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ABSTRACT This article presents a simple stabilizing control algorithm for a class of underactuated
mechanical systems for two degrees of freedom (2DoF). In this respect, the adaptive sliding mode based
strategy is proposed for the considered class. The controller, along with the adapted laws, is decided in such
a way that the time derivative of a Lyapunov function grows negative. The proposed control technique has
been applied to three classic benchmark 2DOF systems, the acrobot, pendoubt, and the cart-pole system.
The effectiveness of the proposed strategy is proved in the light of simulation results for all said systems
considered as an illustrative example.

INDEX TERMS Feedback stabilization, underactuated systems, non-holonomic systems, adaptive sliding
mode control, Lyapunov function.

I. INTRODUCTION
Underactuated mechanical systems (UMS) are the systems
having a fewer number of independent control actuators than
the degrees of freedom (DoF) to be controlled. These systems
have many practical and diverse applications in modern sci-
ence and engineering. The broad application areas of under-
actuated systems include robotics, industry, and aerospace
systems, to name a few. Apart from practical applications,
these systems have been of great importance and interest in
research as prototype systems for nonlinear complex sys-
tems. The reasons for underactuation include i) dynamics
of the system (like spacecraft’s, aerial and underwater vehi-
cles), ii) by design (for cost and weight reduction), iii)
actuator failure, iv) imposed artificially (to get the insight
of high order nonlinear underactuated systems) [1]: Exam-
ples of UMS include systems designed for research like
the acrobot, the pendubot, the rotating pendulum, the cart-
pole system, the beam-and-ball system, the TORA sys-
tem, the inertia-wheel pendulum, and many other kinds
of pendulums. Examples of robotics include flexible-link
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joints, mobile robots, and many other kinds of manipula-
tors, from aerospace aircraft, spacecraft, helicopters, satel-
lites, marine vehicles, ships, and underwater and surface
vehicles [2].

Control of UMS has been a challenging research problem
and an active area of research for the last two decades due
to highly complex and nonlinear behavior and fewer control
inputs compared to DoF to be controlled. There are several
control design methods for fully actuated mechanical sys-
tems because they possess some important properties like
passivity and feedback linearization [3], which are helpful
in the design of controllers for such systems. These methods
include partial feedback linearization collocated [1], and non-
collocated [4], passivity [5], adaptive and robust control [6]–
[9], SlidingMode Control (SMC) [10]–[13], fuzzy logic [14],
and back-stepping [15]. The bottleneck associated with the
aforementioned approaches is they are not directly applicable
to the underactuated mechanical systems. Due to the non-
holonomic nature, these systems are not completely feedback
linearizable [1]; also, these are not locally controllable at their
point of equilibrium [3]. In addition, these systems do not
satisfy Brockett’s necessary condition [1] (for more detail,
see [1]).
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FIGURE 1. The Acrobot.

As the research in the area of UMS is not fully matured yet,
therefore, challenges regarding UMS is basically categorized
into two streams, i.e., theoretical challenges and practical
challenges. Considering the perspective of theoretical chal-
lenge, the control research community is facing the issue of
controllability and stabilization of UMS [1]. On the other
hand, from the perspective of practical challenges, the control
community is facing the following three aspects; i) network
operated UMS, ii) DoF in complex UMS, and iii) fault detec-
tion and control [1], [2]. Among all aforementioned control
approaches, sliding mode control got prime importance due
to its robustness and capability to cater unknown internal and
external disturbances in the presence of model uncertainties
[16].

This paper focuses towards stabilizing control of 2DoF
underactuated mechanical systems aiming to resolve one
of the control community’s theoretical challenges. In this
regard, Xu [17] have proposed a global stabilization tech-
nique based on SMC. Moreover, Olfati-Saber [18] has also
done remarkable work regarding the stabilization of the con-
sidered class. Integral SMC based solution is also proposed
in [6], and comparative analysis with higher-order sliding
modes is also posed in [10]. Increasing the order of the sliding
surface makes the controller more complex, and it will fur-
ther increase the computational cost. However, the proposed
solution discussed in [10]–[12], [16], [17] does not cover
the entire class of UMS. Different models are posed for the
different classes of UMS [1], [2].

In this paper, the proposed method is based on the adap-
tive sliding mode technique, with a primary objective is
to steer the system to any desired state from any arbitrary
initial state. Moreover, computer simulation for illustrative
examples shows the effectiveness of the proposed control
algorithm.

Following are the main contributions regarding this paper:

• The proposed algorithm is kept generic and can be appli-
cable to the class of underactuated mechanical systems
having 2DoF.

• The proposed control algorithm has been applied to
three systems (the acrobot, pendoubt, and the cart-pole

system) considered as illustrative examples for the con-
sidered class.

• The simulation results prove the effectiveness and effi-
ciency of the proposed control strategy.

The rest of the article is organized as follows.
Section 2 presents the dynamical model of underactuated
mechanical systems with n-DoF and 2DoF, respectively.
Section 3 presents a description of the control problem, along
with some insight of the proposed control algorithm. Illustra-
tive examples and simulation results are listed in section 4,
whereas section 6 concludes the paper.

II. DYNAMICAL MODEL OF UNDERACTUATED
MECHANICAL SYSTEMS
A. GENERAL N DEGREE OF FREEDOM (N DoF)
UNDERACTUATED MECHANICAL SYSTEMS
Euler-Lagrange equation of motion for the underactuated
mechanical system of order n is given as follows [1]:

d
dt
∂L
∂ q̇
−
∂L
∂q
= F (q) u (1)

where L is the Lagrangian of the system, wheres (2) repre-
sents the difference in kinetic K and potential energy V , as
follows:

L (q, q̇) = K − V =
1
2
q̇TM (q) q̇− V (q) (2)

In (1), q ∈ Rn displays the configuration vector, u ∈ Rm

represents control input and F (q) = [f1 (q) , . . . fm (q)]T is
the matrix of external forces. The dynamics of equation (1)
conceivably modified as:

M (q) q̈+ C (q, q̇) q̇+ G (q) = F (q) u (3)

where M (q) represents the inertia matrix, and the gravita-
tional term is displayed as G (q). Coriolis and centrifugal
terms are posed as C (q, q̇) q̇. The system is called as fully
actuated if m = rank (F) = n however, if m < n, the system
is considered as underactuated. For the general case F (q) =
[F1 (q) ,F2 (q)]T and partitioning q = [q1, q2]T according to
F (q), where q1 ∈ Rn−m and q2 ∈ Rm, dynamics (3) can be
written as [3], [5]:{

m11q̈1 + m12q̈2 + c1 + g1 = F1 (q) u
m21q̈1 + m22q̈2 + c2 + g2 = F2 (q) u

(4)

where M (q) =
[
m11 m12
m21 m22

]
is inertia matrix, c1 (q, q̇) ∈

Rn−m and c2 (q, q̇)∈Rm are the centrifugal and coriolis
terms, g1 (q) ∈ Rn−m and g2 (q) ∈ Rm represents gravi-
tational terms, and control inputs are presented as u∈Rm,
produced by m actuators.

B. TWO DEGREES OF FREEDOM (2DOF)
UNDERACTUATED MECHANICAL SYSTEMS
For 2DOF underactuated mechanical system, n = 2 and m =
1, so in the system (4), q ∈ R2, u ∈ R1, q1 ∈ R1, and
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FIGURE 2. Convergence of system’s states considering initial condition
(
x1

(
0
)
, . . . , x4

(
0
))
=

(
π,0,0,0

)
. Time response of sliding surface s and control

effort.

q2 ∈ R1. Depending upon whether F1 (q) = 0 or F2 (q) = 0,
system (4) takes one of the following two forms:{

m11q̈1 + m12q̈2 + c1 + g1 = 0
m21q̈1 + m22q̈2 + c2 + g2 = u

(5)

forF1 (q) = 0 andF2 (q) = I1. In (5), Coriolis and gravity are
represented by ‘‘c’’ and ‘‘g’’ respectively. Input is displayed
as u, where q, q̇ points toward states of the system.

In this article, the considered case is when

{
m11q̈1 + m12q̈2 + c1 + g1 = u
m21q̈1 + m22q̈2 + c2 + g2 = 0

(6)

for F1 (q) = I1 or F2 (q) = 0.
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Solving the first equation in (5) for q̈1 and q̈2, and substituting
the result in the second equation, (5) can be written as:{

m̄11q̈1 + c̄1 + ḡ1 = u
m̄22q̈2 + c̄2 + ḡ2 = u

(7)

where 

m̄11 (q) = m21 − m22m
−1
12 m11

c̄1 (q, q̇) = c2 − m22m
−1
12 c1

ḡ1 (q) = g2 − m22m
−1
12 g1

m̄22 (q) = m22 − m21m
−1
11 m12

c̄2 (q, q̇) = c2 − m21m
−1
11 c1

ḡ2 (q) = g2 − m21m
−1
11 g1

(8)

Since q1 ∈ R1, and q2 ∈ R1. system (7) is a set of two
second-order systems in state variables q1 ∈ R1, and q2 ∈
R1. Writing x = [x1, x2, x3, x4]T = q = [q1, q̇1, q2, q̇2]T ,
the system shown in (7) can be displayed as:

ẋ1 = x2
ẋ2 = f1 (x)+ b1 (x) u
ẋ3 = x4
ẋ4 = f2 (x)+ b2 (x) u

(9)

where 
f1 (x) = −m̄

−1
11 (c̄1 + ḡ1)

b1 (x) = m̄−111

f2 (x) = −m̄
−1
22 (c̄2 + ḡ2)

b2 (x) = m̄−122

(10)

are the nonlinear nominal functions. A similar treatment can
be applied to convert system (6) to form (9) with the following
transformation:

f1 (x) = −m̄
−1
11 (c̄1 + ḡ1)

b1 (x) = m̄−111

f2 (x) = −m̄
−1
22 (c̄2 + ḡ2)

b2 (x) = m̄−122

(11)

where 

m̄11 (q) = m11 − m12m
−1
22 m21

c̄1 (q, q̇) = c1 − m12m
−1
22 c2

ḡ1 (q) = g1 − m12m
−1
22 g2

m̄22 (q) = m12 − m11m
−1
21 m22

c̄2 (q, q̇) = c1 − m11m
−1
21 c2

ḡ2 (q) = g1 − m11m
−1
21 g2

(12)

Remark: Among two degrees of freedom, the Acrobot,
TORA, and the Inertial-Wheel Pendulum can be written in
the form shown in (5). On the other hand, systems like an
overhead crane, the Pendoubt, ball on a beam system, and
the Cart-pole systems may reflect as the system shown in (6).
Interestingly, all aforementioned systems can be represented
as (9), but with f1, f2, b1, and b2 needs to be defined accord-
ingly as given by (8, 10, 11, and 12) respectively.

FIGURE 3. The Pendubot.

III. THE CONTROL PROBLEM AND THE PROPOSED
CONTROL ALGORITHM
A. THE CONTROL PROBLEM
Given the desired set point xdes ∈ R4 establish a feedback
approach in times of controls u : R4

→ R such that the
desired set point xdes is an attractive set for the system (9),
so that there exists an ε > 0, such that x(t; t0, x0) → xdes,
as t →∞ for any initial condition (t0, x0) ∈ R+×B(xdes,∈).

For set-point regulation of 2DOF underactuated mechani-
cal systems, we take xdes = [x1des, 0, x3des, 0]T which can be
accomplished by an appropriate interpretation of the coordi-
nate system.

B. THE PROPOSED ALGORITHM
Step 1: Choose u = 1

b2(x)
{−f2(x) + x1}. Then system (9)

can be written as:
ẋ1 = x2
ẋ2 = β (x)+ α (x) x1
ẋ3 = x4
ẋ4 = x1

where,

β(x) = f1(x)− α(x)f2(x) &α(x) =
b1(x)
b2(x)

(13)

Step 2: Adding and subtracting w in the last equation ẋ2 =
β(x)+α(x)x1, we have ẋ2 = β(x)+α(x)x1+w−w. Let the
second w is unknown (and it may be computed adaptively)
later. Assume ŵ be the estimated value of w and w̃ = w− ŵ
be the estimation error of w. Therefore, the system shown in
(13) can be written as:

ẋ3 = x4
ẋ4 = x1
ẋ1 = x2
ẋ2 = β(x)+ α(x)x1 + w− ŵ− w̃

(14)

Step 3: Construct the switching/sliding surface for the
system defined in (14) as:

s = x3 + 3x4 + 3x1 + x2
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FIGURE 4. Convergence of system’s states considering initial condition
(
x1

(
0
)
, . . . , x4

(
0
))
=

(
−2,2,−2,2

)
. Time response of sliding surface s and

control effort u and w .

then

ṡ = ẋ3 + 3ẋ4 + 3ẋ1 + ẋ2
= x4 + 3x1 + 3x2+f 1 (x)+ w− ŵ− w̃

By considering the Lyapunov function like;

V =
1
2
s2 +

1
2
w̃2,

One may able to devise the adaptive laws for ŵ, w̃ and com-
pute w such that V̇ < 0 (for detail see [19]). Since

V̇ = sṡ+ w̃ ˙̃w

= s
{
x4 + 3x1 + 3x2+f 1 (x)+ w− ŵ− w̃

}
+ w̃ ˙̃w

= sx4 + 3sx1 + 3sx2+sf 1 (x)+ ws− sŵ− sw̃+ w̃ ˙̃w

= s
{
x4 + 3x1 + 3x2+f 1 (x)+ w− ŵ

}
+ w̃{ ˙̃w− s}

(14b)
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To make V̇ < 0, substitute following values in (14b),

w = −x4 − 3x1 − 3x2−f 1 (x)+ ŵ− ksign (s)− ks
˙̃w = s− k1w̃, k1 > 0 and ˙̂w = −s+ k1w̃, k1 > 0,

We have

V̇ = −ks2 − k |s| − k1w̃2 < 0. (15)

From the aforementioned equation, one concludes that
s, w̃→ 0. Since s→ 0, therefore x → 0 and ŵ→ w.
In the upcoming section, the aforementioned strategy is

applied to the three benchmarks UMS belongs to the consid-
ered class.

IV. ILLUSTRATIVE EXAMPLES
The examples of 2DoF underactuatedmechanical systems are
presented in this section. The Acrobot is of the first form
(5), and the Pendubot and the cart- pole system are from
the second form (6).

A. EXAMPLE1: THE ACROBOT
As displayed in Figure 1, the acrobot is a two-link manipu-
lator with a single actuator at the elbow. For the dynamical
model of the Acrobot, F (q) = [F1 (q) ,F2 (q)]T = [0, 1]T

in (4), and the equations of motion are given by (5) as:

m11q̈1 + m12q̈2 + c1 + g1 = 0

m21q̈1 + m22q̈2 + c2 + g2 = u (16)

with m11,m12,m21,m22, c1, g1, c2, and g2 as follows:

m11 (q2) = I1 + I2 + m1l21 + m2

(
L21 + l

2
2

)
+ 2m2L1l2 cos (q2)

m12(q2) = I2 + m2l22 + m2L1l2 cos (q2)

m21(q2) = m12(q2)

m22(q2) = I2 + m2l22
c1 (q, q̇) = −m2L1l2 sin (q2) (2q̇1q̇2 + q̇22)

c2 (q, q̇) = m2L1l2 sin (q2) (q̇21)

g1 (q1, q2) = − (m1l1 + m2L1) g sin (q1)

−m2l2g sin (q1 + q2)

g2 (q1, q2) = −m2l2g sin (q1 + q2) (17)

Using the definition of (8), equation (9) can be rewritten as
(10) in terms of f1, f2, b1 and b2. Physical parameters for
Acrobot are adopted from [20], as:
m1 = 1 (kg) , m2 = 1 (kg) ,L1 = 1 (m) ,L2 =

2 (m) , l1 = 0.5 (m) , l2 = 1 (m) , I1 = 0.0833
(
kg.m2

)
, I2 =

0.33
(
kg.m2

)
, and g = 9.8(m.sec−2).

The control assignment is to swing the Acrobat from the
stable equilibrium (downward) state (q1 = π, q2 = 0) to
the upright unstable equilibrium state (q1 = 0, q2 = 0).
Figure 2 shows the simulation results for the Acrobat with
the proposed control algorithm.

FIGURE 5. The cart-pole system.

B. EXAMPLE2: THE PENDUBOT
The pendubot is also a two-link manipulator with a sole actu-
ator at the base, as displayed in Figure 3. For the dynamical
model of the Pendubot, F (q) = [F1 (q) ,F2 (q)]T = [1, 0]T

in (4), and the equations of motion are given by (6) as:

m11q̈1 + m12q̈2 + c1 + g1 = u

m21q̈1 + m22q̈2 + c2 + g2 = 0

with m11,m12,m21,m22, c1, g1, c2, and g2 the same as for
the Acrobot, given by (17). The f1, f2, b1 and b2 required in
the general form (9) are now given by (11) combined with
the definition (12). We chose the physical parameters of the
Pendubot, adopted from [20], as:
m1 = 0.39 (kg) ,m2 = 1.59 (kg) ,L1 = 0.2 (m) ,L2 =
0.08 (m) , l1 = 0.1 (m) , l2 = 0.04 (m) , I1 =

0.0423
(
kg.m2

)
, I2 = 0.0711

(
kg.m2

)
, and g =

9.8(m.sec−2).
Here the control objective is to swing the Pendubot from

the stable (downward) equilibrium state (q1 = π, q2 = 0)
to the upright second unstable state of equilibrium (q1 =
0, q2 = 0). Fig. 4 shows the simulation results for
the Pendubot with the proposed control algorithm. More-
over, Fig. 4 shows the simulation for any non-zero initial
state.

C. EXAMPLE3: THE CART-POLE SYSTEM
The cart-pole system is displayed in Figure 5, where F is
considered as a control input (applied along q1) and the joint
q2 is unactuated. The dynamical equations for the cart-pole
systems can be written (see [1]) as:{
(m1 + m2) q̈1 + m2l2 cos (q2) q̈2 − m2l2 sin (q2) q̇22 = F

m2l2 cos (q2) q̈1 +
(
m2l22 + I2

)
q̈2 − m2l2g sin (q2) = 0

For the dynamical model of the cart-pole system, F (q) =
[F1 (q) ,F2 (q)]T = [1, 0]T in (4), and the equations of
motion can be written as:{

m11q̈1 + m12q̈2 + c1 + g1 = u
m21q̈1 + m22q̈2 + c2 + g2 = 0
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FIGURE 6. Convergence of system’s states considering initial condition
(
x1

(
0
)
, . . . , x4

(
0
))
=

(
π,0, π/2,0

)
. Time response of sliding surface s and

control effort u.

with m11,m12,m21,m22, c1, g1, c2, and g2 are given as:



m11 = m1 + m2, m12 = m2l2cosq2,
m21 = m12, m22 = m2l22 + I2,
c1 = −m2l2 sin (q2) q̇22,
g1 = 0, c2 = 0, and

g2=−m2gl2 sin (q2)



c1 = −m2l2 sin (q2) q̇22
m̄11 = m11 − m12m21/m22,

c̄1 = c1 − m12c2/m22, ḡ1 = g1 − m11g2/m22

m̄22 = m12 − m11m22/m21, c̄2 = c1 − m11c2/m21

ḡ2 = g1 − m11g2/m21,

f1 = −
c̄1 + ḡ1
m̄11

and b1 = 1/m̄11

f2 = −(c̄2 + ḡ2)/m̄22 and b1 = 1/m̄22
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The f1, f2, b1 and b2 required in the general form (9) are now
given by (11) combined with the definition (12). The physical
parameters of the considered system are adopted from [20],
as:

m1 = m2 = 1, l2 = 0.75, I2 =
(
4
3

)
m2l22 , g = 9.8

The control objective here is to swing the cart-pole system
from a stable equilibrium (downward) state (q3 = π, q4 =
0) (to upright unstable equilibrium state (q3 = 0, q4 = 0).
Figure 6 shows the simulation results for the cart-pole system
with the proposed control algorithm.

V. CONCLUSION
A stabilization algorithm based on adaptive sliding mode is
accomplished in this work. The aforesaid algorithm is made
generic to become applicable to all underactuated mechanical
systems belongs to the considered class of two degrees of
freedom system. The proposed strategy is applied to the
benchmark systems of the acrobot, the pendoubt, and the
cart-pole system. The authenticity and effectiveness of the
proposed technique is established via simulation result.

In light of [1] and [10], considering the future direction,
adaptive terminal-based sliding mode control may be consid-
ered for the class of underactuated mechanical systems with
2DoF, along with hardware implementation to compare the
results from the existing literature like [1]. Moreover, this
work can be expanded in terms of the time-delay system,
in addition to comparative analysis with modern techniques.
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