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ABSTRACT Ovarian cancer (OC) is the second most common gynecological malignancy and the gyneco-
logical tumor with the worst prognosis. To try to improve this situation, Data Science technologies could be
a useful tool to help clinicians to know more about the disease. In our case, we are interested in exploring
OC data to discover relationships between clinical and genetic factors and the disease progression. For it,
we propose an analysis framework for simple and univariate statistical descriptions of features of different
types, based on bootstrap resampling. Foremost, we define the framework for metric, categorical, and dates
variables and determine what are the advantages and disadvantages of using different bootstrap resampling
strategies, based on their statistical basis. Then, we use it to perform a univariate analysis over an OC dataset
that allows to explore how is the disease progression, having platinum-free interval as indicator, in relation
to clinical and genetic features of different types. Also, it provides a first set of variables possibly relevant
for survival prediction. Results obtained show that some features have led to individual differences between
both platinum resistant (<6 months) and platinum sensitive(>6 months) groups. It can be concluded that
this could be an indicator that the database could be discriminatory for the hypotheses studied, though it is
convenient to make multivariate analyses to check how relationships among features are influenced.

INDEX TERMS Bootstrap resampling, data science analytics, genetic data, hypothesis test, ovarian cancer,
univariate analysis.

I. INTRODUCTION
Ovarian cancer (OC) is the second most common gyne-
cological malignancy, with an estimated annual incidence
of 225 000 women worldwide and 5-year survival rate of
approximately 45% [1], being the gynecological tumor with
the worst prognosis (140 000 exitus per year) [2]. Regard-
ing histology, epithelial tumors account for >90% of all the
ovarian carcinomas. These tumors include high grade serous
OC (HGSOC), which is the most common subtype, as well
as endometrioid, clear cell, and mucinous histologies. Stan-
dard treatment includes cytoreductive debulking surgery and
platinum based chemotherapy [2]. Despite optimal therapy,
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outcomes remain quite poor as the vast majority of the
patients are diagnosed in advanced stages of disease. More-
over, despite approximately 85% diagnosed OC initially
respond to chemotherapies, appearance of relapses is com-
mon and responses to subsequent therapies are generally
short-lived [3].

Data Science technologies refer to a group of tools used
to extract relevant information from datasets in a wide range
of applications, while Big Data refers to the application of
Data Science to large volumes of data [4]. These technolo-
gies have been strongly developed in the last years, and
almost all sectors over the world are currently turning to
use them extensively. Several applications and solutions in
academia and industry fall into areas such as finance, remote
sensing, transportation, education, marketing and advertising,
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or tourism [5]. In addition, Data Science along with Big Data
are leading healthcare towards a new era because in the past
decades there has been a massive growth in biomedical data,
such as genomic sequences, electronic health records (EHR),
and biomedical signals and images [6]. These applications
include areas like individual disease diagnosis, disease prog-
nosis, disease prevention and prediction, or design of tailored
health treatments based on lifestyle [7].

Overall, Data Science and Big Data can be viewed from
two different approaches. On the one hand, predictive analy-
ses and pattern recognition can be performed using machine
learning and deep learning algorithms. On the other hand,
analysis of databases from descriptive statistics can be
extremely useful, given the relevant information they can
contain [8]. These descriptive statistics are the simplest anal-
ysis in Data Science, and they involve the summarisation
and description through the use of basic statistical methods.
Normally, when we want to use Data Science and Big Data
technologies in a new application field, it is necessary to
perform an analysis of these basic statistics before going into
more advanced or sophisticated analysis such as machine
learning data models [9].

In healthcare and other many environments, databases
contain a number of features (variables) of different types,
namely, metric, categorical, date, and text. However, many
data processing and Data Science analyses are designed to
work with the same type of features in their input space.
For instance, linear discriminant analysis, regression anal-
ysis, or analysis of variance, as well as principal compo-
nent analysis, are purposed to use metric variables [10].
On the other hand, multiple correspondence analysis provides
us with instruments to scrutinize categorical variables [11],
whereas Bag of Words [12] or Latent Dirichlet Alloca-
tion [13] yield different ways to extract knowledge from text
analysis. It turns out in practical terms that, while necessary,
dealing with variables with different types in datasets can
have some undesired effects, including both the difficulty
to use the analysis methods with mixed variable types, and
the difficulty to provide unified exploration overviews of
datasets, specially when the number of features grows.

The focal point of this article is to perform an exploration
of OC data from a univariate descriptive statistics approach,
using a unified analysis framework for different type of fea-
tures, to try to discover relationships between clinical and
genetic factors and the disease progression. To accomplish
this purpose, we need to complete and expand the work
initiated in previous papers [8], [9], [14], where the use of
bootstrap resampling has been proposed as a framework to
unify the analysis of variables of different types. However,
these previous works have been limited primarily to a single
type of bootstrap resampling. In this article, we first deter-
mine what are the advantages and disadvantages of the use
of different bootstrap resampling strategies, based on their
statistical basis. Secondly, using the best resulting bootstrap
resampling strategy, we perform an initial univariate analysis
of an OC dataset to find relationships between clinical and

genetic features and the disease progression. At the same
time, this analysis provides a first set of features possibly
relevant for survival prediction.

The scheme of the article is as follows. In Section II,
we describe the OC database used in this work, which is
composed of two parts, namely, clinical data and genetic
data. Then, in Section III, we present an analysis framework
employed to unify univariate statistical descriptions of dif-
ferent types of features using bootstrap resampling, and we
expose and compare different bootstrap resampling methods.
After that, experiments with synthetic data and results with
OC data are provided in Section IV. Finally, discussion and
several conclusions are established in Section V.

II. DATABASE DESCRIPTION
The database used in this work was created as part of the
BRCAness initiative from the Innovation Oncology Labora-
tory of the Gynecologycal, Genitourinary and Skin Cancer
Department, at Clara Campal Comprehensive Cancer Center
(Madrid, Spain). The department has conducted a multicen-
ter observational study 1 since 2013 focused on the iden-
tification of biomarkers with a potential impact in clinical
practice. Approximately 300 OC patients have already been
included so far in this study, which is supported by 12 national
Health Care Institutions. Inclusion criteria referred both to
age (>18 years old) and disease status (Stage IC or superior).
Of all these patients, 54 cases were molecularly character-
ized by means of Next Generation Sequencing (NGS), either
whole-exome sequencing (WES) or predesigned targeted
gene panels (Onco80).

Extensive clinical information of each patient has been
collected including age at diagnosis, personal or familial
antecedents, BRCA and TP53 status, histological subtype,
grade and stage of the disease at diagnosis, anatomi-
cal location, presence of perineural or vascular invasion,
CA-125 biomarker evaluation, surgical procedures, informa-
tion related to the different treatment lines prescribed for each
patient (number of cycles, doses, associated toxicities, grade
of response and relapses), and date of the last clinical follow
up or exitus. Other important clinical features such as overall
survival (OS), progression-free survival (PFS), or platinum-
free interval (PFI) were also included. In total, the clinical
database consists of 54 entries (one for each patient) and
106 clinical features.

WES profiling (SureSelect Human All Exon V6) was
performed in 20 patients categorized according to extreme
degree of response to platinum based therapies either
in long-term (PFS>36 months, 11 patients) or short-term
(PFS<8 months, 9 patients) responders. Sequencing was per-
formed using genomic DNA extracted from either formalin-
fixed paraffin embedded tumoral tissue or peripheral blood
to ultimately define somatic and germinal variants. Subse-
quently, 34 patients showing intermediate degree of response

1An informed consent was obtained from all the study participants, and
the study was approved by the Institutional Review Board of HM Hospitals
Ethics committee.
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to platinum agents were screened using a Onco80 pre-
designed mutational panel which allows to identify genetic
alterations in 80 locus widely associated to cancer devel-
opment. Subsequent filtering of sequencing data revealed
7 077 genetic alterations for the studied patients (WES,
3 somatic mutations per patient on average; Onco80 panel,
201 alterations per patient on average). Most relevant genetic
variables included genetically altered loci, amino acids sub-
stitution, pathogenicity scores (Grantham’s distance, conser-
vation scores according to several in silico programs), or the
resultant genetic changes. A preliminary analysis of this
database has been previously presented in [15].

III. DATA ANALYSIS
In this work, we use an analysis framework for simple and
univariate statistical descriptions of features in databases.
Different data types in a database demand analysis of cate-
gorical, metric, date, and text features. Therefore, we state a
similar analysis framework for all of them, making results
more interpretable by the users (managers, clinicians, and
others). Specifically, this framework is established in terms
of hypothesis tests for differences in proportions, means, stan-
dard deviations, and probability density distributions between
two interest groups, using bootstrap resampling. There are
precedent applications of this analysis framework in customer
relationship management in the Spanish hospitality indus-
try [9], telecontrol event severity in maintenance forms from
Spanish high-power distribution grids [8], and organization
management in Spanish Red Cross [14].

From a database point of view, we work with simple two-
dimensional tables (electronic sheets). These tables have a set
of N observations, expressed as {En, n = 1, . . . ,N }, with a
data structure given by a concatenation of J features, denoted
as {Fj, j = 1, . . . , J}. Hence, the value of the jth feature of the
nth measure is written as Enj .
Each feature can belong to one type in a set of different

possible data types. In our case, we study in this work categor-
ical, metric, and date types. So, for each jth feature, we define
a type denoted by

Fj.type ∈ {C,M,D},

where special letters denote the three mentioned data types
considered in this work, respectively.

A. METRIC VARIABLES
ByMj we denote a feature Fj such that Fj.type =M. Its prob-
ability density function (pdf) is denoted as fMj (Mj). If we
establish two groups of observations, namely,G1 andG2, this
pdf distribution can be seen as the marginal distribution

fMj (Mj) = P(G1)fMj (Mj|G1)+ P(G2)fMj (Mj|G2),

where P(G1) and P(G2) are the a priori probabilities in each
group, and fMj (Mj|G1) and fMj (Mj|G2) are the conditional pdf
to each group for this feature.

For each group, it is also important to consider the mean
and standard deviation, denoted by

mG1
j , mG2

j ,

σ
G1
j , σ

G2
j .

To detect significant differences between both groups,
we can define several statistics as the differences in means,
standard deviations, and conditional pdfs, this is,

1mj = mG1
j − m

G2
j ,

1σj = σ
G1
j − σ

G2
j ,

1fMj = fMj (Mj|G1)− fMj (Mj|G2).

These statistics could be used to make hypothesis tests to
detect significant differences between the two groups. For
example, with the difference in means we could use Stu-
dent’s t-test, one of the classical hypothesis tests which is
used for comparing the means of two independent or paired
samples [16]. In this test, under the null hypothesis of zero
mean difference (same means in both groups), the t-statistic
is calculated applying the proper expression of the standard
error, which is distinct when the two groups have the same
variance or different variance. With this t-statistic and the
degrees of freedom, the p-value is obtained from the corre-
sponding t-distribution. After this, the p-value is compared
with the selected significant level and the null hypothesis is
rejected or not.

B. CATEGORICAL VARIABLES AND DATES
We denote by Cj a feature Fj with Fj.type = C. This feature
can have several possible categories among a discrete set
identified as Cj.value = {vkj , k = 1, . . . ,Kj}, where Kj is
the number of possible categories of Cj. The probability mass
function (pmf) of that categorical variable is given by P(vkj ),
which can be seen as the proportion of presence of categories
in a finite observed set. If we consider two groups, G1 and
G2, conditional pmfs for that variable are as follows,

P(vkj |G1), P(vkj |G2),

and we can define a statistic as the difference in conditional
pmfs according to

1P(vkj ) = P(vkj |G1)− P(vkj |G2).

To analyse variables with date types, this same approach
can be applied. To be precise, the day of the week, the day
of the month, the number of month, and the year can be
expressed as categorical variables.

The difference in conditional pmfs statistic could be used
to perform hypothesis tests. In this case, as difference of
conditional pmfs is basically a difference in proportions of
each category, a z-test, for example, could be used. This test
is very used in classical statistics for difference in proportions
to compare two samples [16]. To this effect, the z-statistic
is calculated under the null hypothesis of zero proportion
difference (same proportions in the two groups). Using this
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z-statistic, the p-value is extracted from the z-distribution.
Finally, the null hypothesis is rejected or not depending on
whether the p-value is higher or lower of the selected signif-
icant level.

C. HYPOTHESIS TEST
Difference-based statistics previously defined could be used
with many hypothesis tests. However, we are interested in
a hypothesis test with a similar form for any type of fea-
ture, stating a equivalent framework that makes results more
interpretable. This is the case of the following hypothesis
test that we define. Although it is indicated for difference
in proportions, it is valid for any of the difference-based
statistics without loss of generality:

• Null hypothesis,H0 :1P(vkj ) = 0, there is no difference
between groups for this category.

• Alternative hypothesis, HA : 1P(vkj ) 6= 0, there is
difference between groups for this category. If1P(vkj ) >
0 (1P(vkj ) < 0), then the proportion of this category is
larger in G1 (G2).

However, when there is difference between both groups,
we need to establish whether this difference is large enough
to support statistical significance. To deal with this, we cal-
culate an estimation of the pdf of the difference in pro-
portions, 1P(vjk ), employing bootstrap resampling methods.
We denote this pdf as f1P(1P). If the confidence interval
(CI) over the estimation of f1P(1P) overlaps 0, we do not
reject the null hypothesis, H0. Nevertheless, if the CI over
the estimation of f1P(1P) does not overlap 0, we reject the
null hypothesis, H0, and accept the alternative hypothesis,
HA. With this, if the CI over the estimation of f1P(1P) is
located at positive (negative) values, this category is a relevant
property in G1 (G2).
Whenever we reject or not a hypothesis, we could be

wrong. We call type I error or false positive as the rejection
of a true null hypothesis, i.e., when the null hypothesis is
true, but is rejected by our decision. Type II error or false
negative is defined, however, as the non-rejection of a false
null hypothesis, i.e., when the null hypothesis is false, but it
is not rejected by our decision.

D. BOOTSTRAP ESTIMATORS
Bootstrap resampling is a very standard statistical tech-
nique [17]. The idea is that if we want to make some inference
of a population in terms of some statistic whose calculation
is known, but its actual distribution is not easy to obtain
analytically, we can resample with replacement the sample
data and make inferences on the resamples.

In our case, given a sample dataset, we resample it with
replacement B times. We obtain B replications of the dif-
ference in proportions, 1P∗(vjk ), that are used to build a
histogram, which represents an estimation of f1P(1P) when
is conveniently scaled. From now on, this estimation of
f1P(1P) is written as f ∗1P(1P). We use f ∗1P(1P) to determine
the hypothesis test. All the steps of this method, which we

1 Steps to Calculate Method 1
Input: Dataset divided in two groups, G1 and G2, and

amount of resamples, B.
Output: Rejection or not of the null hypothesis, H0.
1: for b← 1 to B do
2: Resample G1 and G2, separately.
3: Obtain the proportions per category conditional to G1

and G2, P∗(vkj |G1) and P∗(vkj |G2).
4: Obtain the difference of proportions between G1 and

G2, 1P∗(vkj ) = P∗(vkj |G1)− P∗(vkj |G2).
5: end for
6: Obtain an estimation of f1P(1P), f ∗1P(1P), using the B

replications of 1P∗(vkj ) calculated previously.
7: Obtain the CI over f ∗1P(1P).
8: if CI over f ∗1P(1P) overlaps 0 then
9: Not reject the null hypothesis,H0, since the proportion

is the same between G1 and G2.
10: else if CI over f ∗1P(1P) doesn’t overlap 0 then
11: Reject the null hypothesis, H0, and accept the alterna-

tive hypothesis, HA, since the proportion is different
between G1 and G2.

12: if CI over f ∗1P(1P) > 0 then
13: P∗(vkj |G1) > P∗(vkj |G2), which means that this cat-

egory is a relevant property in G1.
14: else if CI over f ∗1P(1P) < 0 then
15: P∗(vkj |G1) < P∗(vkj |G2), which means that this cat-

egory is a relevant property in G2.
16: end if
17: end if

call Method 1, are synthesized in Algorithm 1. The asterisk
symbol * is used to identify the quantities that have been
estimated throughout the bootstrap process.

Apart from thisMethod 1, we find other two relevant meth-
ods in the literature, which we denominate here Method 2
and Method 3. Method 2 [17] is quite similar to Method 1,
with the difference that a z-score normalization is carried
out for each of the 1P∗(vkj ) of the B resamples. Hence,
if m1P∗ is the mean and σ1P∗ is the standard deviation of
the set {1P∗1(vkj ), . . . ,1P

∗B(vkj )}, we perform the following
normalization:

1̃P∗(vkj ) =
1P∗(vkj )− m1P∗

σ1P∗
,

0̃ =
0− m1P∗

σ1P∗
.

The steps to calculate this Method 2 are detailed in
Algorithm 2. Method 3 [18] is also similar to Method 1 pro-
posed previously, but it has a significant variation. In this
case, instead of resampling group G1 and group G2 inde-
pendently, we resample both groups G1 and G2 jointly, and
subsequently, we split randomly into new G1 and G2 groups.
In addition, it is taken into account the initial difference of
proportions between groups1P(vkj ) = P(vkj |G1)− P(vkj |G2).
The steps of this Method 3 are presented in the Algorithm 3.
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2 Steps to Calculate Method 2
Input: Dataset divided in two groups, G1 and G2, and

amount of resamples, B.
Output: Rejection or not of the null hypothesis, H0
1: for b← 1 to B do
2: Resample G1 and G2, separately.
3: Obtain the proportions per category conditional to G1

and G2, P∗(vkj |G1) and P∗(vkj |G2).
4: Obtain the difference of proportions between G1 and

G2, 1P∗(vkj ) = P∗(vkj |G1)− P∗(vkj |G2).
5: end for
6: Obtain m1P∗ and σ1P∗ of the set of the B replications of
1P∗(vkj ) calculated previously.

7: Obtain 1̃P∗(vkj ) and 0̃ using m1P∗ and σ1P∗ .
8: Obtain a normalised estimation of f1P(1P), f̃ ∗1P(1P),

using the B replications of 1̃P∗(vkj ).
9: Obtain the CI over f̃ ∗1P(1P).

10: if CI over f̃ ∗1P(1P) overlaps 0̃ then
11: Not reject the null hypothesis,H0, since the proportion

is the same between G1 and G2.
12: else if CI over f̃ ∗1P(1P) doesn’t overlap 0̃ then
13: Reject the null hypothesis, H0, and accept the alterna-

tive hypothesis, HA, since the proportion is different
between G1 and G2.

14: if CI over f̃ ∗1P(1P) > 0̃ then
15: P∗(vkj |G1) > P∗(vkj |G2), which means that this cat-

egory is a relevant property in G1.
16: else if CI over f̃ ∗1P(1P) < 0̃ then
17: P∗(vkj |G1) < P∗(vkj |G2), which means that this cat-

egory is a relevant property in G2.
18: end if
19: end if

In order to illustrate the functioning of these three meth-
ods and their differences in interpretation, we present a
simple example. We generate a sample dataset composed
of two groups, G1 and G2, using a Bernoulli distribution
with only one feature, F0, with F0.type = C, which we
denoted C0. This feature can have two possible categories,
C0.value ≡ {v00 = 0, v10 = 1}. In this example, we focus only
on category v10 = 1. G1 is generated with a Bernoulli
parameter p = 0.5, while G2 is generated with a set of
parameters p = {0.0, 0.1, 0, 2, . . . , 0.9, 1.0}. In Fig. 1 (a),
we show Method 1, where f ∗1P(1P) is calculated. The red
line indicates the 0 and the grey area represents the CI. The
only situation in which null hypothesis, H0, is not rejected is
when G2 is generated with p = 0.5. In this case, the CI over
f ∗1P(1P) overlaps 0. This is because, if G1 is generated with
p = 0.5, then P(v01|G1) ≈ 0.5, and if G2 is also generated
with p = 0.5, then P(v10|G2) ≈ 0.5. Therefore, we would
have that 1P∗(v10) ≈ 0.
An example of Method 2 and Method 3 is presented in

the Fig. 1 (b) and Fig. 1 (c), respectively. In Method 2,
we calculate f̃ ∗1P(1P), where red points indicate the 0̃.

3 Steps to Calculate Method 3
Input: Dataset divided in two groups, G1 and G2, and

amount of resamples, B.
Output: Rejection or not of the null hypothesis, H0.
1: Obtain the difference of proportions between G1 and G2,
1P(vjk ) = P(vkj |G1)− P(vkj |G2).

2: for b← 1 to B do
3: Resample G1 and G2, jointly.
4: Split randomly into 2 new G1 and G2 groups.
5: Obtain the proportions per category conditional to G1

and G2, P∗(vkj |G1) and P∗(vkj |G2).
6: Obtain the difference of proportions between G1 and

G2, 1P∗(vkj ) = P∗(vkj |G1)− P∗(vkj |G2).
7: end for
8: Obtain an estimation of f1P(1P), f ∗1P(1P), using the B

replications of 1P∗(vkj ) calculated previously.
9: Obtain the CI over f ∗1P(1P).
10: if CI over f ∗1P(1P) overlaps 1P(v

k
j ) then

11: Not reject the null hypothesis,H0, since the proportion
is the same between G1 and G2.

12: else if CI over f ∗1P(1P) doesn’t overlap 1P(v
k
j ) then

13: Reject the null hypothesis, H0, and accept the alterna-
tive hypothesis, HA, since the proportion is different
between G1 and G2.

14: if CI over f ∗1P(1P) < 1P(v
k
j ) then

15: P∗(vkj |G1) > P∗(vkj |G2), which means that this cat-
egory is a relevant property in G1.

16: else if CI over f ∗1P(1P) > 1P(v
k
j ) then

17: P∗(vkj |G1) < P∗(vkj |G2), which means that this cat-
egory is a relevant property in G2.

18: end if
19: end if

In Method 3, we compute f ∗1P(1P), and red points indicate
the initial difference of proportions between groups 1P(v10).
In the same way as in Method 1, in Method 2 and Method 3
only when G2 is generated with p = 0.5, null hypothesis H0
is not rejected.

Bootstrap resampling methods provide robust and easy-
to-obtain estimates. However, the rationalization of their
computational intensity and the revision of their theoretical
foundations in large data scenarios deserve more attention.
Some authors have raised in emerging concepts like the bag
of little bootstraps [19], which are receiving special attention
for Big Data analysis scenarios.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTS WITH SYNTHETIC DATA
In the previous section, a hypothesis test method has been
presented (Method 1) along with two different variants
(Method 2 and Method 3). However, we would like to deter-
mine the performance of each method in relation to the
number of false positives and false negatives, and how they
are distributed for each of the methods.
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FIGURE 1. Simple example performed with Methods 1, Method 2, and Method 3. (a) In Method
1, f ∗

1P (1P) is calculated for several proportion parameters, p, of group G2, where grey area
represents the CI and red line marks the 0. (b) In similar way, in Method 2, f̃ ∗1P (1P) is
calculated, where red points mark the 0̃. (c) Similarly, in Method 3, f ∗

1P (1P) is also calculated,
where red points mark the initial 1P(vk

j ).

A false positive occurs, in Method 1, when the CI over
f ∗1P(1P) does not overlap 0 while having to overlap it; In
Method 2, when the CI over f̃ ∗1P(1P) does not overlap 0̃ while
having to overlap it; And, in Method 3, when the CI over
f ∗1P(1P) does not overlap 1P(vkj ) while having to overlap
it. Similarly, a false negative can be observed, in Method 1,

when the CI over f ∗1P(1P) overlaps the 0 while not having to
overlap it; In Method 2, when the CI over f̃ ∗1P(1P) overlaps 0̃
while not having to overlap it; And, in Method 3, when the CI
over f ∗1P(1P) overlaps1P(v

k
j ) while not having to overlap it.

For scrutinizing the behavior of the three methods in terms
of false positives, we generate several one-feature sample
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FIGURE 2. Experiments with synthetic data that show the performance of Method 1 (first row), Method 2 (second row), and Method 3 (third row)
according to false positives. In the left column, false positives represented with blue crosses for each of the three methods, where N is the
sample size and p is the Bernoulli distribution proportion parameter for category v1

0 = 1 both in G1 and in G2. In the right column, a 3D view of
previous plots, with CI on the vertical axis depicted in grey and mean values depicted with a red line.

dataset composed of two groups, G1 and G2, using Bernoulli
distributions with two categories, v00 = 0 and v10 = 1. In par-
ticular, we increase, for several sample size, N , the Bernoulli
distribution proportion parameter, p, for the category v10 = 1
in both groups, G1 and G2, so that the difference in pro-
portions between groups, 1p, is always 0. Thus, for each
method, we calculate the CI over the estimation of f1P(1P),
i.e., f ∗1P(1P) for Method 1 and Method 3, and f̃ ∗1P(1P) for
Method 2, and check if overlaps 0, 0̃, and 1P(vkj ) for each
method, respectively. If it does not overlap, we have a false
positive.

In a similar way, for false negatives, we also generate
several one-feature sample dataset composed of two groups,
G1 andG2, using Bernoulli distributions with two categories,
v00 = 0 and v10 = 1. In this case, however, we increase, for
several sample size, N , the difference in proportion, 1p, for
the category v10 = 1 in both groups, G1 and G2. As for false

positives, we calculate the CI over f ∗1P(1P) for Method 1
and Method 3, and f̃ ∗1P(1P) for Method 2, and we check if
overlaps 0, 0̃, and1P(vkj ), respectively. If it overlaps, we have
a false negative.
Results of the experiments are presented in Fig. 2 and

Fig. 3. In detail, Fig. 2 shows the false positives of each of
the three methods (Method 1 in the first row, and Method 2
and 3 in the others, respectively). The left column of this
figure has three 2D plots in which the logarithm of the sample
size, N , is represented on one axis, the Bernoulli distribution
proportion parameter p of category v10 = 1 in each group (G1
and G2) is represented in the other axis, and false positives
are represented with blue crosses. The right column of Fig. 2
has three 3D plots in which the logarithm of the sample
size, N is represented on one axis, the Bernoulli distribution
proportion parameter p of category v10 = 1 in each group
(G1 and G2) is represented on other, and the CI over the
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FIGURE 3. Experiments with synthetic data that show the performance of Method 1 (first row), Method 2 (second row), and Method 3 (third row)
according to false negatives. In the left column, false negatives are represented with blue crosses for each of the three methods, where N is the
sample size and 1p is the the difference in proportions between groups G1 and G2. In the right column, a 3D view of previous plots, with CI on the
vertical axis depicted in grey and mean values depicted with a red line.

estimation of f1P(1P) is the vertical axis. The area formed
by the CI is depicted in gray, the mean value is depicted with
a red line, and the false positives are represented with blue
crosses.We can observe that false positives are not distributed
according to a specific pattern in any of the three methods,
and it exhibits a similar profile for both small or large N .
This is naturally consistent with the intuition that we establish
a confidence level in our CI (here 95%), so that the well-
known result of a number of experiment repetitions allows
us to visualise it in these plots.

Likewise, Fig. 3 shows the false negatives produced by
Method 1, Method 2, andMethod 3. The three 2D plots of the
left column of this figure have, on an axis, the logarithm of the
sample size,N , and on the other, the difference in proportions
1p between groups G1 and G2, along with the false positives
represented with blue crosses. The three 3D plots of the right
column of Fig. 2 have, on a horizontal axis, the logarithm of

the sample size, N , on the other horizontal, the difference in
proportions 1p between groups G1 and G2, and on vertical
axis, the CI over the estimation of f1P(1P). In a similar
way, the area formed by the CI is showed in grey, the mean
value is depicted with a red line, and the false negatives are
represented with blue crosses. In this case, however, we can
observe that false negatives are clearly concentrated in small
sample sizes N , which is also consistent with the well-known
effect of the power of the statistical-test being lower with
small-sized datasets.

Shapes of the CI in the 3D plots for each method are
different. However, for both false positives and false nega-
tives, each method has a very similar shape. In Method 1
andMethod 3, the CI width decreases with increasing sample
sizes,N , and in the ends it is clearly seen that the CI is smaller.
Though, CI ofMethod 1 ismuch noisier thanMethod 3. A dif-
ferent behavior is that of Method 2. In this case, shapes of the
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FIGURE 4. Experiments with synthetic data that quantify the number of false positives and false negatives introduced by each of the three
methods. (a) In the first row, CI of empirical distribution of the number of false positives for Method 1, Method 2, and Method 3, for a sample
of N = 83. In the second row, CI of empirical distribution of the number of false negatives for Method 1, Method 2, and Method 3, for a
sample of N = 83. (b) In the first row, CI of the difference of empirical distributions of the number of false positives for Method 1, Method 2,
and Method 3, for a sample of N = 83. In the second row, CI of the difference of empirical distributions of the number of false negatives for
Method 1, Method 2, and Method 3, for a sample of N = 83.

CI are more uniform and do not change when the sample size
N increases. This is due to the z-score normalization carried
out.

Regarding the quantity of false positives and false neg-
atives introduced by each of the three methods, it is not
straightforward to determine whether there is some differ-
ence by visual inspection of these graphs. For this reason,
we repeat the previous experiments several times and we

count the number of false positives and false negatives for a
sample size of N = 83. In the first row of Fig. 4 in Panel (a),
CI of empirical distribution of the number of false positives
are presented for Method 1, Method 2 and Method 3. We can
observe that the distribution of Method 1 is slightly more
skewed towards low values of the number of false positives
than the others, i.e., Method 1 introduces a lower number
of false positives. Similarly, in the second row of Fig. 4
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TABLE 1. Names of Relevant Features of the Clinical Part of the OC Database, Whether They are Statistically Significant (Some of Their Categories in
Categorical Types or Their Means and Standard Deviations in Metric Types), and a Description of Each One

in Panel (a), CI of empirical distribution of the number of
false negatives are shown for the three methods, though in
this case, we can observe that distribution of Method 1 and
Method 3 are quite similar. Comparison between distributions
of each method can be seen in more detail in Fig. 4 in Panel
(b). In this figure, it can be assessed that for false positives
(first row), Method 1 introduces less false positives, since the
difference distribution of the number of false positives for
Method 1 - Method 2 and for Method 1 - Method 3 is greater
than 0 in low values. However, for false negatives (second row
in Panel (b)), we can observe that the difference distribution
of the number of false negatives for Method 1 - Method 3
is around 0, which means that these two methods behave
similarly for false negatives. Accordingly, we can conclude
that Method 1 provides with a better behavior in terms of
false positives, and it will be the resampling method for our
analysis framework.

B. RESULTS WITH OC DATABASE
With the aim of finding relationships between clinical and
genetic factors and the OC disease progression, we explore,
in this part, the database presented in Section II. For
this, we make use of the analysis framework described
in Section III along with the Method 1 algorithm (see
Algorithm 1) as bootstrap resampling strategy.

Since the analysis framework requires difference-based
statistics, we separate the OC database into two interest
groups based on an indicator of disease progression. Con-
cretely, we use the platinum-free interval (PFI), which is
defined as the time (in months) between the last cycle of
platinum and evidence of disease progression [20]. In this
sense, depending on the length of platinum drugs sensi-
tivity, patients could be categorized as platinum resistant
(<6 months) or platinum sensitive (>6 months).

The analysis framework is implemented in custom soft-
ware [9] and coded in MATLAB (MathWorks Inc.). The
output of the software is f ∗1P(1P) for categorical variables,
and f ∗1m(1m), f

∗
1σ (1σ ), and 1f

∗
Mj

for metric variables. With

these estimations, we detect significant differences between
platinum resistant and platinum sensitive groups, namely:
(1) If the CI of f ∗1P(1P), f

∗
1m(1m), f

∗
1σ (1σ ), or 1f

∗
Mj

over-
laps 0, this denotes that the proportion, mean, standard devi-
ation, or pdf in platinum sensitive group is similar to that
of platinum resistant group, so this feature (or feature cate-
gory) has no particular bias or additional information; (2) If
the CI of f ∗1P(1P), f

∗
1m(1m), f

∗
1σ (1σ ), or 1f

∗
Mj

does not
overlaps 0 and it is located at positive values, this indicates
that proportion, mean, standard deviation, or pdf is larger
in platinum sensitive group, which means that this feature
(or feature category) is a relevant property of this group;
And (3), if the CI of f ∗1P(1P), f

∗
1m(1m), f

∗
1σ (1σ ), or 1f

∗
Mj

does not overlaps 0 and it is located at negatives values, this
denotes that proportion, mean, or standard deviation is bigger
in platinum resistant group, and therefore this feature (or
feature category) is a relevant property of this group.

All features of the OC database have been analysed with
a confidence level of 95%. However, some of them have
no clinical relevance, for example, the identifier of each
patient or the platform on which the genome has been
sequenced. For this reason, we focus on results obtained
from a set of features that expert clinicians consider most
relevant. Name of the each of these relevant features along
with a small description of each one and with information of
whether there are statistically significant differences between
groups for this features (some of its categories in categorical
type or its mean and standard deviation in metric type) are
presented in Table 1 and Table 2 for clinical and genetic parts,
respectively.

In the clinical part of the database, we find that
some features do not present statistically significant dif-
ferences between platinum sensitive and platinum resis-
tant groups. This is the case of the features that repre-
sent the presence of cancer in personal medical (Oncolog-
ical_History), the mutational status of BRCA1 and BRCA2
genes (Status_BRCA), the grade of the tumor (Grade),
the hyperthermic intraperitoneal chemotherapy (HIPEC)
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TABLE 2. Names of Relevant Features of the Genetic Part of the OC Database, Whether They are Statistically Significant (Some of Their Categories in
Categorical Types or Their Means and Standard Deviations in Metric Types), and a Description of Each One

FIGURE 5. Some features of the OC database analysed with the proposed framework: (a) Age at diagnosis of
patient; (b) Anatomical location of tumor; (c) Stage of the tumor; (d) Type of ovarian tumor; (e) Features
representing the number of times that reading a specific region, the variant allele has been read; (f) Genotype.

treatment (HIPEC_in_Surgery), the type of primary surgery
(Type_of_Primary_Surgery), or the chemotherapy treatment
after the primary surgery (Adjuvant). However, there are
many other features that do have significant differences
between the two groups. For metric features, for example,
the age at diagnosis (Age_at_Diagnosis) is significant for
the difference in means between both groups, being ages
greater for platinum resistant group. For the progression free
survival (PFS) and the overall survival (OS), there are also

significant differences in means between both groups, but,
in these cases, values are higher for platinum sensitive group.
In this three features, results are as expected. For categorical
features, we have quite a few examples: (1) In the information
about the presence of gynecological cancer in family medical
history (Gynecological_Family_History), the Yes category
is significant for the platinum sensitive group, and the No
category is for platinum resistant group; (2) The anatom-
ical location of the tumor (Anatomical_Location) has two
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significant categories, namely, Ovarian, which is significant
for the platinum resistant group, and Fallopian tubes, which
is significant for the platinum sensitive group; (3) In the type
of ovarian tumor (Histology_1st_Component), Endometri-
oid category is relevant to platinum sensitive group; (4) In
the existence of vascular or perineural invasion (Perineu-
ral_Vascular_Invasion),No is a relevant category of platinum
sensitive group; (5) The stage of cancer (Stage) has two
relevant categories, both significant for the platinum sensitive
group, namely, IC and IIIB. The first implies tumor growth
limited to the ovary with signs of malignancy (tumor cap-
sule ruptured or presence of malignant cells in peritoneal
fluid), while the later includes local spread to the peritoneal
cavity (peritoneal implants diameter <2cm); (6) The type of
surgery (Surgery) has two significant categories, specifically,
Primary, which represent the surgery as the first therapeutic
action since there is no initial treatment with chemotherapy,
and Interval, which represent the surgery as the therapeutic
action after chemotherapy treatment (neoadjuvant treatment).
The former is significant for platinum sensitive group and
the latter for platinum resistant group; (7) In the chemother-
apy treatment prior to primary surgery (Neoadjuvance), Yes
category is significant for platinum resistant group and No
category for platinum sensitive group; Or (8), the response
to neoadjuvant chemotherapy (Response_of_Neoadjuvance)
has one significant category, which is PR, means partial
response to neoadjuvant chemotherapy treatment. This cat-
egory is significant for platinum resistant group. In all these
features, as for metric features, results are as expected.

In the genetic part of the database, we find only two fea-
tures that present statistically significant differences between
platinum sensitive and platinum resistant groups. These are
the genotype feature (Genotype) and the variable which rep-
resents the average number each DNA alteration is read in
the genomic sequencing profiling (VarDepth). In the first
one, p_homo_var an unc_homo categories are significant
for platinum resistant group, while p_hetero is significant in
the sensitive subset. At this regard, p_homo_var reflects the
exclusively presence of variant alleles (not normal genotypes)
in the tumors under study and the association of such alter-
ations with platinum agents resistance could be explained by
the loss of wild type alleles (loss of heterozigosity) or genetic
variants gains/amplifications in the more advanced tumors.

With respect to VarDepth, the higher the sequencing depth
is for an specific genetic alteration, the greater the certainty
for assigning such variant as real and the possibility of consid-
ering it as a clonal or trunk alteration (opposite to passenger
genetic changes). The mean difference between resistant vs.
sensitive patients was significant, being, as expected, higher
for the platinum resistant set.

In Fig. 5, we show some of the features described above.
For representation purposes in categorical features, and for
significant categories, each f ∗1P(1P) is plot in thicker line
stile, and also the category label is displayed at the top of
it. Thereby, this allows us to scrutinize the most relevant
categories for each feature. For metric features, in addition to

representing f ∗1m(1m) and f
∗
1σ (1σ ), normalised f ∗Mj

(Mj|G1)
(blue) and f ∗Mj

(Mj|G2) are also represented (G1 corresponds
to platinum sensitive group and G2 to platinum resistant
group). Finally, the CI of 1f ∗Mj

is also represented, in
grey.

V. DISCUSSION AND CONCLUSION
In the first part of the article, with the aim of unifying the
univariate statistical descriptions of different types of fea-
tures, an analysis framework that consists of an hypothesis
test based in bootstrap resampling technique for different data
types have been proposed. Three boostrap resampling strate-
gies, called in the text Method 1, Method 2, and Method 3,
have been analysed in order to determine the performance
of each method. For this, it had been taken into account
the amounts of false positives and false negatives generated
in several experiments with synthetic data, concluding that
Method 1 have a better behavior.

It is a matter of discussion why we use a non-parametric
bootstrap resampling strategies if our dataset is small
(54 entries) and bibliography said that parametric boot-
strap methods work better, in general, with smaller sample
sizes [17], [21]. This statement is based on the fact that
whether the original small sample has outliers, but these are
absent from the population sampled, may be reproduced in
the simulated data. However, our database has been found to
have a lack of extreme outliers, therefore, it is not a problem to
use non-parametric bootstrap. In addition, parametric models
have the problem that use an inherently arbitrary choice of
model, since it is not easy to select the most appropriate
mathematical function a priori [21]. This is the main reason
for opting, in our case, for the use of non-parametric bootstrap
methods.

In the second part of the article, we make use of the pro-
posed analysis framework along with the Method 1 bootstrap
resampling technique to explore the OC database. The goal is
to try to discover relationships between clinical and genetic
factors and the disease progression. Specifically, we explore
relations between features and the platinum-free interval
(PFI), categorized into platinum resistant (<6months) or plat-
inum sensitive (>6 months) groups. Results show that, among
a set of relevant features indicated by clinicians, the clinical
part of the OC database has many more significant variables
than the genetic part.

The literature on OC and (Big) Data Science shows that
many works are related to genetic databases and prediction
of classifiers. Representative examples of this are the works
of Wang et al. [22] and Yasodha et al. [23]. The former,
based on gene expression data and prognostic data of OC
patients from The Cancer Genome Atlas dataset, used con-
ditional mutual information to construct a gene dependency
network to identify the gene signature that can predict the
prognostic risks of OC patients. The latter tried to detect
OC using Big Data analysis. Specifically, they proposed an
approach for identifying OC in a dataset of proteomic spectra,
first, by using an algorithm for feature selection, and second,
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by using this features for a classification task. Also, results
were compared with other classification methods, such as
Support Vector Machine (SVM), Multilayer Perceptron, and
Feed Forward Neural Network. However, few works have
been found in OC focusing on data quality.

In this work, some features have resulted individually in
differences between both platinum sensitive and platinum
resistant groups. In principle, this is an indicator that the
database could be discriminatory for the hypotheses stud-
ied, being this is a good sign. However, it is necessary to
make multivariate analyses. Features with relevant differ-
ences could be extremely correlated or redundant, and there-
fore the data classification could be reduced, or features can
be coinformative and provide much better classification in a
multivariate. In addition, in this work we have not analysed
a very relevant type of feature, which is the text of medical
comments.

It is highly convenient to expand the use of resampling
techniques for textual features. Furthermore, the principles
seen here should be scaled up to linear multivariate anal-
ysis, using analysis of principal components for subsets of
metric variables, analysis of multiple correspondences for
subsets of categorical variables, and the combination of both.
We explore these points in another work [24]. Exploring
non-linear multivariate analysis methods through emerging
approaches such as autoencoders, as well as machine learning
method specifically tailored to extract the most informative
features in a database and their interactions, should also be
addressed.
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