for the design of online controllers of
nonlinear systems. Fuzzy logic has been widely adopted in
the adaptive control of nonlinear systems. This theory is
typically used to translate and formulate the human experi-
ence to suitably control strategies. Recently, a fuzzy control
strategy was used in complicated control problems because
of its effortless implementation and uncomplicated computa-
tion [10], [11]. This makes fuzzy logic suitable for nonlinear
system real-time control.

Fuzzy controllers (FCs) are designed based on human
experience. In other words, compared with a conventional
feedback control method, FCs can be considered control
algorithms without system information. In recent years, fuzzy
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control designs based on the Takagi—Sugeno (TS) fuzzy
model have been applied to diverse applications. In [12], the
authors proposed a real-time application to a specific two-
rigid-link underactuated robot. A ball robot based on the
TS fuzzy model was proposed in [13]. In [14], the authors
proposed analytical results to control a two-link robot.
An adaptive Takagi-Sugeno fuzzy model-based generalized
predictive controller was proposed for a pump storage unit
in [15]. In [16], the authors presented event-triggered control
for Takagi-Sugeno (T-S) fuzzy networked systems with trans-
mission delay. Moreover, an integral state feedback control
method based on the TS fuzzy model was proposed for non-
linear and unstable magnetic levitation ball systems in [17].
Apparently, fuzzy control has been widely and successfully
applied to many nonlinear systems. Generally, TS fuzzy
control techniques have represented an alternative design
direction for control problems. The most useful property of
TS fuzzy controllers is their ability to approximate arbitrary
linear or nonlinear systems. In other words, a nonlinear sys-
tem can be transformed into a TS fuzzy model, and then,
a parallel distributed compensation (PDC) fuzzy controller
design is accomplished using linear matrix inequality (LMI)
approaches [18].

Generally, TS fuzzy control techniques have represented
an alternative design direction for the control problem. The
most useful property of the TS fuzzy control method is its
ability to approximate arbitrary linear or nonlinear systems.
In general, the TS fuzzy modeling scheme divides the non-
linear system dynamics into several linearized subsystems.
Parallel distributed compensation (PDC) is a model-based
design procedure to partition nonlinear system dynamics into
linearized subsystems. The format of linear matrix inequali-
ties (LMlIs) is used to formulate a stable feedback gain. The
LMI technique offers a way to stably design PDC controllers.
In other words, a nonlinear system can be transformed into a
TS fuzzy model, and then, the PDC fuzzy controller design
is accomplished using linear matrix inequality approaches.
They can be solved efficiently by convex programming
techniques for LMIs. Recently, the MATLAB LMI Control
Toolbox has been used to refine the asymptotically stable
feedback gain value. The TS model with PDC has been
successfully used in many control applications.

In our previous research, many real-world dynamic con-
trol systems were proposed. In [19], a robust fuzzy con-
troller was proposed for a ball inverted pendulum system
control problem. A Mamdani-type fuzzy controller and a
compensated control technique were combined in the pro-
posed control system. Moreover, the ball inverted pendu-
lum mechanic structure was designed by our research team.
In [20], a single-wheel transportation vehicle was designed
and implemented. An adaptive Mamdani-like fuzzy con-
troller was adopted for real-time single-wheel transportation
vehicle control. In [21], a two-wheel robot system was imple-
mented. To control the two-wheel robot well, a position-
and angle-decoupled intelligent backstepping control system
was proposed. Other related works proposed by our team
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include biomimetic flapping-wing robots, wheeled human
transportation vehicles, and bicycle robots [22]-[24].

In this study, an ODIP is designed and implemented based
on our past experience. The dynamics of an ODIP are similar
to those of an inverted pendulum. In fact, an ODIP can
be considered as two inverted pendulums in two indepen-
dent dimensions combined. This system undoubtedly has
many nonlinear components. Therefore, the TS fuzzy con-
trol method divides the ODIP nonlinear system into several
linearized subsystems. Moreover, the PDC fuzzy controller
design with the LMI technique is used to ensure that the
ODIP system runs stably. In general, the ODIP is constructed
from a chassis, a flywheel, and one wheel. Two motors with
gearboxes comprise its drive mechanism. To avoid the cou-
pling problem, in this study, the two motors are mounted in
orthogonal directions; therefore, there is no coupling between
the actuators. An inclinometer and a gyroscope are installed
on the chassis. Its weight and height are approximately 5 kg
and 80 cm, respectively. The core of its operating system is
the 86duino One development system and comprises some
handmade hardware components.

A dual TS control scheme is used for the ODIP real-time
control in this study. The system has a planform and one
wheel. This is an expansion of the traditional inverted pendu-
lum system. Obviously, the ODIP can be arbitrarily moved in
all directions. The ODIP can be considered two independent
inverted pendulum systems that are combined. Because of
the physical structure, controller design is even more diffi-
cult. To overcome this hard control problem, according to
the two DC motors mounting in orthogonal directions [13],
[25], [26], a dual TS model-based approach for an ODIP
control system is suggested. The shafts of the two DC motors
are oriented in orthogonal directions. Therefore, the coupling
problem in the side plane and front plane can be neglected.
Obviously, an ODIP nonlinear system dynamic function can
be represented by a set of rule-type local linearizations. Then,
the PDC controller can be constructed, and the control gains
are obtained by solving LMI methods using the MATLAB
LMI Control Toolbox. Finally, from the experimental results,
the effectiveness of the proposed intelligent controller is ver-
ified by ODIP real-world implementation.

Il. BALANCING STRATEGY

The two DC motors are mounted in orthogonal directions;
therefore, there is no coupling between the actuators. First,
the coordinate system, system parameters, and balance action
strategy for an ODIP will be defined in this section. Figure 1
shows the definition of the three-dimensional coordinate sys-
tem of an ODIP. In this study, the system is decoupled into
two subsystems for system analysis.

Newton’s third law of motion, which identifies action
and reaction force in pairs, is the main balancing concept
of the ODIP. In this paper, the ODIP is decoupled into
two subsystems, and each subsystem represents the dynamic
motions of the ODIP on the side plane and front plane. The
first subsystem (shown in Fig. 2) consists of the vertical
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FIGURE 1. Balancing progress of pitching posture on side plane.
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FIGURE 2. Balancing progress of pitching posture on side plane.
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FIGURE 3. Balancing progress of rolling posture on front plane.

axis and longitudinal axis, and the changing velocity of
the ground-contacting wheel makes the pitching angle ¢
approach zero. Similarly, the second subsystem (shown in
Fig. 3) is made up of the vertical axis and lateral axis, and the
changing velocity of the flywheel makes the rolling angle
approach zero. As long as the two subsystems are controlled
properly, the ODIP can stand straight.

Ill. DYNAMIC ANALYSIS

A. EQUATION OF MOTION: GENERAL PLANE MOTION
Considering that a rigid body with a mass m kg is exter-
nally applied forces and moments, it can be expressed by
a free-body diagram and kinetic diagram, which are shown
in Fig. 4. Therefore, the three equations of motion can be
written as follows [21]:

ZFX = m(ag), (1)
> Fy = m(ag), ()
ZMG = IGOl (3)
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FIGURE 4. Analysis of general plane motion.

where point G is the center of mass and F and Mg are
the external force and torque, respectively. ag is the body’s
acceleration caused by external force and moment, I is the
moment of inertia of the body, and « is the body’s angular
acceleration. Moreover, in the suffix parameters, x denotes
the x-axis and y denotes the y-axis.

In some cases, it is more convenient to sum torques
about point Q than G to eliminate unknown forces from the
torque summation in Eq. (3). As a result, Eq. (3) can be

modified as [27]
D Mg =3 " (Pr)g @

where ) (®x)( represents the moment sum of /g and mag
about point Q.

| /
1) @ e 1 3
I

FIGURE 5. Relative-acceleration analysis.

B. RELATIVE MOTION: ACCELERATION

There are two basic motions of transformation for ODIP
during the balancing process: translation and rotation. For
example, a rectangular plate moving from @ to ®, as shown
in Fig. 5, can decompose into two processes. First, the rectan-
gular plate translated from @ to @ gives the same acceleration
to point A and point B. Second, the rectangular plate rotates
from @ to @ based on point A, which causes tangential accel-
eration and normal acceleration in point B. Hence, the rel-
ative acceleration equation can be written in the following
form [27]:

ap = ag +ap/a
as + (ap/a), + (aga),

=ast+ax I'B/A—a)2 X TB/A 5)
where
ap acceleration of point B;
ay acceleration of point A;
ag/a relative acceleration of B with respect to A;
(aB /A) ; relative tangential acceleration component of B
with A;
26085
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(aB /A)n relative normal acceleration of B with respect
to A;

rp/A relative position drawn from A to B;

o angular acceleration of the rectangular plate;

) angular velocity of the rectangular plate;

0 Angle of inclination of the rectangular plate;

C. MATHEMATICAL MODEL OF SIDE PLANE

Figure 8 shows a motion analysis of the ODIP at the side
plane, including the free-body diagram and kinetic diagram
in the balancing process.

Point R is the center of mass of the rim motor and the
position of the rim motor shaft, which is connected with
the body of the ODIP. Point P is the center of mass of the
ODIP body, which is considered an inverted pendulum sys-
tem (IPS). If line PR is not perpendicular to the longitudinal
axis, the IPS will tilt due to the force of gravity. To avoid
letting the IPS down, the rim motor has to accelerate for
balancing.

Finetic [hagram

Free-Body Diagram

agr:
!

Nﬁ.,__

=3

4

FIGURE 6. Motion analysis of side plane.

The motion of the IPS in the side plane can be considered
the same as in Fig. 6, which consists of translation and
rotation. According to Eq. (1), Eq. (3) and Fig. 6, the equation
of motion for the side plane can be expressed as follows:

Fr = mplag + (ap/r): cos ¢ — (ap/r)n Sin ¢]

+mpgrag
= (mp + mg)rég + mp(lprg cos ¢
—lprg” sin ) (6)
mpgp sing = mplaglpr cos ¢ + [3g(ap/r)n
= mp(réglpr cos ¢ + [3x) @)
where
mp mass of the pendulum;
mR mass of the rim motor;
agr acceleration of the rim motor;
(ap/r);  relative tangential acceleration component
of P with R;
(ap/r)n  relative normal acceleration of P with

respect to R;
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Ipgr  distance between point P and point R;

r radius of the rim motor;

[0} inclination angle for side plane;

fr  rotation angle of the rim motor;

Fr  the force exerted on point R by rim motor;

Let the side plane’s control input U(s) be the torque of the
rim motor, i.e.,

U(S) = TR
=Fpxr ®)
Note that ¢ is also called the pitching angle in the side plane.
By combining Eq. (6)Eq. (8), the mathematical model of the
side plane is
(mp + mg)g sin g

= [mp(1 — cos? @) + mgllpr
cos ¢

~ [mp(1 — cos? @) + mgllprr

Usy O

Free-Body Diagram

Kinetic Diagram

FIGURE 7. Motion analysis of front plane.

D. MATHEMATICAL MODEL OF FRONT PLANE
Figure 7 shows a motion analysis of the ODIP at the front
plane, including the free-body diagram and kinetic diagram
in the balancing process.

Point F is the center of mass of the flywheel. Point G is the
center of mass of the ODIP except for the flywheel.

Because the front plane only rotates during the balancing
process, the equation of motion for the front plane can be
expressed in the following form by Eqs. (3) and (4):

(mgglco + mrglro) siny + 1
= (mgl2y +mplio +Ip)Y  (10)

where v is the inclination angle of the ODIP for the front
plane, which is called the rolling angle, and lgo and Ilro
represent the distances from point O to point F and point
G, respectively. TG denotes the torque reaction caused by the
flywheel, which balances the ODIP in the front plane, and I
denotes the moment of inertia of the flywheel.

Let the front plane’s control input U(r) be the torque of
the flywheel. The relationship between the torque generated
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by the flywheel and the torque acting on the ODIP can be
expressed as follows:

G = k(torque) U(F) (1 1)

where k(orque) 15 a negative constant that is known by experi-
ence. By combining Eq. (10) and Eq. (11), the mathematical
model of front plane is
(mgglGo + mrglpo)g sin ¥

2mgl2, + mplz,

lb:

k(torque)
———— U (12)
Gl +mpl,

IV. FUZZY MODEL

Let the state vectors of the side plane and front plane
be defined as x5)(1) = [¢(r) ()17 and xr)(t) =
[ () ¥ ()17, respectively. For the realization of fuzzy mod-
eling, the pitching angle ¢(¢) is limited within the range of
o(t) € [—m/6,m /6], and the rolling angle v (¢) is limited
within the range of ¥ (¢) € [—m /36, 7/36].

A. FUZZY MODEL OF SIDE PLANE

The fuzzy model of the side plane is presented as follows:
Model rule i

If @(1) is pics), then X(5)(1) = A;X(s)(1)

+BiUs(1), (=12 (3)
where the system matrices are
0 1
Al = | (mp+mr)g 0
L mglpp
[0
bl 0]
L mglpgr
i 0 1
Ay = (mp+mp)gas) 0
| [mp(1—B%))+mrlipg
i 0
Bo=|__  fo
| mp(1=Bs))+mrllprr

where o5y = sin(/6)/(7/6) and By = cos(w/6). The
membership functions of the side plane of ¢ are presented
by the following representation.

1, )=0
i) (1) = , 0 (14)
10/, _
1 — ———5——-, otherwise
| /6P I
0, o) =0
) = —p()/0 15
p2es)(@(1)) l—e & otherwise (15)
|97 /o,

where p11¢sy and po(s) are composed of normalized Gaussian
functions (shown in Fig. 8) and os) is the variance of Gaus-
sian functions.
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FIGURE 8. Membership functions for fuzzy modeling of side plane.

Then, the defuzzification of the above fuzzy model of the
side plane can be deduced as follows:

2

X)) = Y nis) (OAXs) (1) + BilUs) ()] (16)
i=1

B. FUZZY MODEL OF FRONT PLANE
The fuzzy model of the front plane is designed as follows:
Model rule i:
If ¥ (2) is picr), then xr)(1) = Cix(r)(t)
+DiUr (@), i=(1,2) (17)

The system parameters are defined as follows:

[ 0 1
C1 = | mglgot+mrlro)g 0

| 2mglgo+mrlzy

i 0
D] == k(torque)

| 2m(;l(2;0+m1: l,%-o

i 0 1
Cy = | ngloo+mrlro)gor) 0
2mGl2o+mrlz,

i 0
D2 = k(torque)

| 2mGlE,+mpiZ,

where k(tarque) = —0.4, Q) = sin(n/36)/(71/36) and ﬂ([:) =
cos(r/36). The membership functions of the front plane of ¥
are presented by

1, Yt =0
mMe Y 0) = 1- —1’e_w2(t):a(zpz) , otherwise 18)
|~ /3020
0, vty =0
oy (Y () = § V0 otherwise (19)

— 2.2 3
| 1362/

where p1(r) and wor) are composed of a normalized Gaus-
sian function (shown in Fig. 9) and o(F) is the variance of
Gaussian functions.

Consequently, the defuzzification of the abovementioned
fuzzy model of the front plane can be derived as

2
() (1) = Y iy (@ONCxXp)(1) + DU ()] (20)

i=1
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FIGURE 9. Membership functions for fuzzy modeling of front plane.

Algorithm 1 denotes the 86duino One code to obtain the
system plant model.
Algorithm1: Fuzzy model algorithm
Input: System angle x, mean value of function mm,
variance value of Gaussian function msd
Output: Desire fuzzy model
1. Limit the input variable into the interval between
the largest mean value and the smallest mean value
2. Set the input variables between which two mean
values
of the Gaussian function, for example:
ifi((x >=mml)&&(x <= mm2))
where mml, and mm?2 are the mean value for x
3. Calculate the value of the fuzzy membership function,
for example:
mem_model_1 = 1-(1-(exp(-pow(x,2)/pow(sdl,2)))
[(1-exp(-pow(pi/36,2)/pow(sdl,2));
mem_model_2 = (1-(exp(-pow(x,2)/pow(sdl,2)))/(1-
exp(-pow(pi/36,2)/pow(sdl,2));
End Algorithm

V. FUZZY CONTROL DESIGN
In this paper, the model-based fuzzy controller design

employs the concept of parallel distributed compensation
(PDC).

A. FUZZY CONTROLLER OF SIDE PLANE
The fuzzy controller of the side plane is presented as follows:
Controller rule i:

If ¢(2) is wics), then Us)(7) = Fis)Xs)(H), (i=1,2)  (21)

where F(s) and Fy(s) are the feedback gains. The whole fuzzy
controller can be expressed as

2
Ugs)(®) = Y i) ($(0)Figs)Xs) (1) (22)
i=1
Hence, each feedback gain F(s) in a consequent part needs
to be resolved. By substituting (22) into (16), the closed-loop
fuzzy model can be obtained as follows:

2
Xs)(t) = ZMi(S)(fﬁ(l))Gii(S)X(S)(’)
:21M1(S)(¢(1))M2(S)(¢(I))
y {M} xp®  3)
where Gjjs) = A; + BiFjs).
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B. FUZZY CONTROLLER OF FRONT PLANE
The fuzzy controller of the front plane is shown as follows:
Controller rule i

(i=1,2)
(24

If Y (¢) is picr), then Uy (1) = FipyXr)(2),

where Fj) and Fyry are the local feedback gains. The
overall fuzzy controller is obtained as

2
Uy (®) =Y iy @E)FigryX (1) (25)
i=1

Here, each Fjr) needs to be determined to push the sys-
tem error to approach zero. By substituting (25) into (20),
the closed-loop fuzzy model can be obtained as follows:

2

X)) = Z/Li(F)(’ﬁ(f))Gii(F)X(F)(I)
i=1
217y (U (@) oy (Y (1))

G G
{M} Xy (1) 26)

where Gij(F) =C;+ DiFj(F)~
Algorithm 2 is the 86duino One code to send PWM to drive
motors.
Algorithm3: Fuzzy controller algorithm
Input: Angle error E, mean value of Gaussian
functioncm,
variance value of Gaussian function csd,
F1land F2
are local feedback gains.
Output: Desire fuzzy output for balance control U

1. Limit the input variable into the interval
between
the largest mean value and the smallest mean
value

2. Set the input variables between which
two mean values of the Gaussian function,
for example:
if (((x >=cml)&&(x <= cm2))
where cml, and cm2 are the mean value for E

3. Calculate the value of the fuzzy membership
function, for example:
mem_controller_1 = 1-(1-(exp(-pow
(E,2)/pow(csdl,2)))/(1-exp(-pow
(pi/6,2)/pow(csdl,2));
mem_controller_2 = (1-(exp(-pow
(E,2)/pow(csdl,2)))/(1-exp(-pow
(pi/6,2)/pow(csdl,2));

4. Calculate the output of the fuzzy control
algorithm by the center of gravity
defuzzification as:

U= (mem_controller_1x(FI)«xE
+ mem_controller_2:x(F2)*E)
End Algorithm
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C. STABILITY ANALYSIS OF CLOSED-LOOP T-S FUZZY
MODEL
According to Egs. (23) and (26), the closed-loop T-S fuzzy
model of the side plane and front plane have the same math-
ematical form. Therefore, the stability analysis of the closed-
loop T-S fuzziness for the overall ODIP can be derived as
follows.

Lemma 1 [7]: The fuzzy control system of (23) and (26)
is quadratically stable at the equilibrium points if symmet-

ric matrices P(; and Wjj;;) exist for z = Sand F such
that (27)—(30) are satisfied:
Py >0 27
GiioPo + P<z>Gu<z> + Wiy <0 (28)
G +G G +G
12(z) 21(2) P(z) +P 12(z) 21(z)
2 2
+W12(Z) <0 (29)
Wi Wai
W = >0 30
@ = [le(n Wi @0

By defining the matrices Fy = Nk(z)R(Z) R = P(Zl, and
Yij, = RoW;j R for k = iandj to meet the format of
the LMT toolbox, we can apply them into the LMI method to
obtain P(;), Fk(z), and Wijc,).

In practical applications, the maximum limitation of the
control force is used in this study to reduce the probability of
burning out the hardware circuit. Moreover, a control force
with a maximum upper bound is easier to implement in
reality.

Lemma 2 [7]: For the fuzzy control system of (23)
and (26), suppose that the initial error vector is unknown
but its positive upper bound &) is known for z = SandF.
Then, the control inputs (22) and (25) can be enforced to
derive the constraint positive upper bound p() if the following
conditions are added into the LMIs used in Lemma 1:

el < Rgy 31)
T
R N’g@ >0 (32)
New Pl

In Fig. 10, ¢* and v* are command inputs and set to zero in
this study. Moreover, ey and Aey are the pitch angle tracking
error and the change rate of the pitch angle tracking error,
respectively. ey, and Aey, are the roll angle tracking error and
the change rate of the roll angle tracking error. Fig. 11 shows
the program flow chart.

VI. HARDWARE ARCHITECTURE

This section introduces the ODIP hardware design based
on an open-source embedded controller. Figure 12 shows a
photograph of the ODIP, and Fig. 13 shows the hardware
configuration of the ODIP.

A. HARDWARE STRUCTURE
The size of the ODIP is approximately 33 cm long, 34 cm
wide, and 60 cm high. The total weight of ODIP approaches
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FIGURE 10. The configuration of proposed control system.

Get system error
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controller
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to drive the motors

FIGURE 11. The program flow chart.

DC Motor Driver Power Regulator

86duino One

Brushless Rim Motor Driver

DC Motor and Encoder

\Fln\ heel

Encoder ~
Power Source

5
\Brushless Rim Motor

FIGURE 12. Photograph of the ODIP.

10 kg. The 2.17-kg flywheel is tightly connected to the front
of a DC motor shaft made of aluminum, and its weight and
shape directly influence the control performance. Carbon
fiber is chosen as the material for the body of the ODIP;
its tensile strength is approximately 7 times greater than
aluminum, and its weight is nearly 4 times less than aluminum
under a same volume. The abovementioned advantages make
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86duino One
DC Motor 4
Driver

FIGURE 13. Hardware Configuration of ODIP.

the ODIP sturdy and durable, so the whole system can ideally
be considered a rigid body.

All electrical circuits are placed on the top of the ODIP,
which contains a power regulator, an embedded controller,
a motor driver module, and a brushless rim motor driver
board. All motor driver circuits are designed to prevent
counter electromotive force, which may cause damage to the
motor deriver’s IC and embedded controller when the motor
changes its rotating direction instantly.

The ODIP has two actuators: a 24-V DC motor man-
ufactured by King Motor Company Ltd. and a 24-V DC
brushless rim motor manufactured by Elebike Company, Ltd.
A planetary gearbox with a reduction ratio of 1:6 is installed
at the head of the DC motor, which makes the DC motor
more powerful so that the ODIP has antidisturbance ability.
To address the coupling problem owing to the two DC motors,
the shafts of the two DC motors are oriented in orthogonal
directions. Therefore, the platform can move directly in any
direction. Moreover, the control signals for the two actu-
ators, pulse-width modulation (PWM), are generated from
the embedded controller. The interface for data transmission
between the personal computer (PC) and embedded con-
troller is a universal serial bus (USB) 2.0, and it can also
program the embedded controller from the PC.

B. EMBEDDED CONTROLLER

The embedded controller employed in this paper is the
86duino One controller, which is a high-performance
board based on a 32-bit x86 processor Vortex86EX
system-on-a-chip (SoC). The 86duino One provides 45 dig-
ital I/O pins in which 11 pins can generate 32-bit PWM,
7 analog-to-digital converter (ADC) input pins, 128-MB
DDR3 memory, 8-MB flash memory, and a clock speed
of 300 MHz. Signals from the inclinometer and gyro are
acquired by sensors and a filter circuit. The inclinometer is
used to measure the system angle, and the gyro is used to
determine the system angle derivative.

The inertia measurement unit (IMU), an LSM330DLC,
is integrated into the 86duino One. The LSM330DLC is a
system-in-package featuring a 3D digital accelerometer and
a 3D digital gyroscope; therefore, the processor can obtain
the ODIP’s posture in real time by data fusion.
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The proposed control algorithm can be realized by a coded
program in the 86duino integrated development environment
(IDE), and the syntax of the 86duino IDE is similar to the
C/C++ and Arduino IDE syntax.

TABLE 1. Parameters and values of the ODIP.

Symbol Value
mg 2.17 (kg)
mg 10.305 (kg)
mp 2.4 (kg)
mp 10.075 (kg)
Leo 0.35 (m)
leo 0.2652 (m)

r 0.1 (m)
Lo 0.3185 (m)

VII. EXPERIMENT RESULTS
In this section, the proposed TS fuzzy controller is used to
control the ODIP. The system parameters and values of the
ODIP are shown in Table 1. Generally, the Arduino 86duino
One unit is suitable for control algorithm implementation
and system control. Moreover, the proposed two motors are
sufficient for system control. Unfortunately, the ODIP will
be uncontrollable when a large extra disturbance is given.
The reason is that the given disturbance exceeds the control
ability to maintain system stability. When a large extra dis-
turbance is added, the ODIP will fall down. In this work, the
proposed ODIP can afford maximum angles of 10 degrees
and 5 degrees in the pitch and roll, respectively.

After substituting the parameters into the fuzzy mod-
els (13) and (17), the system matrices are

A1 = [127.(4)1789 (1)} B = [—1094167]
Az = [59.2972 (1)} » B2= [—4.?1017}
and
€= [19.8728 (1)] br= [—0.3332}

0 1 0
2= [19.9475 0]’ D2 = [—0.2332}

The ODIP is modeled in the range ¢ (f) € [—x/6, 7 /6]
and ¥ (t) € [—m /36, 7/36]. According to Lemma 2, the ini-
tial error upper bounds are g5y = 7/6 and ey = 7/36.

Moreover, the control input upper bounds are p(s) = 12.5
and pizy = 60. Then, the MATLAB LMI toolbox can be
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utilized to obtain P(;), Fi,
follows.

and Wj,) for z = Sand F as

2

Fis) = [ 13.8545 1.1335]

Fys) = [ 14.8238 1.7238 ],
[ 2 0.2379}

| 0.2379 0.0507 |

[ 3.8711 0.7685 —0.1118 0.0038
0.7685 0.351 0.0038 0.0742
—0.1118 0.0038 1.3813 0.0536
| 0.0038 0.0742 00536 0.1556

P =

V~V(S) =

and

Fir) = [ 114.0779 25.5282 ]
Fyry = [ 114.1485 25.5560 ] ,

P _ | 50884 1.1389
= 1.1389 0.2549 |

[ 7.6061 1.7032 —1.0214 —0.2286
1.7032 0.3814 —0.2286 —0.0512
—1.0214 —0.2286 7.6835 1.719

| —0.2286 —0.0512 —1.719 0.3846

Moreover, in this system, ogs = 0.15 and o = 0.15.
Two cases, balance control and balance control with external
disturbance, are illustrated here.

V~V(F) =

Piiching Postue Response Foding Posture Res porse.

Piioning Postum Respanse

H T Li’m Y T TR T
S ik (AT b (e el e

Time (sec) v (sac)

(a (b)
FIGURE 14. The system performance of the ODIP balance control at a
fixed point. (a) The inclination angle and the angular velocity for the side
plane. (b) The inclination angle and the angular velocity for the front
plane.

A. BALANCE CONTROL

In this subsection, the ODIP balance control at a fixed posi-
tion is tested. The ODIP is required to stay at the origin point.
Fig. 14 shows the system responses with the initial states
[#(0) ¥(0) ] = [0 0]. Fig. 14(a) shows the inclination angle
and the angular velocity for the side plane. Fig. 14(b) shows
the inclination angle and the angular velocity for the front
plane. Obviously, when the ODIP system starts, the angle
of the ODIP is at approximately zero degrees. This means
the ODIP is standing upright. In this test duration, the ODIP
always stands at approximately zero degrees. It can be seen
that the ODIP can stably stand upright at the origin point.

B. BALANCE CONTROL WITH EXTERNAL DISTURBANCE
In this experimental case, the ODIP is initially at the origin.
Fig. 15 shows the system responses with the initial states
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(a) (b)

FIGURE 15. The system performance of the ODIP balance control at a
fixed point with external disturbance. (a) The inclination angle and the
angular velocity for the side plane. (b) The inclination angle and the
angular velocity for the front plane.
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FIGURE 16. The system performance of the ODIP balance control for PID
at a fixed point with external disturbance. (a) The inclination angle and
the angular velocity for the side plane. (b) The inclination angle and the
angular velocity for the front plane.
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FIGURE 17. The system performance of the ODIP balance control for FLC
at a fixed point with external disturbance. (a) The inclination angle and
the angular velocity for the side plane. (b) The inclination angle and the
angular velocity for the front plane.

[¢>(O) 1//(0)] = [0 0]. Then, at 0.5 seconds, an external
disturbance is given by tapping to the side plane. Moreover,
at 14 seconds, an external disturbance is also added to the
front plane by tapping. Fig. 15 shows the system performance
of the ODIP with an external disturbance. Fig. 15(a) shows
the inclination angle and the angular velocity for the side
plane. The system chattering converges rapidly. Fig. 15(b)
shows the inclination angle and the angular velocity for
the front plane. In Fig. 15(b), a large overshoot occurs at
approximately 14 seconds because of an external disturbance.
However, the system error convergence is rapid. Moreover,
because the two DC motors are oriented in orthogonal direc-
tions, the external disturbance given to the front plane has no
effect on the side plane. Therefore, the platform can move
directly in any direction. Obviously, the proposed controller
can deal with external disturbances.
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For comparison, the classic PID and fuzzy logic con-
trol (FLC) are used to control the ODIP.

Figures 16 and 17 show the comparison results for the
classic PID and the fuzzy logic control. Clearly, the system
responses in Fig. 15 are better than those in the other figures.

Based on the above experimental results, the controller
shows good control performance. This indicates that the pro-
posed TS fuzzy control scheme is suitable for the real-time
control of an ODIP.

VIIl. CONCLUSION

In conclusion, an ODIP has been successfully implemented
by using a novel fuzzy control scheme in this study. An ODIP
is a new type of highly nonlinear controlled plant. Moreover,
the mathematic model of an ODIP is derived. The proposed
TS fuzzy controller is designed to maintain the ODIP balance.
When the ODIP is hit by an external disturbance, the con-
troller can still prevent the system from falling down. The
experimental results verify that the proposed control schemes
are effective for ODIP real-world control.
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