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ABSTRACT This paper proposes the wave peak frequency tracking methods based on the least squares
identification algorithm. The wave disturbance model is transformed into an autoregressive moving aver-
age (ARMA)model and a recursive extended least squares (RELS) algorithm is derived to identify the model
parameters by using the auxiliary model identification idea. Furthermore, a two-stage recursive extended
least squares (2S-RELS) algorithm is presented to improve the convergence speed by using the hierarchical
identification principle. A ship heading control system with the wave peak frequency tracker is built to
evaluate the effectiveness of the proposed algorithms. Finally, simulation results show that the proposed
algorithms can estimate the wave peak frequency accurately and the 2S-RELS algorithm can improve the
convergence speed effectively.

INDEX TERMS Wave frequency tracker, least squares, recursive identification, hierarchical identification.

I. INTRODUCTION
When a ship is sailing in a sea way, the manoeuvring char-
acteristics are influenced by external forces and moments
caused by waves [1]. In order to increase the safety and per-
formance of the ship control system, a filter based on thewave
peak frequency tracker is necessary to eliminate the effect
of the wave disturbances. To describe the wave spectrum in
different sea state accurately, both linear and nonlinear mod-
els were proposed [2], [3]. Among the proposed descriptions
of the wave spectrum, the 2nd-order linear wave disturbance
model which is applied to fit the shape of the PM spectrum
is widely used for filter design [4]. However, as the sea state
and navigation state vary constantly, the peak frequency of the
wave spectrum is modified by the wave encounter frequency
which varies with the wave state, the total speed of the ship
and the angle between the heading and the direction of the
wave, which leads to the difficulty of wave filter design [5].
Many methods have been proposed to estimate the wave
encounter frequency [6], [7]. Belleter et al. proposed a signal
based nonlinear wave encounter frequency estimator which
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is proved to be global exponential stable and the estimates of
the wave encounter frequency for both regular and irregular
waves confirmed the result by experimental analysis [8].

System identification is the theory and methods of
establishing the mathematical models, which are the basis of
system analysis, controller design, signal processing and fil-
tering [9]–[12]. The recursive least squares (RLS) algorithms
are suitable for on-line parameter estimation [13]. Wang et al.
studied the parameter identification problems for a class of
nonlinear stochastic systems with colored noise based on the
recursive least squares parameter estimation algorithms [14].
Ding proposed a combined state and least squares parameter
estimation algorithm for an observer canonical state space
system [15].

The auxiliary model identification idea is widely applied
to deal with the identification issues in the presence of the
unmeasurable variables in the information vectors [16], [17].
For example, Wang et al. proposed an auxiliary model
based recursive least squares algorithm for a class of linear-
in-parameters output error moving average systems [18]
and Chen et al. presented an auxiliary model based
extended stochastic gradient algorithm for multiple-input
multiple-output (MIMO) system using the multi-innovation
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identification theory [19]. Since the derived identification
model contains unmeasurable terms, the auxiliary model
based parameter estimate algorithms were presented to han-
dle this issue. The hierarchical identification principle is
introduced to transform a large-scale system into several ficti-
tious subsystems with small size to reduce the computational
burden [20], [21]. Guo et al. presented the auxiliary model
based hierarchical estimation algorithms for bilinear stochas-
tic systems with colored noises [22]. Ding et al. proposed
a three-stage recursive least squares parameter identification
algorithm for Hammerstein nonlinear system using the hier-
archical identification principle [23].

The wave filter is important for the dynamic position-
ing (DP) system [24], [25] and the ship autopilot system [26].
This is applied such that only the low-frequency (LF) com-
ponents of a ship are considered by the control system
and the high-frequency (HF) components, also known as
wave-frequency (WF) disturbance which can increase the
fuel consumption and the wear of mechanical equipment,
need to be prevented to enter the control loop [27]–[29]. Dur-
ing the past decades, many wave filter design methods have
been proposed [30]–[32]. Fossen and Perez gave an overview
of Kalman filter design for the DP and autopilot system [33].
Deng et al. proposed a modified adaptive observer based
backstepping control algorithm for the dynamic positioning
system [34]. Yang et al. presented a trajectory tracking robust
controller and disturbance observer to deal with external
disturbances and nonlinear terms [35]. In [36], an adaptive
disturbance observer is proposed to solve the robust trajec-
tory tracking problem for underwater vehicles in presence of
unknown external disturbances and parametric uncertainties.

An online identification method of the wave peak fre-
quency is proposed based on the recursive extended least
squares (RELS) algorithm by using the auxiliary model iden-
tification idea. Furthermore, a two-stage recursive extended
least squares (2S-RELS) algorithm is presented to reduce the
computational burden by using the hierarchical identification
principle. The main contributions of this paper are as follows.
• The wave disturbance model is expressed as an ARMA
model for the wave peak frequency identification and a
RELS algorithm is presented to identify the wave peak
frequency by using the auxiliary model identification
idea.

• A 2S-RELS algorithm is presented to reduce the compu-
tational burden and improve the convergence speed by
using the hierarchical identification principle.

The structure of this paper is as follows. Section II
describes the identification model of the 2nd-order lin-
ear wave disturbance model. Section III proposes a RELS
algorithm by using the auxiliary model identification idea.
Section IV derives a 2S-RELS algorithm by using the
auxiliary model identification idea and the hierarchical iden-
tification principle, respectively. The wave peak frequency
computation method based on the identified parameters is
given in section V. A ship heading control system is built by
using the wave peak frequency tracker and the effectiveness

of the proposed algorithms is verified by simulations in
Section VI. Finally, we offer some concluding remarks in
Section VII.

II. 2nd-ORDER LINEAR WAVE DISTURBANCE MODEL
Let us define some notations first. ‘‘X := A’’ stands for
‘‘A is defined as X ’’; In denotes an identity matrix of size
n × n; 1n denotes a n × 1 vector whose elements are all
unity; z denotes a uint forward shift operator with zx(t) =
x(t + 1) and z−1x(t) = x(t − 1). The 2nd-order linear wave
disturbance model due to the 1st-order wave disturbances is
usually described by the following transfer function:

ψω(s) =
Kωs

s2 + 2ξω0s+ ω2
0

v(s), (1)

where v(s) is the zero-mean Gaussian white noise process,
ψω(s) is the wave frequency motion due to the 1st-order
wave disturbances, Kω is a constant gain describing the wave
excitation intensity, ξ is a relative damping ratio and ω0 is
the wave peak frequency. For a ship moving with the forward
speed U , the wave frequency ω0 is modified by the wave
encounter frequency ωe according to

ωe = ω0 −
ω2
0

g
U cos(β), (2)

where β is the angle between the heading and the direction of
the wave, and g is the acceleration of gravity.
However, in practice, ψω(s) cannot be measured directly

since both the LF ship motion ψ(s) and HF wave induced
motion ψω(s) are included in the measurement of a compass
ψtot (s) as seen in Figure 1, that is:

ψtot (s) = ψ(s)+ ψω(s). (3)

In order to acquire the HF motion component data, a high-
pass filter hHP(s) could be applied to separate ψω(s) from
the measurement by using a filtered signal ψ̄ω(s). Therefore,
an approximation of ψω(s) can be obtained by:

ψ̄ω(s) = hHP(s)ψtot (s), (4)

where the cut-off frequency of the high-pass filter should
be lower than the wave encounter frequency. The high-pass

FIGURE 1. Illustration of total, LF, and HF motion of the ship heading.
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filter will weaken the LFmotion components generated by the
control input u(s) if the following condition can be fullfilled:

hHP(s)ψ(s) = hHP(s)hship(s)u(s)� 1. (5)

In order to establish the identification model, the 2nd-order
linear wave disturbance model can be expressed as an ARMA
model according to [2]

A(z−1)ψω(k) = B(z−1)v(k), (6)

where

A(z−1) := 1+ a1z−1 + a2z−2, (7)

B(z−1) := 1+ b1z−1. (8)

According to (1) and (6), we obtain the following
relationship:

ψω(t) = −a1ψω(t − 1)− a2ψω(t − 2)

+ b1v(t − 1)+ v(t). (9)

Replacing ψω(s) in (9) with its approximate value ψ̄ω(s),
we can obtain the following representation:

ψ̄ω(t) = −a1ψ̄ω(t − 1)− a2ψ̄ω(t − 2)

+ b1v(t − 1)+ v(t). (10)

Let y be equal to ψ̄ω and Equation (10) can be rewritten as:

y(t) = ϕTs (t)θ s + ϕn(t)θn + v(t) (11)

= ϕT(t)θ + v(t), (12)

where

θTs := [a1, a2] ∈ Rn1 ,

θn := b1 ∈ Rn2 ,

θT := [θTs , θn] ∈ Rn0 ,

ϕn(t) := v(t − 1) ∈ Rn2 ,

ϕTs (t) := [−y(t − 1),−y(t − 2)] ∈ Rn1 ,

ϕT(t) := [ϕTs (t), ϕn(t)] ∈ Rn0 ,

where θ s and θ are the parameter vectors to be identified,
ϕs and ϕ(t) are the information vectors.

The proposed parameter estimation algorithms in this
paper are based on this identification model in (12). Many
identification methods are derived based on the identification
models of the systems [37]–[41] and can be used to estimate
the parameters of other linear systems and nonlinear systems
[42]–[46], and can be applied to literatures [47]–[51] such
as chemical process control systems. The objective of this
paper is to develop new recursive identification algorithms to
estimate the parameters of the wave disturbance model and
calculate the wave peak frequency on-line.

III. THE RECURSIVE EXTENDED LEAST SQUARES
ALGORITHM
In this section, a RELS algorithm is proposed based on the
input-output representation of the 2nd-order linear wave dis-
turbance model by using the auxiliary model identification
idea.

Use the input-output data to define the stacked vector Y t
and the stacked matrix Φ t as

Y t :=


y(1)
y(2)
...

y(t)

 ∈ Rt , Φ t :=


ϕT(1)
ϕT(2)
...

ϕT(t)

 ∈ Rt×3.

According to (12), define a quadratic criterion function:

J1(θ ) := ‖ Y t −Φ tθ ‖
2 . (13)

Minimizing J1(θ ) and letting its partial derivative with respect
to θ be zero, we can obtain the recursive relations of comput-
ing θ̂ (t):

θ̂ (t) = θ̂ (t − 1)+ L(t)[y(t)− ϕT(t)θ̂ (t − 1)], (14)

L(t) =
P(t − 1)ϕ(t)

1+ ϕT(t)P(t − 1)ϕ(t)
, (15)

P(t) = [I3 − L(t)ϕT(t)]P(t − 1). (16)

However, the information vector ϕ(t) in (12) contains the
unmeasurable term ϕn(t), and then Equation (14) cannot
give the estimate θ̂ (t) directly. The solution is to replace the
unknown item ϕn(t) in ϕ(t) with its corresponding estimate
ϕ̂n(t).

From (12), we have v(t) = y(t) − ϕT(t)θ . Replacing ϕ(t)
and θ with ϕ̂(t) and θ̂ (t), respectively, the estimate of v(t) can
be computed by

v̂(t) = y(t)− ϕ̂T(t)θ̂ (t). (17)

Replacing ϕ(t) in (14)–(16) with its estimate ϕ̂(t), we can
derive the following recursive least squares relations:

θ̂ (t) = θ̂ (t − 1)+ L(t)[y(t)− ϕ̂T(t)θ̂ (t − 1)], (18)

L(t) =
P(t − 1)ϕ̂(t)

1+ ϕ̂T(t)P(t − 1)ϕ̂(t)
, (19)

P(t) = [I3 − L(t)ϕ̂
T(t)]P(t − 1). (20)

Combining (17)–(20), we can summarize the recursive
extended least squares (RELS) algorithm for the 2nd-order
linear wave disturbance model as

θ̂ (t) = θ̂ (t − 1)+ L(t)[y(t)− ϕ̂T(t)θ̂ (t − 1)], (21)

L(t) =
P(t − 1)ϕ̂(t)

1+ ϕ̂T(t)P(t − 1)ϕ̂(t)
, (22)

P(t) = [I3 − L(t)ϕ̂
T(t)]P(t − 1), (23)

ϕ̂(t) =
[
ϕs(t)
ϕ̂n(t)

]
, (24)

ϕ̂n(t) = v̂(t − 1), (25)
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TABLE 1. The flop amounts of the RELS algorithm.

ϕs(t) = [−y(t − 1),−y(t − 2)]T, (26)

v̂(t) = y(t)− ϕ̂T(t)θ̂ (t). (27)

The multiplications and additions of the RELS algorithm is
given in Table 1. The computation procedures of the RELS
algorithm in (21)–(27) are listed in the following.

1) Initialize: let t = 3, θ̂ (0) = 13/p0, P(0) = p0I3, v̂(t −
1) = 0, and p0 is taken to be a large number, e.g., p0 =
106.

2) Collect the output data y(t). Formϕs(t) and ϕ̂(t) by (26)
and (24), respectively.

3) Compute the gain vector L(t) by (22) and the covari-
ance matrix P(t) by (23).

4) Update the parameter estimate θ̂ (t) by (21).
5) Compute v̂(t) by (27).
6) Increase t by 1 and go to Step 2.

IV. THE TWO-STAGE RELS ALGORITHM
In order to improve the convergence speed, the ARMAmodel
of the wave disturbance is decomposed into two fictitious
subsystems and the 2S-RELS algorithm is applied to identify
the wave peak frequency. Define two intermediate variables:

y1(t) := y(t)− ϕn(t)θn, (28)

y2(t) := y(t)− ϕTs (t)θ s. (29)

Based on the hierarchical identification principle, and
from (6), we can obtain two subsystems:

y1(t) = ϕTs (t)θ s + v(t), (30)

y2(t) = ϕn(t)θn + v(t). (31)

From (30) and (31), define two quadratic criterion functions:

J2(θ s) :=
t∑
i=1

‖y1(i)− ϕTs (i)θ s‖
2, (32)

J3(θn) :=
t∑
i=1

‖y2(i)− ϕn(i)θn‖2. (33)

Minimizing the quadratic criterion functions J2(θ s) and
J3(θn), and letting their partial derivatives with respect to
θ s and θn be zero, we can obtain the recursive relations to
compute θ̂ s(t) and θ̂n(t):

θ̂ s(t) = θ̂ s(t − 1)+ Ls(t)[y1(t)− ϕTs (t)θ̂ s(t − 1)], (34)

Ls(t) =
Ps(t − 1)ϕs(t)

1+ ϕTs (t)Ps(t − 1)ϕs(t)
, (35)

Ps(t) = [I2 − Ls(t)ϕTs (t)]Ps(t − 1), (36)

θ̂n(t) = θ̂n(t − 1)+ Ln(t)[y2(t)− ϕn(t)θ̂n(t − 1)], (37)

Ln(t) =
Pn(t − 1)ϕn(t)

1+ Pn(t − 1)ϕ2n (t)
, (38)

Pn(t) = [1− Ln(t)ϕn(t)]Pn(t − 1). (39)

Substituting (28) into (34) and (29) into (37), we have the
following relations:

θ̂ s(t) = θ̂ s(t − 1)+ Ls(t)

× [y(t)− ϕn(t)θn − ϕTs (t)θ̂ s(t − 1)], (40)

θ̂n(t) = θ̂n(t − 1)+ Ln(t)

× [y(t)− ϕTs (t)θ s − ϕn(t)θ̂n(t − 1)]. (41)

Similarly, the right-hand sides of (40) and (41) contain the
unknown parameter vectors θ s and θn, and ϕn is the unmea-
sured noise term, so Equation (40) and (41) cannot give the
estimates θ̂ s(t) and θ̂n(t) directly. The solution is to replace θ s,
θn and ϕn(t) with their corresponding estimates. From (12),
we have v(t) = y(t)−ϕT(t)θ . Replacing ϕ(t) and θ with ϕ̂(t)
and θ̂ (t), respectively, the estimate of v(t) can be computed by

v̂(t) = y(t)− ϕ̂T(t)θ̂ (t). (42)

Replacing ϕn(t) and θn in (40) with their estimates ϕ̂n(t)
and θ̂n(t − 1), and replacing ϕn(t) and θ s in (41) with their
estimates ϕ̂n(t) and θ̂ s(t−1), we can summarize the 2S-RELS
algorithm for estimating θn and θ s of the 2nd-order linear
wave disturbance model as:

θ̂ s(t) = θ̂ s(t − 1)+ Ls(t)[y(t)

− ϕ̂n(t)θ̂n(t − 1)− ϕTs (t)θ̂ s(t − 1)], (43)

θ̂n(t) = θ̂n(t − 1)+ Ln(t)[y(t)

−ϕTs (t)θ̂ s(t − 1)− ϕ̂n(t)θ̂n(t − 1)], (44)

Ls(t) =
Ps(t − 1)ϕs(t)

1+ ϕTs (t)Ps(t − 1)ϕs(t)
, (45)

Ps(t) = [I2 − Ls(t)ϕTs (t)]Ps(t − 1), (46)

Ln(t) =
Pn(t − 1)ϕ̂n(t)

1+ Pn(t − 1)ϕ̂n
2(t)

, (47)

Pn(t) = [1− Ln(t)ϕ̂n(t)]Pn(t − 1), (48)

v̂(t) = y(t)− ϕ̂T(t)θ̂ (t), (49)

ϕTs (t) = [−y(t − 1),−y(t − 2)], (50)

ϕ̂n(t) = v̂(t − 1). (51)
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TABLE 2. The flop amounts of the 2S-RELS algorithm.

The computational efficiency of the 2S-RGELS algorithm is
shown in Table 2. The computation procedures of the 2S-
RELS algorithm in (43)–(51) are listed in the following.

1) Initialize: let t = 3, θ̂ s(0) = 12/p0, Ps(0) = p0I2,
θ̂n(0) = 1/p0, Pn(0) = p0, v̂(t−1) = 0, and p0 is taken
to be a large number, e.g., p0 = 106.

2) Collect the output data y(t). Form ϕs(t) and ϕ̂n(t)
by (50) and (51), respectively.

3) Compute the gain vector Ls(t) and the covariance
matrix Ps(t) by (45) and (46). Compute the gain vector
Ln(t) and the covariance matrix Pn(t) by (47) and (48).

4) Update the parameter estimates θ̂ s(t) and θ̂n(t) by (43)
and (44), respectively.

5) Compute v̂(t) by (49).
6) Increase t by 1 and go to Step 2.

The computational efficiency is usually counted by the
flop (the floating point operation). Here, an addition, a mul-
tiplication, a subtraction, a division all is a flop. In general,
a division is considered as a multiplication and a subtraction
is considered as an addition. Thus, the computational amount
of an identification algorithm can be expressed by adds and
multiplications. From Table 1 and 2, the total flop numbers
of the RELS algorithm and the 2S-RELS algorithm are N1 =

4n20+8n0 and N2 = 4n21+4n
2
2+6n0+4n1+n2, respectively.

The flop ratio of the RELS algorithm and 2S-RELS algorithm
is:

N1

N2
= 1+

2n1(4n2 − 1)+ n2
N2

> 1.

N1 > N2 means that the 2S-RELS algorithm is more
flop-efficient than the RELS algorithm, so the convergence
speed of the 2S-RELS algorithm is faster than the RELS
algorithm. For high order wave disturbance models, such as:
n1 = 10 and n2 = 9, we can get N1 = 1596, N2 = 887,
N1 − N2 = 709 and N1−N2

N1
≈ 44.42%. Compared with the

RELS algorithm, the computation of the 2S-RELS algorithm
is reduced by 44.42%.

V. WAVE PEAK FREQUENCY CALCULATION
Based on section II, section III and section IV, the wave peak
frequency can be calculated on-line from ai by transforming

the roots zi(i = 1, 2) of the discrete-time equation

A(z) = 1+ a1z−1 + a2z−2 = 0, (52)

to the continuous-time domain by

zi = exp (hsi) H⇒ si =
1
h
ln zi, (53)

where si (i = 1, 2) is the continuous-time pole locations and h
is the sampling time. This yields a complex conjugate pair s1,2
corresponding to the pole locations of the 2nd-order linear
wave disturbance model, that is:

s1,2 = −α ± jβ, (54)

where α = ξω̂0 and β = ω̂0
√
1− ξ2. Hence, the wave peak

frequency estimate is:

ω̂0 = |s1,2| =
√
α2 + β2. (55)

VI. SIMULATION RESULTS AND ANALYSIS
To acquire the input-output data for the wave peak frequency
identification, a ship heading control system is constructed
as seen in Figure 2. It is common to select the Nomoto model
for the ship heading control system design and the Nomoto
model can be written as the following transfer function:

r(s)
δ(s)
=

K
1+ Ts

, (56)

where T and K are the maneuverability indices of a ship and
δ is the input rudder angle. For the convenience of controller

FIGURE 2. Ship heading control system.
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design, let x := [ψ, r]T, u := δ and then, the state space
model can be obtained as:

ẋ = Ax+ Bu, (57)

where

A :=

[
0 1

0 −
1
T

]
, B :=

[
0
K
T

]
.

The linear quadratic regulator (LQR) method is applied to
design the controller. Define the quadratic cost function as:

J4(t) :=
1
2

∫ t

0
(xTQx+ uTRu)dt, (58)

where Q is the weighted matrix of the state variable and R
is the weighted value of the input variable. For minimizing
the cost function of the system, the optimal control input is
obtained as:

u = −R−1BTPx, (59)

where the positive definite symmetric matrix P should be
found by solving the algebraic Riccati equation:

ATP + PA− PBR−1BTP + Q = 0. (60)

To verify the validity of the proposed algorithms,
an observer is introduced and the model used for observer
design is:

ζ̇ω = ψω, (61)

ψ̇ω = −ω
2
0ζω − 2ξω0ζω + w1, (62)

ψ̇ = r, (63)

ṙ = −
1
T
r +

K
T
δ + wr , (64)

where ζω is the wave state and w1,wr are the Gaussian white
noises. By combining the ship model and the wave distur-
bance model, the measurement equation can be expressed as:

y = ψ + ψω + v, (65)

where v is the measurement noise. The resulting state space
model is:

ẋo = Aoxo + bu+ Ew, (66)

y = hTxo + v, (67)

where

xo := [ζω, ψω, ψ, r]T,

u = δ,

w := [w1,wr ]T,

Ao :=


0 1 0 0
−ω2

0 2ξω2
0 0 0

0 0 0 1

0 0 0 −
1
T

 , b :=


0
0
0
K
T

 ,

FIGURE 3. The identification results of wave peak frequency ω01 = 0.3.

E :=


0 0
1 0
0 0
0 1

 , hT :=
[
0 1 1 0

]
.

Neglecting the Gaussian white noise, an observer copying the
ship dynamic model is:

˙̂xo = Aox̂o + bu+ kT(y− ŷ), (68)

ŷ = hTx̂o, (69)

where x̂o and ŷ are the estimates of xo and y, respectively and
kT is the observer gain vector which can be chosen as:

k :=


K1
K2
K3
K4

 =

−2ω0(1− ξ )/ωc

2ω0(1− ξ )
ωc
K4

 ,
where ωc > ω0 is the filter cut-off frequency. The identified
wave peak frequency can be used to design the observer.

The simulation model is a cargo ship with K =

0.185(s−1),T = 107.3(s) [3]. According to [4], the relative
damping ratio ξ is chosen as 0.1 and the wave peak frequency
ω0i (i = 1, 2, 3) is selected as 0.3, 0.6 and 0.9, respectively.
The preset heading angle is set as 30◦. In practical, the nonlin-
ear feature of steering servomechanism must be considered
due to its unneglectable influence on the heading control
system. Hence, constraints were introduced for the rudder
servo model in the simulation. The maximum steering angle
is set as±35◦ and the maximum steering rate is set as±5◦/s.

The simulation results in Figures 3–5 show that both the
RELS algorithm and the 2S-RELS algorithm could estimate
the wave peak frequency accurately. To evaluate the conver-
gence speed, the RELS algorithm and the 2S-RELS algorithm
are compared under the same simulation conditions. As seen
in Figures 3–5, the 2S-RELS algorithm using the hierarchical
identification principle has faster convergence speed than the
RELS algorithm and can reduce the computational burden
effectively.

In order to evaluate the performance of the proposed algo-
rithms, a filter based on the wave peak frequency tracker
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TABLE 3. The wave peak frequency estimates and estimation accuracy of the 2S-RELS algorithm.

FIGURE 4. The identification results of wave peak frequency ω02 = 0.6.

FIGURE 5. The identification results of wave peak frequency ω03 = 0.9.

FIGURE 6. The simulation results of input rudder angle at ω01 = 0.3.

is activated at 5000s. Figures 6–8 show that the response
frequency and amplitude of the input rudder angle are reduced
obviously after 5000s.

The wave peak frequency estimates ω̂0i and the estimation
accuracy δi (i = 1, 2, 3) of the 2S-RELS algorithm are given
in Table 3, where δi = (1− |ω̂0i−ω0i|

ω0i
)× 100%. In the case of

FIGURE 7. The simulation results of input rudder angle at ω02 = 0.6.

FIGURE 8. The simulation results of input rudder angle at ω03 = 0.9.

the irregular waves, the estimation accuracy of the proposed
2S-RELS algorithm is more than 97%, which is higher than
the estimation accuracy in [8]. Hence, the proposed 2S-RELS
algorithm is more effective.

VII. CONCLUSION
In this paper, a RELS algorithm and a 2S-RELS algorithm
are proposed to identify the wave peak frequency. In order
to verify the performance of the proposed algorithms, a ship
heading control system is constructed using the wave peak
frequency tracker. An ARMA model is introduced as the
identification model by converting the HF wave disturbance
model to the input-output representation. A RELS algorithm
is proposed to track the wave peak frequency by using the
auxiliary model identification idea. Moreover, in order to
improve the convergence speed, a 2S-RELS algorithm is
proposed by using the hierarchical identification principle.
Numerical simulations are carried out to evaluate the perfor-
mance of the proposed algorithms. The simulation results ver-
ify the effectiveness of the proposed algorithms and compared
with the methods presented in other papers [6]–[8], the pro-
posed 2S-RELS algorithm has higher estimation accuracy.
The proposed schemes in this paper can be used to design the
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adaptive wave filter for ship autopilot and dynamic position-
ing systems. The proposed two-stage recursive extended least
squares algorithms can be extended to other linear systems
and nonlinear systems [52]–[56] and can be applied to other
fields [57]–[61] such as information processing and engineer-
ing application systems [62]–[66] and so on.
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