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ABSTRACT Computed tomography (CT) reconstruction for limited-angle projection data is an ill-posed
inverse problem, that often produces artifacts near the edges of an image. In this study, a hybrid minimization
model based on a nonlocal low-rank approximation and a prior image in a wavelet tight framework is
proposed to improve reconstructions from limited-angle projections. Low-frequency wavelet coefficients
of the reconstructed image were estimated using a nonlocal low-rank approximation and the l2 norm
minimization was applied to the difference between the high-frequency components of a prior image
and the reconstructed image. In addition, the alternative direction method of multipliers (ADMM) was
used for alternately minimization to solve two regularization terms which produce the most parameters.
Experimental results demonstrated that the proposed algorithm offers several advantages over conventional
iterative reconstruction techniques, including faster convergence, suppression of limited-angle artifacts,
noise reduction, and the preservation of edges and other image details. This study represents the first time
that nonlocal low-rank prior information has been applied to limited-angle CT.

INDEX TERMS Computed tomography (CT), limited-angle projections, low-rank approximation, prior
image, wavelet tight frame.

I. INTRODUCTION
Computed tomography (CT) with under-sampled projection
data has attracted increased attention in recent years. The
problem is generally ill-posed and includes both sparse pro-
jections, acquired by scanning an object at equal intervals in
the range of [0, 360◦], and limited-angle data collected over
restricted viewing angles (typically less than 180◦). Improv-
ing sparse tomography algorithms is of critical importance
as restricted scanning conditions are common in a variety of
practical applications [1], [2]. For example, industrial non-
destructive testing involves the use of CT to detect defects
in service pipelines [3], large target objects [4], cylindrical
structures [5], and other wide-angle fields for which only
limited-angle projections can be acquired [6]. An example
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of a limited scanning geometry is shown in Fig. 1. In these
configurations, the filtered back projection (FBP) [7] algo-
rithm used in commercial CT (as well as other conven-
tional techniques [8]–[10]) does not work well because the
projection data are incomplete. This often produces arti-
facts near the edges of a reconstructed image, as shown
in Fig. 2.

The reconstruction of limited-angle projections requires an
understanding of limited-angle CT algorithms. This process
can be represented as determining an attenuation coefficient
X (a CT image) from incomplete projection data corrupted by
noise:

p = AX + ξ (1)

where ξ ∈ RM denotes the noise, p ∈ RM is the projec-
tion vector, X ∈ RN is the image to be reconstructed, and
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FIGURE 1. Limited-angle CT scanning geometry. Here, S denotes the X-ray
source, O is the object rotation center, D is the detector, θ is a rotation
angle (<180◦), and X (i,j) represents the reconstructed image pixel value
at the position (i,j).

FIGURE 2. Reconstructed results from a simulation phantom that
includes two small porosities and three cracks, using the FBP algorithm at
a scanning angle of [0, 120◦]. Limited-angle artifacts are marked by the
red circles.

A ∈ RM×N (M � N ) denotes a system matrix for the X-ray
transform.

Since the limited-angle projection data are seriously
incomplete, the reconstruction problem is ill-posed, and
regularization must be included to stabilize the procedure
of limited-angle reconstruction. This regularization term
includes a priori information concerning the solution and
must be included in the reconstruction process. In this study,
the Tikhonov algorithm was applied, in which a regular-
ized solution Xµ was acquired in the following optimization
problem:

Xµ ∈ argmin
X∈ψ

{
1
2
‖AX − p‖22 + µF(X )} (2)

where ψ denotes a convex set, µ > 0 is a regularization
parameter, and F : ψ →[0, +∞] is a regularization (or
penalty) function (that may be either convex or non-convex).
The term ‖AX − p‖22 is a data fidelity term that controls error
and F(X ) is the penalty term or prior term that includes prior
knowledge of the object.

The primary objective of CT image reconstruction is to
generate high-resolution images or keep the special edges
through the selection of regularization functions. This can
be accomplished using various control metrics including the
total variation (TV) norm, which is used to preserve edges

and can be expressed as [11]–[13]:

‖X‖TV =
∑
i,j

√
(Xi,j − Xi−1,j)2 + (Xi,j − Xi,j−1)2 (3)

Regularization parameters of this type have been applied
during various phases of reconstruction in previous studies.
For example, Sidky et al. considered the sparsity of images
produced with a gradient transform and proposed the pro-
jection of convex sets total variation minimization (POCS-
TVM) algorithm, which can be expressed as [14]:

min ‖X‖TV s.t. ,X ≥ 0 (4)

In addition, projection data used in the practical limited-
angle reconstructions typically include noise. Thus, Eq. (4)
can be rewritten as:

min ‖X‖TV s.t. ‖AX − p‖22 ≤ δ
2, X ≥ 0 (5)

where δ denotes the noise level.
High-quality reconstructions can be produced using the

POCS-TVM algorithm for sparse-view sampling implement-
ed over a range of 360◦. However, TV-based models strug-
gle to suppress edge artifacts or distortions in images when
the scanning angle is restricted [15], [16]. As such, varia-
tions of TV-based models have been proposed to overcome
this limitation. One approach includes alternate minimization
in the limited-angle reconstruction problem. For example,
Lu et al. developed a new alternating optimization technique
for limited-angle reconstruction problems by combining a
gradient with the TV-norm [17]. Another approach involves
improving the TV algorithm in an iterative process. Lu et al.
proposed a novel iterative regularization algorithm in which
a data error term was used as the weight of a TV term,
to form a new objective function and improve limited-angle
reconstructions [18]. Chen et al. proposed the use of an
anisotropic TV norm (ATV norm) forminimizing image spar-
sity and reducing the imbalance between TV minimization
and anisotropic data fidelity constraints, due to incomplete
projections [15]. These techniques reduced limited-angle arti-
facts near the edges of the reconstructed image, but edge
distortion remained an issue.

TVmodels assume images to be piecewise constant, which
may degrade relevant pixel information [19]. For example,
Kumar and Shneider demonstrated the strong structural sim-
ilarity between different image patches and showed that
matrices composed of similar patches exhibit low-rank fea-
tures [20]. Dong et al. first introduced nonlocal low-rank
regularization into image reconstruction by exploiting non-
local self-similarity and group sparsity [21]. Sagheer et al.
used a nonlocal low-rank approximation and a TV model to
describe the global correlation and local smoothness of an
image, respectively. This technique preserved image details
and reduced noise in denoising of low-dose CT images [22].
Motivated by this approach, this study introduces nonlocal
low-rank regularization into the reconstruction process for
limited-angle CT, to suppress limited-angle artifacts.
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Over the past decade, wavelet frame-based algorithms
have been used for sparse-view CT image reconstruc-
tion [23]–[26]. The basic theory is that reconstructed images
can be sparsely approximated by wavelet coefficients in
a suitable tight wavelet frame. The corresponding uncon-
strained optimization problem can then be expressed as:

min
X∈ψ

1
2
‖AX − p‖22 + α ‖WX‖b (6)

where ψ is a convex set, α > 0 is a regularization parameter,
W denotes a wavelet frame, and b = 0 and b = 1 denote the
l0 and l1 norms, respectively. High-quality reconstructions
can then be produced from sparse-view projections. How-
ever, in the case that the scanning range is severely limited,
limited-angle artifacts will typically occur near the edges of
reconstructed images.

Some studies have attempted to overcome sparse data
issues by integrating a prior image into the reconstruction
process. For example, Chen et al. introduced the prior image
constrained compressed sensing (PICCS) algorithm, in which
each frame of a prior CT image sequence was reconstructed
using projections from sparse dynamic data [27]. PICCS
algorithm has been further used to improve the temporal
resolution of cardiac CT [28], [29] and the image quality for
CT dose reduction [30], [31]. The PICCS algorithm can be
expressed as [27], [32]:

Xα ∈ argmin{α ‖D1(X − X0)‖1 + (1-α) ‖D2X‖1},

s.t AX = p (7)

where D1 and D2 denote discrete gradient transforms, X0
represents a prior image, and α > 0 is a regularization
parameter. PICCS also includes the algebraic reconstruction
technique (ART), which can be used to estimate an image X
by iteratively bringing its current projection data (AX) closer
to measured values (p). The standard steepest descent algo-
rithm was then used to minimize the weighted summation of
the total variation. This process can effectively preserve edges
in a reconstructed sparse-viewCT imagewhen parameters are
chosen properly.

Nondestructive evaluation can also be performed using
a prior image, obtained from full-scan data, in combina-
tion with the FBP or POCS-TVM algorithms. For example,
pipelines are often fixed to a wall or floor and can only be
scanned from a limited angular range due to the restricted
geometry. However, follow-up detection can be performed
with a prior image acquired from full-scan data before the
pipeline was installed. The resulting limited-angle recon-
struction of the pipeline in service will be very close to the
prior image. The corresponding differences represent abnor-
malities, such as cracks, that can be used to identify problems.

This study proposes a new model based on a nonlocal
low-rank approximation, and a prior image acquired under
a wavelet tight framework, for limited-angle CT reconstruc-
tion. This algorithm is able to suppress artifacts near the
borders of an image while preserving edges. The associ-
ated objective function includes two regularization terms

and a data fidelity term. One of the regularization terms is
based on a nonlocal low-rank approximation that exploits
nonlocal self-similarity and group sparsity in a wavelet
tight frame. The other represents the difference between the
high-frequency component of the prior image and the recon-
structed image. A nonlocal low-rank approximation was used
to suppress limited-angle artifacts by restricting small low-
frequency wavelet coefficients. Unlike the PICCS algorithm,
in which prior image information is used for reconstruction,
the proposed technique preserves edges by minimizing only
the l2 norm of the differences between the high-frequency
components of the prior and reconstructed images. In addi-
tion, since regularization terms introduce more parameters,
the alternative direction method of multipliers (ADMM) [33]
was used to alternately solve the minimization problem.
Experimental results showed the proposed algorithm suc-
cessfully suppressed limited-angle artifacts and noise while
preserving edges in limited-angle CT reconstructions.

The remainder of this paper is organized as follows. The
wavelet tight frame and the nonlocal low-rank approximation
are introduced in Section II. The proposed reconstruction
model is derived and numerically solved in Section III. Repre-
sentative experiments are designed, and corresponding results
are analyzed, in Section IV. Finally, conclusions are provided
in Section V.

II. BASIC THEORY
A. THE WAVELET TIGHT FRAME
In this subsection, the wavelet tight frame is introduced as
follows. Let {bn}n∈N denote a sequence in the Hilbert space
H , where N is a countable set. If two constants (0<A< +∞
and 0<B< +∞) exist, such that:

A ‖a‖2 ≤
∑
n∈N

|〈a, bn〉|2 ≤ B ‖a‖2 (∀a ∈ H ) (8)

then the sequence {bn}n∈N represents a frame forH . The two
constants (A and B) are then the lower and upper bounds of
the frame {bn}n∈N , respectively. If A= B, the frame {bn}n∈N
is a tight frame for H and can be expressed as:

‖a‖2 =
∑
n∈N

|〈a, bn〉|2 (∀a ∈ H ) (9)

Tight frames include two associated operators. One is the
analysis operatorW , defined as:

W : a ∈ H → {〈a, bn〉} ∈ `2(N ) (10)

in which the sequence 〈a, bn〉 is a canonical frame coefficient
sequence. The other is a synthesis operatorW T given by:

W T
: {an} ∈ `2(N )→

∑
n∈N

anbn ∈ H (11)

The unitary extension principle states that sinceW TW = I
in the tight frame, I is an identity operator. Any image X can
then be represented by X = W T WX.

A general flowchart for two-dimensional discrete wavelet
transforms (2D-DWT) is shown in Fig. 3. The 2D image
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FIGURE 3. A flowchart of the two-dimensional discrete wavelet transform
(2D-DWT).

was first filtered in the horizontal direction (rows) to obtain
low-frequency (L) and high-frequency (H) sub-bands; these
sub-bands (L and H) were then filtered further in the vertical
direction (columns) to produce low-frequency (LL), horizon-
tal high-frequency (LH), vertical high-frequency (HL), and
diagonal high-frequency (HH) sub-bands.

Assuming the input image is given by X0, k represents the
order of the wavelet decomposition expressed as:

[X1
LL ,X

1
LH ,X

1
HL ,X

1
HH ] = WX0

[X2
LL ,X

2
LH ,X

2
HL ,X

2
HH ] = WX1

LL

M

[X kLL ,X
k
LH ,X

k
HL ,X

k
HH ] = WX k−1LL (12)

Wavelet reconstruction can be performed in a similar
manner [34], [35].

B. NONLOCAL LOW-RANK REGULARIZATION
The nonlocal low-rank regularization model is based on a
basic assumption that self-similarity is abundant in the signals
of interest [21], [36]. This assumption implies that a sufficient
number of similar patches can be found for any exemplar
patch of size

√
n ×
√
n at position j, denoted by xj ∈Rn. Let

Xj = [Rj0x,Rj1x, . . . ,Rjm−1x] ∈R
n×m denote a data matrix

composed of a set of image patches similar to xj (including xj
itself). This set of similar patches can then be formed using a
block matching technique in which the m patches closest to
xj (including xj itself) are selected using a k-nearest-neighbor
search method in a local window (e.g., 40× 40).
Under the assumption that these image patches exhibit

similar structure, the resulting data matrix Xj will be of low-
rank. In practice, the data Xj may be corrupted by noise
and can thus be modeled as Xj = Lj + Nj, where Lj and
Nj denote the low-rank and the Gaussian noise components,

respectively. The low-rank matrix Lj can then be estimated by
solving the following optimization problem:

Lj = argmin
Lj

rank(Lj), s.t.
∥∥Xj − Lj∥∥ 2

F ≤ δ
2
ω (13)

where ‖·‖2F denotes the Frobenious norm and δ2ω represents
the variance of additive Gaussian noise. Since the rank oper-
ator is non-convex and non-continuous, rank-minimization
is an NP-hard problem. The nuclear norm ||· ||∗ is often
used as a convex surrogate of rank(·). However, in this study,
a smooth but nonconvex surrogate of the rank was used to
improve performance. Specifically, the logdet(· ) function
given by [37]

L(Lj, ε) = log det((LjLTj )
1/2
+ εI )

= log det(31/2
+ εI )

=

r0∑
r=1

log(σr (Lj)+ ε) (14)

was included as a nonconvex surrogate. Here, ε is a small con-
stant, Lj ∈ Rn×m and 3 is a diagonal matrix whose non-zero
elements are eigenvalues of the matrix LjLTj . In addition,
LjLTj = U3U−1, where 31/2 is a diagonal matrix whose
non-zero elements are the singular values of the matrix Lj.
The term σr(Lj) denotes the r th singular value of Lj and
r0 = min(n, m). Dong et al. demonstrated that the logdet(·)
function offers better performance than the nuclear norm
in low-rank approximations [21]. The optimization problem
represented by (8) can then be rewritten as:

Lj ∈ argmin
Lj

∥∥Xj − Lj∥∥2F + λL(Lj, ε) (15)

where λ is a Lagrange multiplier. The matrix Xj can be
approximated with a low-rank matrix Lj in any exemplar
patch, by solving (15). The low-rank matrix Lj can fur-
ther enforce low-rank properties for each extracted exemplar
image patch, over a set of nonlocal similar patches. The global
objective functional based on nonlocal low-rank regulariza-
tion can then be written as:

X ∈ argmin
X ,Lj

‖AX − p‖22 + η
∑
j

{

∥∥∥R̃jx − Lj∥∥∥2
F
+ λL(Lj, ε)}

(16)

where R̃jx = [Rj1x,Rj2x, . . . ,Rjmx] denotes a datamatrix co-
mposed of data selected from the set of image patches similar
to xj. Nonlocal low-rank regularization can exploit both the
group sparsity of similar patches and the nonconvexity of rank
minimization, thus achieving better performance than nuclear
norm for low-rank approximations [21].

III. PROPOSED RECONSTRUCTION MODEL AND
NUMERICAL ALGORITHM
In this section, a novel reconstruction model is proposed for
solving the limited-angle problem, which is based on a nonlo-
cal low-rank approximation and a prior image under a proper
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FIGURE 4. Wavelet transform results for the original phantom in a Haar
wavelet tight frame.

FIGURE 5. Wavelet transform results for Fig. 2 in a Haar wavelet tight
frame.

wavelet tight frame. An efficient alternative minimization
technique is also presented for the proposed reconstruction
algorithm.

A. PROPOSED RECONSTRUCTION MODEL
Limited-angle reconstructions often include artifacts caused
by the incompleteness of projection data (see Fig. 2).
To address this problem, a prior image similar to the estimated
solution was embedded into the reconstruction model. It has
also been shown that reconstructed images can be accurately
approximated by sparse coefficients under a proper wavelet
tight frame. In this paper, the Haar wavelet was used for 2D
discrete wavelet transforms. The scale function was [1, 1] and
the wavelet function was [1, −1].
The original phantom, the image reconstructed using the

FBP algorithm (for the scanning range [0, 120◦]), and the
1-level wavelet decomposition are shown in Figs. 4 and 5.
The LL sub-band includes the low-frequency coefficients,
while the LH, HL, and HH sub-bands contain high-frequency
coefficients. As seen in the figures, the low-frequency

wavelet coefficients were degraded, and their sparsity in
the reconstructed images exhibiting limited-angle artifacts
was lower than that of the original phantom. To solve this
problem, a nonlocal low-rank approximation regularization
term was included to penalize smaller low-frequency wavelet
coefficients in reconstructed images and ensure their sparsity.
The edges of the reconstructed image were also distorted,
which corresponds to high-frequency wavelet coefficients.
This effect was corrected by exploiting a similar (prior) image
obtained in advance. The high-frequency components of the
estimated image, which is very close to the original phantom,
can then be used as prior information in minimizing the l2
norm of the difference between the high-frequency compo-
nent of the prior image and that of the reconstructed image.
This approach produced high frequency components (in the
reconstructed image) that were closer to those of the prior
image, thereby preserving edges in limited-angle reconstruc-
tions. In addition, the noise present in these high-frequency
components can be effectively suppressed by minimizing the
l2 norm.
Thus, both the sparsity of low-frequency wavelet coeffi-

cients and high-frequency information in the prior image can
be used to suppress limited-angle artifacts and noise, thereby
preserving edges and improving image quality. The following
minimization model is proposed to improve limited-angle
reconstructions:

argmin
X∈ψ

{
µ

2
‖(WX )H − (WX0)H‖22 + τNLR((WX )L)},

s.t. ‖AX − p‖22 ≤ δ
2 (17)

whereWX= ((WX)L ,(WX)H ), X0 is a prior image, X denotes
the reconstructed image estimation, ψ = {X ∈RN |X > 0}
denotes a convex set, (WX)H and (WX0)H denote the
high-frequency components of wavelet coefficients for the
images X and X0, (WX)L denotes the low-frequency com-
ponents of X , NLR(· ) is a nonlocal low-rank approximation
term, p ∈RM represents the projection data, A ∈RM×N (M �
N ) is the X-ray transform matrix for limited-angle data and
µ and τ are positive regularization parameters. The NLR(· )
term is given by:

NLR((WX )L)

=

∑
j

{

∥∥∥R̃j(WX )L − Lj∥∥∥2
F
+ λL(Lj, ε)}

=

∑
j

{

∥∥∥R̃j(WX )L − Lj∥∥∥2
F
+ λ

r0∑
r=1

log(σr (Lj)+ ε)} (18)

B. NUMERICAL ALGORITHM
The objective function in (17) must be alternately imple-
mented in image domain space and wavelet domain space,
which inevitably complicates the solution. However, this
problem can be converted into two sub-problems solved iter-
atively and alternately, as shown below [38]:

Sub-problem1 : argmin
X≥0

‖AX − p‖22 ≤ δ
2 (19)
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Sub-problem2 : argmin
X≥0

1
2

∥∥∥X − X̂∥∥∥2
2
+ τNLR((WX )L)

+
µ

2
‖(WX )H − (WX0)H‖22 (20)

In sub-problem 1, the estimated image X̂ can be
acquired using the simultaneous algebraic reconstruction
technique (SART) to ensure data fidelity. In sub-problem 2,
two regularization terms are utilized to further improve the
estimated image X̂ . An auxiliary variable Z = WX was also
included in the wavelet domain as Z = (ZL , ZH ). Equa-
tion (20) is then equivalent to the following minimization
problem:

argmin
X≥0

1
2

∥∥∥X − X̂∥∥∥2
2
+ τNLR(ZL)+

µ

2
‖ZH − (WX0)‖22

s.t. WX = Z (21)

The augmented Lagrange method can be used to con-
vert (21) into the following unconstrained optimization
model:

argmin
X≥0,Z

1
2

∥∥∥X − X̂∥∥∥2
2
+ τNLR(ZL)+

µ

2
‖ZH − (WX0)H‖22

+yT (WX − Z )+
ρ

2
‖WX − Z‖22 (22)

where ρ is a penalty parameter and y is a dual variable. Setting
u = (1/ρ)y and v = WX-Z produces the following:

yT v+
ρ

2
‖v‖22 =

ρ

2

∥∥∥∥v+ 1
ρ
y

∥∥∥∥2
2
−

1
2ρ
‖y‖22

=
ρ

2
‖v+ u‖22 −

ρ

2
‖u‖22 (23)

where ρ
2 ‖u‖

2
2 is a constant term that does not affect the loca-

tion of the minimal solution and can be ignored. When this
expression is introduced into (22), the optimizationmodel can
be represented as:

argmin
X≥0,Z ,u

1
2

∥∥∥X − X̂∥∥∥2
2
+ τNLR(ZL)+

µ

2
‖ZH − (WX0)H‖22

+
ρ

2
‖WX − Z + u‖22 (24)

The solution of this optimization problem was identified
using the ADMM algorithm to separate the variables X , Z ,
and u, generating three sub-problems corresponding to each
variable. An approximate expression for the k+1 iteration of
this alternately minimized sub-problem is given by:

X k+1 ∈ argmin
X k≥0

1
2

∥∥∥X k − X̂∥∥∥2
2
+
ρ

2

∥∥∥WX k − Z k + uk∥∥∥2
2
;

(24-a)

Z k+1 ∈ argmin
Z k

µ

2

∥∥∥Z kH − (WX0)H
∥∥∥2
2
+ τNLR(Z kL )

+
ρ

2

∥∥∥WX k+1 − Z k + uk∥∥∥2
2

(24-b)

uk+1 = uk − (WX k+1 − Z k+1). (24-c)

A closed solution to sub-problem (24-a) can be acquired
by finding derivatives of X and setting them to zero:

X k+1 = max(
X̂ + ρW T (Z k − uk )

1+ ρ
, 0) (25)

where W T denotes a reconstruction operator for the Haar
wavelet transform.

In sub-problem (24-b), ρ
2 ‖(WX )H − ZH + uH‖

2
2 +

ρ
2 ‖(WX )L − ZL + uL‖

2
2 =

ρ
2 ‖WX − Z + u‖

2
2 such that the

low-freque-ncy (ZL) and high-frequency (ZH ) components
of the wavelet coefficients Z are solved separately. The
sub-problem (24-b) can then be divided into two minimiza-
tion problems:

Low frequency:

Z k+1L ∈ argmin
Z kL

{τNLR(Z kL )+
ρ

2

∥∥∥(WX k+1)L − Z kL + ukL∥∥∥22}
(26)

High frequency:

Z k+1H ∈ argmin
Z kH

{
µ

2

∥∥∥Z kH − (WX0)H
∥∥∥2
2
+
ρ

2∥∥∥(WX k+1)H − Z kH + ukH∥∥∥22} (27)

Equation (26) can then be expanded as follows:

Z k+1L ∈ argmin
Z kL

τ
∑
j

{

∥∥∥R̃jZ kL − Lj∥∥∥2F + λL(Lj, ε)}
+
ρ

2

∥∥∥(WX k+1)L − Z kL + ukL∥∥∥22 (28)

where Lk+1j = argmin
Lj

∥∥∥R̃jZ kL − Lj∥∥∥2F + λL(Lj, ε) can be

optimized to obtain a low-rank matrix using the weighted
singular value threshold method [21]. In other words, low-
rank optimization is conducted for each exemplar image
patch of the low-frequency coefficient ZL . The corresponding
expression of the low-rank approximate solution for similar
patch groups is given by:

Lk+1j = U (3̃−
λ

2τ
diag(ωk ))+V T (29)

where U3̃V T is the singular value decomposition (SVD) of
the similar patch group Xj (Xj = R̃jZL), ωkr = 1/(δkr + ε) are
the weights in an ascending order (the singular value δr (Lkj )
is in descending order), and (x)+ = max{x, 0}.
After solving for each Lj, the expression in (28) is equiva-

lent to the following optimization problem:

Z k+1L ∈ argmin
Z kL

τ
∑
j

∥∥∥R̃jZ kL − Lj∥∥∥2F
+
ρ

2

∥∥∥(WX k+1)L − Z kL + ukL∥∥∥22 (30)
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A closed form solution of Z k+1L can be obtained for fixed
X k+1 and ukL as follows:

Z k+1L = (τ
∑
j

R̃Tj R̃j +
ρ

2
I )−1(

ρ

2
((WX k+1)L

+ukL)+ τ
∑
j

R̃jLj) (31)

where the term
∑
j
R̃Tj R̃j is a diagonal matrix in which each

element corresponds to an image pixel position whose value
is the number of overlapping patches covering the pixel loca-
tion. The term

∑
j
R̃jLj denotes the average result of collected

similar patches for each exemplar patch.
An approximate solution of (27) can be acquired using

first-order optimization condition as follows:

Z k+1H =
µ(WX0)H + ρ((WX k+1)H + ukH )

µ+ ρ
(32)

where, Z k+1 = (Z k+1L ,Z k+1H ).
The process of iterative minimization with respect to X ,

Z , and u is summarized as pseudo code below. Here, Kiter
denotes the maximum number of iterations and α is a relax-
ation factor in the SART algorithm, which controls the itera-
tion step-size. The implementation of iterative minimization
for the CT reconstruction model proposed in this paper is
presented below:

Proposed Algorithm

Initialization: α, ρ, τ , µ, λ, X1
= 0, Z1

=WX1, Kiter , k =
1.
For k = 1 to Kiter do:

(1) Update X̂ using SART:

X̂ k+1j = X kj + α

∑ pm−
N∑
j=1

amjX
k
j

N∑
j=1

a2mj

amj

∑
pm∈p

amj

m = 1, 2, . . . ,M
j = 1, 2, . . . ,N

Positivity constraint X̂ k+1j =

{
X̂ k+1j , X̂ k+1j ≥ 0
0, X̂ k+1j < 0

.

(2) Update X :
Determine X k+1 using (25).

(3) Update Z :
Solve for Z k+1 in (30) and (31).

(4) Update u:
Obtain uk+1 using (24-c).

end
Output XKiter .

IV. NUMERICAL VALIDATION
Two experiments were conducted, using simulated and mea-
sured data, to verify the performance of the algorithm devel-
oped in this study for limited-angle CT reconstruction. The
proposed technique was compared with SART, POCS-TVM,

PICCS, and the FBP model. The resulting performance was
evaluated in terms of the number of different scanning angles,
the stability of noise projections, CT reconstruction quality,
and convergence speed. All experiments were conducted on
a 3.40 GHz Intel(R) Core (TM) i5-7500 CPU processor with
8 GB memory.

The influence of certain factors, such as noise level,
reconstructed objects and projection data make it difficult
to optimize parameters and iteration numbers during CT
reconstruction. As such, these values were selected using
trial and error. In addition, the quantitative performance of
each algorithm was assessed using the root mean square error
(RMSE) [39], peak signal-to-noise ratio (PSNR) [40], and
mean structural similarity index (MSSIM) [41].

A. EXPERIMENT ON SIMULATED DATA WITH MIXED
POISSON-GAUSSIAN NOISE
The proposed algorithm was validated using a simulated
phantom containing two small porosities of different sizes
and three cracks in different directions (not included in the
prior image), as shown in Fig. 6. Geometric scanning parame-
ters for the simulated limited-angle CT reconstruction system
are listed in Table. 1. Projections were acquired by selecting
scanning ranges of [0, 120◦], [0, 100◦], and [0, 80◦] with 1◦

increments.
Measurement noise is inevitable in practical applications.

Thus, a mixed-noise model was included to more accurately
verify the stability of the proposed algorithm. Two noise
sources were added to the projection data (quantum X-ray
noise and electronic noise) to represent Poisson [42] and
Gaussian distributions [43], respectively. This approach was
used to effectively evaluate the performance of different algo-
rithms and verify the robustness of the model to varying noise
levels. In the simulation experiment, the Poisson noise photon
number was 5× 106 and the mean and standard deviation of
the Gaussian white noise were zero and 1% of the maximum
projection data, respectively.

The relaxation factor α was set to 0.25 for SART, PICCS
and POCS-TVM (here after abbreviated as TV for conve-
nience). Parameters for the proposed algorithmwere ρ = 0.8,
τ = 1, µ = 0.1, and λ = 0.01. The maximum number of
iterations was 1500 for all reconstruction algorithms.

Reconstruction results using each algorithm, with scan-
ning ranges of [0, 80◦], [0, 100◦], and [0, 120◦], are shown
in Fig. 7. The columns show reconstructed results from
FBP, SART, TV, PICCS, and the proposed algorithm. A red
arrow is included in each mage to indicate the region of
interest (ROI). It is evident that reconstructed image quality
deteriorates with decreased scanning range. Limited-angle
artifacts and edge distortion are also more obvious in the
FBP reconstructions. The SART images include a fair amount
of noise artifacts and feature distortion. In contrast, images
reconstructed by TV, PICCS, and the proposed algorithm are
mostly free of noise. However, minor distortions are visible
in the enlarged red rectangles of ROI1 and ROI2 for images
reconstructed using TV and PICCS algorithm, at scanning
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FIGURE 6. The (a) phantom, (b) prior image, and (c) absolute value of the difference
between the phantom and the prior image.

TABLE 1. Geometric scanning parameters of simulated CT system.

FIGURE 7. Reconstructed results from the simulation phantom for different scanning ranges using the FBP, SART, TV, PICCS,
and proposed algorithms. Scanning ranges in the first, second, and third rows were [0, 80◦], [0, 100◦], and [0, 120◦],
respectively. The scanning range in the lower left was [0, 360◦]. The display window was [0.2, 0.8]. The Poisson noise quantum
number was 5 × 106, and the standard deviation of the Gaussian white noise was 1% of the maximum projection data.

ranges of [0, 80◦] and [0, 100◦]. These distortions did not
occur in images reconstructed using the proposed algorithm,
which used prior images to preserve edges. In addition, crit-
ical information not included in the prior image (i.e., two
small porosities and three cracks) were reconstructed by our
algorithm. This analysis suggests the proposed technique not
only suppresses limited-angle artifacts and preserves edges,
but also retains information not included in the prior image.

Quantitative results for the reconstructed images are prov-
ided in Table. 2. As shown, compared with the SART,
TV, and PICCS algorithms, our technique achieved a lower
RMSE and higher MSSIM and PSNR values than SART, TV,
or PICCS, even at high noise levels. Fig. 8 demonstrates algo-
rithm convergence by plotting MSSIM, PSNR, and RMSE as
a function of iteration number for different scanning ranges.
Columns in the figure correspond to scann-ing ranges of
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TABLE 2. Quantitative results for different algorithms at varying scanning ranges.

FIGURE 8. Convergence curves for the different algorithms at various scanning ranges. The first, second, and third columns
display MSSIM, PSNR, and RMSE results with varying iteration quantities for scanning ranges of [0, 80◦], [0, 100◦], and
[0, 120◦].

[0, 80◦], [0, 100◦], and [0, 120◦]. It is evident the proposed
algorithm achieved the fastest convergence.

Finally, compared with the τNLR((WX )L) term, we con-
sidered the τ ‖(WX )L‖0 term in the model (17), and the hard
thresholding method was used to solve the l0 minimization
sub-problem, whichwas named the ‘‘l2-l0’’ algorithm accord-
ing to the regularization terms. Then, ‘‘our algorithm’’ was
named the ‘‘l2-NLR’’ algorithm. We tested the performance
of the l2-l0 algorithm for limited-angle CT reco-nstruction,
and the reconstructed results were compared with the l2-NLR
algorithm.

A simulated phantom (see Fig. 6) was utilized to test
the performance of the l2-l0 algorithm, and the scanning

parameters of the simulated limited-angle CT are given
in Table 1. The scanning ranges [0, 80◦], [0, 100◦], and
[0, 120◦] were investigated, and the number of projection
views were 81,101, and 121, respectively. The Poisson noise
photon number was 5×106, the mean and standard deviation
of Ga-ussian white noise were zero and 1% of the maximum
projection data, respectively.

The reconstructed results for the different scanning ranges
using the l2-l0 and l2-NLR algorithms are shown in Fig. 9.
The first, second, and third columns are the recon- structed
results for the scanning ranges [0, 80◦], [0, 100◦], and
[0, 120◦], respectively. From top to bottom, Fig. 9 sho-ws the
reconstructed results using the l2-l0 and l2-NLR algo-rithms
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TABLE 3. Quantitative results for different algorithms at varying scanning ranges.

TABLE 4. Geometric scanning parameters for the practical CT system.

FIGURE 9. Reconstructed results from the simulation phantom for
different scanning ranges using the l2 - l0 and l2 -NLR algorithms.
Scanning ranges in the first, second, and third columns were [0, 80◦], [0,
100◦], and [0, 120◦], respectively. The display window was [0.37, 0.59].

in each row. As shown in Fig. 9, the limited-angle artifacts
were better suppressed and the edges of the re-constructed
images were better preserved using the l2-NLR algorithm
for limited-angle reconstruction problems. However, some
noise is visible in the ROI1, ROI2, and ROI3 for images
reconstructed using the l2-l0 algorithm, at scanning ranges of
[0, 80◦] and [0, 100◦]. The reconstruction quality is char-
acterized quantitatively in Table. 3. As shown in Table 3,
compared with the l2-l0 algorithms, our algorithm achieved
a lower RMSE and higher MSSIM and PSNR values, even at
high noise levels.

B. EXPERIMENT WITH PRACTICAL DATA
The viability of the proposed algorithm for limited-angle
reconstructions was further validated using actual CT data
from amotor mock-up. Scanning parameters for this practical
limited-angle CT system are provided in Table. 4. Scanning
ranges of [0, 120◦], [0, 100◦], and [0, 80◦] were investigated
with 121, 101, and 81 projections, respectively. The recon-
structed image of the motor mock-up (with porosi-ty) and
the prior image (without porosity), used in both the PICCS
algorithm and our algorithm, are shown in Fig. 10.

FIGURE 10. (a) The reconstructed image of the motor mock-up with
porosity, using the FBP algorithm with a scanning range of [0, 360◦]. Also
shown are (b) the prior image without porosity and (c) the absolute value
of the difference between (a) and (b). The display window is [0.1, 1.0].

In this set of experiments, the relaxation factor α was set to
0.28 for the SART, TV, and PICCS algorithms. Parameters for
the proposed technique were ρ = 0.8, τ = 1, µ = 0.1, and
λ = 0.01. The maximum number of iterations in the outer
loop of all reconstruction algorithms was 2000.

Reconstruction results for the five algorithms using actual
projection data with different scanning ranges, are shown
in Fig. 11. The ROI is labelled by a red rectangle and a
red arrow. As shown in Fig.11, the slope artifacts in the
results reconstructed using PICCS and our algorithm, can be
suppressed further. The edges labelled by red arrow 1 and red
arrow 2 could also be better preserved in the limited-angle
problem. The enlarged ROI in Fig. 11, labelled by the red
rectangle, demonstrates that noise suppression in the images
reconstructed using our technique is superior to that of the
PICCS, TV, or SART algorithms. The four porosities, which
were not included in the prior image, could also be recon-
structed more accurately from limited-angle projection data.
However, some nonuniformity is presented in the inner part of
the images shown in Fig. 11, as the scanning range increases.
The reason is that these five algorithms are sensitive to ring
artifacts which are caused by inconsistent pixel response of
the flat panel detector.

We considered the image reconstructed using the FBP
algorithm, with a scanning range of [0, 360◦], to be the
reference image. Quantitative results for the reconstructions
are provided in Table. 5. As shown, the proposed algorithm
achieved a lower RMSE and higherMSSIM and PSNR values

VOLUME 9, 2021 24625



N. Xu et al.: Nonlocal Low-Rank and Prior Image-Based Reconstruction in a Wavelet Tight Frame

FIGURE 11. Reconstructed images of the motor mock-up for different scanning ranges, using the FBP, SART, TV, PICCS, and
proposed algorithm. Scanning ranges in the first, second, and third rows were [0, 80◦], [0, 100◦], and [0, 120◦], respectively.
The ROI is labelled by the red rectangle and the red arrow. The display window is [0.4, 1.4].

FIGURE 12. Convergence curves for the different algorithms at various scanning ranges. The first, second, and third columns
display MSSIM, PSNR, and RMSE results, respectively, with varying iteration quantities for scanning ranges of [0, 80◦], [0,
100◦], and [0, 120◦].
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TABLE 5. Quantitative results for varying algorithms and scanning ranges.

than SART, TV, or PICCS. Fig. 12 demonstrates algorithm
convergence by plotting MSSIM, PSNR, and RMSE as a
function of iteration number for different scanning ranges.
Columns in the figure correspond to scanning ranges of [0,
80◦], [0, 100◦], and [0, 120◦]. It is evident that the proposed
algorithm achieved the fastest convergence.

V. CONCLUSION
In this study, a minimization model based on nonlocal low-
rank and prior images under a wavelet framework was
proposed to suppress limited-angle artifacts in CT recon-
structions. In addition, ADMM was included to provide an
alternative and effective solution to the minimization prob-
lem. Experimental results showed our algorithm can suppress
limited-angle artifacts in the reconstructed images, effec-
tively recover edge information, and produce high-quality
reconstructed images from limited-angle data. In addition,
critical information not included in the prior image was pre-
served. As shown in Fig. 8 and Fig. 12, the proposed algo-
rithm also achieved faster convergence. These experiments
only included fan-beam limited-angle CT projections, and
the parameters and the number of iterations were selected by
trial and error. In the future, we plan to study other applica-
tions of our model and address the optimization of imaging
parameters.
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