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ABSTRACT In this study, a novel method for generating multiple-choice tests is presented, which extracts
the required number of tests of the same levels of difficulty in a single attempt and approximates the difficulty
level requirement given by users. We propose an approach using parallelism and Pareto optimization for
multi-swarm migration in a particle swarm optimization (PSO) algorithm. Multi-PSO is proposed for
shortening the computing time. The proposed migration of PSOs increases the diversity of tests and controls
the overlap of extracted tests. The experimental results show that the proposed method can generate many
tests from question banks satisfying predefined levels of difficulty. Additionally, the developed method
is shown to be effective in terms of many criteria when compared with other methods such as manually
extracted tests, a simulated annealing algorithm (SA), random methods and PSO-based approaches in
terms of the number of successful solutions, accuracy, standard deviation, search speed, and the number
of questions overlapping between the exam questions, as well as for changing the search space, changing
the number of individuals, changing the number of swarms, and changing the difficulty requirements.

INDEX TERMS Multiple-choice tests, multi-swarm optimization, multi-objective optimization, parallelism.

I. INTRODUCTION

Education is an essential element for the betterment and
progress of a country [38]. Today an important challenge
that higher education faces is reaching a stage to enable
universities to offer having more efficient, effective and accu-
rate educational processes. An important aspect of education
is how to evaluate the learners’ progress. There are many
methods such as oral tests or writing tests to evaluate stu-
dents’ knowledge and understanding about subjects. Due to
the scalability and ease of human resources, writing tests are
used more widely for end-of-term evaluations, where a large
number of students must be considered. Writing tests can
be either descriptive, in which students have to fully write
their answers, or multiple-choice tests, in which students pick
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one or more choices for each question. Although descriptive
exams are easier to create at first, they then need a great
deal of time and effort from human graders. Multiple choice
tests, on the other hand, are harder to create at first as they
require a large number of questions for security reasons,
as noted in Ting et al. [8]. However, the grading process
can be extremely fast, automated by computers, and free
of the bias that can found with human graders. Recently,
many researchers have thus invested efforts to make com-
puters automate the process of creating multiple-choice tests
using available question banks [4], [6], [10], [11]. The results
have been shown to be promising and thus make multiple-
choice tests more feasible for examinations. Although these
works have advantages, they still exhibit some drawbacks.
First, using a question bank consisting of a large number
of items or generating a test that requires many questions is
computationally expensive, which leads to poor performance.
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Second, the questions selected randomly may not be evenly
spread across the question bank, leading to a lack of diversity.
Third, if the question bank consists of multiple-choice items
based on objective difficulty levels, then manually choosing
items to meet any requirement will take a long time, while
the tests produced by a random generation process may not
always meet the related requirements. The issue here is gener-
ating tests with a single objective, where the level of difficulty
is the objective. In this regard, Bui et al. [18] proposed the use
of Particle Swarm Optimization (PSO) to generate tests by the
approximating difficulties to the levels required by users. The
tests are generated from question banks that consist of various
questions with different difficulties. The difficulty value of
each question is judged and adapted based on users via pre-
vious real-life exams. The results of their experiments show
that PSO gives the best performance with respect to most of
the criteria. However, their work only focused on solving a
single-swarm single-objective of extracting tests based on the
user-defined difficulty level. In practice, when it comes to
final exams educational institutions need each student to take
a different exam at the same time, to avoid cheating, but all
the exams should have the same difficulty, for fairness. This
is one of the challenges for generating multiple-choice tests.
Furthermore, extracting multiple-choice tests is categorized
as a multi-constraint optimization problem based on con-
straint satisfaction which is NP-hard in [9]. There are many
studies which have attempted to solve this problem. However,
most of the proposed methods only focus on solving this
problem for particular institutes or schools, and deploying
these approaches for others is a significant challenge.

For the reasons outlined above, the current paper aims at
coming up with solutions to the issue of extracting multiple-
choice tests with similar difficulty for multiple students at
the same time. With traditional methods such as random
search extraction, which most software uses, it is impossible
to find the solution to this problem, and the exhaustive search
method used requires a very long processing time. There-
fore, based on the results of previous research [21], [22],
[24], [26] [23], [28], [30], [32], this paper proposed parallel
models of heuristic optimization techniques to optimization
problems such as PSO to solve the problem of extracting
multiple-choice tests from the question banks. Each thread
is an algorithm for extracting a test (a swarm), so to extract
multiple tests it requires multiple threads to run in parallel.
Each swarm now corresponds to a thread and the information
exchange happens by chance between swarms in order to
improve the convergence and diversity of solutions. Based
on [20], we propose a method of using migration theory to
allow individual migration between swarms to help the weak
ones to increase their abilities to find better solutions, using
the method in Lewis [25]. In addition, his combined with the
evaluation of objective difficulty can create tests not only of
good quality but also of abundant quantity, making them more
useful in practice.

In this paper, we propose a method to extract k number
of different tests from a question bank in one run. This is an
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NP-hard combinatorial optimization problem that chooses k
tests with the same level of difficulty and guarantees fewer
duplicate questions than or an equal number of duplicate
questions to an allowed threshold (as described in section III).
The main contributions of this paper are outlined as follows:

i We propose a method to deal with the problem of
extracting k number of tests simultaneously using
multi-PSO.

ii We combine a parallel version of multi-swarm opti-
mization and the theory of migration of dualistic econ-
omy to reduce the computing time, increase diversity
of tests and control the overlap of extracted tests.

iii We experiment with the proposed extraction method
by adjusting the number of individuals and number
of swarms. Then we report the results with respect to
several essential criteria, including time, stability, and
the standard deviation.

The rest of this paper is organized as follows. Some related
works are discussed in Section II, while the proposed method
is described in Section III. Section IV analyzes the experi-
mental results of this study. Finally, Section V provides some
conclusions and suggests some potential directions for future
research.

Il. LITERATURE REVIEW

A current trend is to use simplified metaheuristic algo-
rithms to deal with complex optimization problems. Some
of the most well-known algorithms are the Genetic Algo-
rithm (GA), Particle Swarm Optimization (PSO), as reported
in [27], [29], [30], [33].

PSO [1], [2] is an optimization algorithm inspired by the
movement of organisms in a bird flock [1] or fish school [3],
and each member of the flock or school is called as a particle.
PSO is a meta-heuristic as it makes few or no assumptions
about the problem being optimized and can search very large
spaces of candidate solutions. All particles will fly in a real-
value D dimension search space in an attempt to uncover ever-
better solutions to the problem of interest.

Every particle has two attributes: current position X and
velocity V. All particles also share two values: the best loca-
tion in the search space that it has found so far (Pp.s ), and
the best location found to date by all the particles in the pop-
ulation (Gpey). At each iteration of the algorithm, particles
will update their position and velocity. The magnitude and
direction of their velocity is impacted by their velocity in
the previous iteration of the algorithm and the location of
a particle relative to the location of its Ppeg, and the Gpeg.
Thus, PSO is similar to GA, although while GA [37] uses the
crossover and mutate functions, PSO uses a function that is
the current particles use the experience of previous particles
and the social influence of their peer groups.

The following algorithm shows the detail of PSO:

The velocity update function

VH—] =V +cir (P[best _Xt) + (thest _Xt)
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FIGURE 1. The complete flowchart that applies the parallelized migration method to the PSO algorithm.

The position update function

Xl+l — Xl + VT-‘rl

Many researchers have proposed numerous methods to
extract multiple-choice tests from a question bank, such as
randomization [4]-[6] and shuffling algorithm [10], [11].

where r14, 124 1s a function that returns a random number in However, one of the challenges for generating multiple-

the range (0,1) and c1, ¢, are constant weights.
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choice tests is the difficulty of the candidate tests. The tests
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TABLE 1. Question bank.

CQ |01 |02 [03 [04 |05 |06 |07 |08 |09 |10
DL 0302|0807 ]04]06]05]08]02]03

for all students should have the same difficulty for fairness.
However, it can be seen that generating many tests with the
same level of difficulty is an extremely hard task, even in
the case of manually choosing questions from a question
bank, and so the success rate of generating multiple-choice
tests satisfying a given difficulty is low and time-consuming.
Therefore, to speed up the process and improve the quality of
the results, some authors apply local search algorithms such
as Tabu Search (TS) [9] and Simulated Annealing (SA) [7] to
generate tests with the use of computers and approximate the
resulting difficulties to the required ones. Some authors also
apply GA [12], [13] to solve the problem of extracting tests,
and the experimental results showed that such approaches
can reach approximately a 100% success rate, and GA is
also faster than SA for this task. PSO can generate multi-
ple tests by optimizing a fitness function which is defined
based on multi-criteria constraints [14]-[19]. However, most
of the research for single-objective single-solution or multi-
objective single-solution extraction of tests are only based
on question banks with the subjective difficulty levels for
the questions. These can only extract tests which have over-
all subjective difficulty levels of the questions equal to the
difficulty requirements of the users. In addition, extract-
ing multiple-choice tests is categorized as a multi-constraint
optimization problem with regard to constraint satisfaction,
which is NP-hard [9]. There are many studies, which have
tried to solve this problem, but most of the proposed methods
only focus on solving it for particular institutes or schools,
and so deploying them elsewhere remains a big challenge.

Therefore, in this work, we propose an approach that uses
Multi-Swarm Particle Swarm Optimization (MPSO) for gen-
erating k tests with a single-objective. Each swarm, in this
case, is a test candidate and it runs on a separate thread.
The migration happens randomly, by chance. We also aim to
improve the accuracy and diversity of the solutions.

Ill. PROBLEM FORMULATION

This section is divided into five subsections. They cover the
problem statement of extracting tests, the fitness function,
the overlap in problem solution, the PSO-based method for
the problem of extracting tests, and the improvement by using
multi-swarm migration and the parallelism of multi-swarm
migration in PSO for the problem of extracting tests.

A. PROBLEM STATEMENT

In our previous work [18] we proposed a PSO-based
method for multiple-choice test generation, which is a
single-objective single-solution approach. In this paper,
we introduce a multi-swarm approach of multiple-choice tests
generation by combining of PSO and a parallel version of
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multi-swarm based on the theory of migration of dualistic
economy to accelerate the computing time, increase diversity
of tests and control their overlap.

The problem of generating k multiple-choice tests is to
produce k tests in one attempt. The levels of difficulty for
all produced tests in the same attempt must be equivalent and
approximate to the specific difficulty level requirement given
by the user (denoted by DLg). The question banks and each
question in a bank come with pre-assigned objective difficulty
levels by users, and the objective levels of difficulty have
a continuous value domain (0,1]. Additionally, an objective
difficulty level is assessed based on feedback collected from
test-takers that are defined by (1).

Extracting k tests must not only solve the aforementioned
requirements for the levels of difficulty given by users, but
also arrange logical constraints that relate to the triangle
elements (Y, Z, DLRr) where:

Y is the test information matrix to generate a test

Z denotes a set of constraints, Z = {z1, zo, ..., 71}.

DLR denotes objective difficulty levels set by users.

B. TARGET FUNCTION
Assume that the multiple-choice question bank has m ques-
tions Q = {q1, q2, --., gm}, in which each question has the
attributes of question identifier (CQ), part number (CP), and
objective difficulty level (DL). Our objective is to generate a
test 7; including n questions (n < m)T; = {qi1, gi2,---, Qin}
(gij € Q) which satisfy the constraints from a matrix test and
the requirement of difficulty level (DLR).

An objective difficulty level for each question is quantified
based on the feedback collected from test-takers. Because the
items are evaluated objectively, an item can be computed by

DL the number of correct answers;
i =

total number of answers;
with DL; € (0, 1] ey

For example, question A is taken from a question bank and 50
students (st) take a test in which 30 students correctly question
A, and 20 students incorrectly answer it, thus the objective
difficulty level of question A is computed by

the number of st correcty, 30

DL = = —_—=
A 50

0.6

total number of st

Therefore, objective difficulty level of question A is 0.6

Additionally, for those questions that have never been
attempted by anyone, the objective default difficulty level is
0.5, which is a subjective difficulty, and this will then update
to become an objective difficulty based on feedback collected
from test-takers that are defined by (1).

The objective difficulty of a test 7; is the average level of
the difficulty requirements of the tests, which is defined as

n
Jj=1

DLy, = (@)
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The objective function is to ensure the minimum item infor-
mation, and this is defined as follows

> i—14i-DL
n

min (f(q) = — DLy

), q€Q 3

where f(q) is the objective function; # is the total number of
questions; ¢;;.DL is the difficulty of each question; DLg is
the difficulty level requirement; and Q is the solution space.

The objective function f(g) is used as the fitness function
in the algorithm, and the results of the objective function are
considered as the fitness of the resulting test.

When we extract k tests, the tests have better fitness values
and must satisfy the following constraints:

Cj: Each question in a generated test must be unique (i.e.,
a question cannot appear more than once in a test).

C,: In order to make the test more diverse, there exists
no case that all questions in a test have the same difficulty
value as the required objective difficulty DLg. For example,
if DLr = 0.6, then 3qxi € T: qxi-DL # 0.6.

C3: Some questions in a question bank must stay in the
same groups because their content relates to each other. The
generated tests must ensure that all the questions in one
group appear together. This means if a question of a specific
group appears in a test, the remaining questions in the group
must also be presented in the same test (Bui ef al. [18] and
Nguyen et al. [19]).

Cs: As users may require the generated tests to have several
sections, a generated test must ensure that the required num-
ber of questions is drawn out from question banks for each
section.

C. THE OVERLAP IN PROBLEM SOLUTIONS (THE
DIVERSITY OF PROBLEM SOLUTIONS)

To evaluate the quality of the PSO algorithm when it is
applied to the problem of extracting k number of tests, it is
expressed through the estimation of an overlap percentage
Pr of questions in each test of k tests. A test is acceptable
when Py is less than or equal to the threshold (we set this as
below 30% in our experiments). Formula (4) shows the way
to calculate Py.

_ 27:1 Z/r‘lzl,jiDij

P
T k

4)
where:

Pr: the overlap percentage of k tests. The smaller the value
is, the more optimal the tests are.

Djj: the number of overlap questions of test i and test j.

k: the number of tests, and n is the number of questions in
each test.

D. PROPOSED PARTICLE SWARM OPTIMIZATION
ALGORITHM WITH MODIFIED VELOCITY UPDATING
MECHANISM FOR EXTRACTING MULTIPLE-CHOICE TESTS
The PSO algorithm for extracting multiple-choice tests is
described as follows:

VOLUME 9, 2021

Creating an initial swarm population is the first step in
PSO, in which each particle in a swarm is considered a
candidate test; this first population also affects the speed of
convergence to optimal solutions. This step randomly picks
questions in a question bank. The questions, either stand-
alone or staying in groups (constraint C3), are drawn out
for one section (constraint C4) until the number of questions
required for the section is reached, and then the drawing pro-
cess is repeated for next sections. When the required number
of questions of the candidate test and all the constraints are
met, the fitness value of the generated test will be computed
according to formula (3).

A modified particle swarm optimization algorithm based
on the velocity updating mechanism is derived as follows.

The Gpest and Ppege position information is the questions
the test contains. All Ppeg slowly move towards Gpesi by
using the location information of Gyeg;. The movement is the
replacement of some questions in the candidate test according
to the velocity Ppeg. If the fitness value of a newly found Ppeg
of a particle is smaller than the particle’s currently best known
Ppest (i.€., the new position is better than the old one) then we
assign the newly found position value to Ppeg;.

Gypest moves towards the final optimal solution in random
directions. The movement is achieved by replacing its content
with some random questions from the question bank. In a
similar way to Pyeg, if the new position is no better than the
old one, the Gpeg; value will not be updated.

The algorithm ends when the fitness value is lower than
the fitness threshold e or the number of movements (iteration
loops) surpasses the loop threshold A. Both of the thresholds
are given by users.

The particles are Gpese and Ppest, they update the indepen-
dent velocity (V) and positions (P) in the extracted tests by
using modified PSO algorithm based on the velocity updating
mechanism as follows.

We propose a modified velocity updating mechanism
based on PSO for extracting multiple-choice tests using the
following formulas:

- The velocity of Pyest (Vp,,,,) approaches Gpest, and it is
given as:

Ve =0 xm (5)

- The velocity of Gpest(V,,,,) approaches the goal, and it
is given as:

VGpa =B xm (6)

where: «, B € (0, 1) and m is the number of questions in the
test solutions.

The position of particles is Ppest and Gyegt, and this is based
on their corresponding velocity.

The modified PSO approach to extract a test is described
in the form of a pseudocode as follows:

In order to clearly demonstrate how the modified PSO
extracts a multiple-choice test from a question bank, we
present the following example.
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Pseudocode of modified PSO for extracting a test
Step 1. Use a randomizer to generate an initial swarm pop-

ulation in which each particle in a swarm is considered a
candidate test;
LOOP
Step 2. Select Gpegt and Ppegt;
Step 3. IF Gpeg satisfies the conditions stop THEN exit
LOOP.
Step 4. Update the locations of individuals
Step 4.1. The Py individuals’ approach Gpegt, with
Vpbest (5)
‘Step 4.2. Gyes; approaches the goal, with Vgpes: (6)
Ghest moves in a random direction to search for the
optimal solution;
END LOOP

We have a question bank as shown in Table 1. Using the
modified PSO to order the test extraction requirements are
four questions, with a difficulty level of 0.3 (DLr =0.3);
coefficients: o = 0.25, 8 = 0.25. A fitness smaller than ¢ =
0.003 is taken as the stopping criterion.

- Generation 1, initialize a population that includes two
individuals:

- CQ | 05 | 08 | 01 | 04 | Fitness
Individual 1 =5 =0T 08 [ 03 | 07 | 025
CQ | 02 | 06 | 01 | 03 | Fitness
DL [ 02 [ 0603 [08] 0175

Individual 2

- Selection of Gpegt and Ppes:

- CQ [ 02 | 06 | 01 03 | Fitness
Individual 2 Guest |57 =105T06 (03 [ 08 | 0.175

CQ | 05 | 08 | 01 | 04 | Fitness

DL |04 |08 ]03]07] 025
Individual Gpeg has the fitness of 0.175, which does not
satisfy the stopping condition.

o Gpegt approaches the goal by receiving a random ques-

tion from the question bank:
CQ | 02 | 04 | 01 | 03 | Fitness
DL [ 02 [ 07 ]03]08 0.2

Individual 1 Py,

Individual 4

o Ppegt approaches Gpeg; by receiving a random question
06 from Gpeg:

CQ [ 05 | 06 | 01 04 | Fitness

DL | 04 [06]03]07 0.2

Individual 3

- Generation 2, selection of Gpegt and Ppeg:

.. CQ | 02 06 01 03 Fitness
Individual 2 Goest 117506 [ 03 [ 08 | 0.175
CQ | 05| 06 | 01 | 04 | Fitness
DL | 04 | 06 | 03 | 07 02

Individual 3 Py,

o Gypest approaches the goal by receiving a random ques-
tion from question bank:

CQ | 02 | 06 | 01 | 10 | Fitness

DL |02 ]06]03]03] 005

Individual 5

o Ppest approaches Gyt by receiving a random question
02 from Gpeg:

.. CQ | 02| 06 | 01 | 04 | Fitness
Individual 6 = 105106 03 [ 07 | 015

- Generation 3, selection of Gpegt and Ppeg:

32136

.. CQ | 02 | 06 | 01 10 | Fitness
Individual 5 Gest =5 5T"06 [03 [ 03 | 0.05

- CQ | 02 | 06 | 01 | 04 | Fitness
Individual 6 Poes =1 505703 [ 07 | 0.15

o Gpegt approaches the goal by receiving a random ques-
tion from question bank:

CQ | 02 | 05| 01 10 | Fitness

DL [ 02| 04 [03]03 0

Individual 7

o Ppest approaches Gpeg by receiving a random question

10 from Gpeg:
CQ | 02 | 06 | 01 10 | Fitness
DL | 02 ] 06| 03] 03 0.05

Individual 8

- Generation 3, selection Gpegt and Ppegt:

. . CQ | 02 | 05| 01 10 | Fitness
Individual 7 Guese =137 5T04 03 | 03 0
CQ | 02 | 06 | 01 | 10 | Fitness
DL | 02| 06| 03] 03] 005

Individual 8 Py,

The fitness value of Gpeg is 0, and thus satisfies the stopping
condition. As such, the test extraction requirement is met by
Individual 7.

E. IMPROVING PSO-BASED METHOD BY USING
MULTI-SWARM MIGRATION AND PARALLELISM

The problem of extracting tests from question banks often
deals with a very large search space. we thus present a
novel method for the generation of the multiple-choice tests,
which extracts an abundance of tests at the same time with
equivalent levels of difficulty and approximates the specific
difficulty level requirement given by the user. The proposed
approach for extracting tests from a question bank is based on
the parallelism of multi-swarm migration PSO to improve the
runtime, accuracy and density of the results. This approach
is novel and performs better than the traditional approaches,
such as manually extracted tests, random methods, simulated
annealing and other methods based on the PSO algorithm.

1) MULTI-SWARM MIGRATION IN PSO ALGORITHM

In [25], the Lewis ‘“Two-Sector” migration theory describes
the relationship between two traditional rural and urban
industrial economies, explaining the movement of surplus
labor in the area. Individuals in the traditional rural econ-
omy move to the modern urban industrial economy (while
ignoring other related aspects of the economy), and whether
a sector is strong or weak depends on the fitness value of Gpeg
positions of its swarm. Based on the Lewis “Two-Sector”
migration theory and Pareto optimization, in this paper we
make some adjustments so that the parallel migration can
yield more optimal solutions. The direction of migration
changes when individuals with the second strong P (strong
individuals) in strong sectors move to weak sectors. The weak
sectors’ Gpest may be replaced by the incoming Ppeg, and the
fitness value of the weak swarms should rise considerably.
Backward migration from the weak swarms to strong swarms
also happens alongside forward migration. For each migra-
tory individual, there will be one migrating back to the swarm
in exchange. This is to ensure that the number of particles and
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the searching capabilities of the swarms do not significantly
decrease.

The condition for migration in the swarm is when the
fitness value of Gypeg in the current generation is different
from that of Gy in the previous generation (better fitness
Ghest in the previous generation).

2) MIGRATION MODEL
The migration model is expressed as follows:

0 = min(F, F»,F3,...F,) (7)

With u being the number of generations and 6 € [0, 1),
the smaller 6 is the better the fitness

m
1 qij-DL

m
where DLr € (0, 1]. (8)

As m stands for the questions in the test, g;;.DL is the
difficulty of each question and DLp is the difficulty level
requirement that is defined by the user.

The migration probability is denoted by :

¢=mxg €))

with n is defined in (8), ¢ is a scaling factor with the value
defined by the user.

The number of migrating individuals is calculated as fol-
lows:

r=tx¢ (10)

with ¢ in (9), ¢ is the number of individuals in the swarm.
The migration process chooses the smallest 6 (the best
fitness) by moving target immigration that has the biggest 6
(fitness is the weakest) satisfying (7) (8) (9) (10).
The migration parallel MPSO approach to extract multiple
tests is described in a form of pseudocode in the following
algorithm:

3) THE PARALLELISM OF MULTI-SWARM MIGRATION IN PSO
ALGORITHM

The multi-swarm migration uses multi-threads to perform
parallelism. Each thread corresponds to a thread running
the PSO algorithm. However, the active process of migra-
tion induces a probability of migration, which represents the
migration between swarms. The initial process locks the cur-
rent thread in order to avoid interference from other threads to
the current thread. The process selects a weaker swarm than
the current one to avoid the complete exchange of swarms,
so the variable “Exchanging” is used as a flag to avoid this
from happening.

In order to improve the quality of the solution, we should
select the parameter values of migration between swarms
(migration probability y, migration scale §), which are impor-
tant and impact the quality of the solution. In this paper,
we select them between [5%, 10%]. There is guaranteed
Pareto optimization for the migration problem between the
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Pseudocode: Migration Parallel MMPSO for extracting

tests
For each available thread ¢ do
Step 1. Use a randomizer to generate an initial swarm
population in which each particle in a swarm is
considered a candidate test;
LOOP
Step 2. Select Gpest and Ppegt;
Step 3. IF Gy satisfies the conditions stop THEN exit
LOOP.
Step 4. Update the locations of individuals
Step 4.1. The Py individuals approaches Gpeg, With
Vpbest (5)
‘Step 4.2. Gbeg approaches the goal, with Vpess (6)
Gypest moves in a random direction to search for the optimal
solution,;
If the probability for migration y is met then
Execute function Migration_ MMPSO with ¢;
Endif
END LOOP
ENDFOR
Function Migration _MPSO: Improving solutions with
the migration method
Lock the current thread (i.e., block all modifications from
other threads to the current thread) to avoid interference
from other threads to the current thread during the migration
procedure.
Select A, which are the set of stronger individuals for
migration except for the Gpest;
Lock the other threads:
Choose a thread that has a Gpeg; Weaker
than the one in the current thread;
Unlock the other threads except for the chosen thread;
Set the status of the chosen thread to “Exchanging’;
Move the A selected individuals to the chosen thread;
Remove those A selected individuals;
Select the A weakest individuals in the chosen thread;
Add those A weakest individuals to the current thread;
Set the status of chosen thread to ““Available’;
Unlock the current thread and the chosen thread;

strong swarm and the weakest swarm (weak area) in extract-
ing k tests. The experimental results show that the selection
parameters of migration are efficient, such as high-speed
convergence, diversity of solutions. Conversely, any selection
that serves for moving to widespread migration will lead to
suboptimal solutions, or even cannot find a solution. The
complete flowchart that applies the parallelized migration
method to the PSO algorithm is shown in Figure 1.

The parallelism of multi-swarm migration in the PSO algo-
rithm in Figure 1, is as follows:

The multi-swarm migration uses multi-threads to perform
parallelism. Each thread corresponds to a thread running the
PSO algorithm. In the first stage the algorithm proceeds to
find tests that satisfy all requirements and constraints using
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TABLE 2. Experimental parameters.

The required level of difficulty (ODR) [0.1, 0.9]

The number of questions required in a 100
test

The number of questions in each section | 10
in the test

The number of simultaneously
generated tests in each run (the number

[100, 200, 400, 600, 800, 1000]

of swarms)
The number of questions in the bank 1,000 and 12,000
The PSO’s parameters The number of particles in each swarm: [10, 20, 40, 60, 80, 100,

120,140, 160, 180, 200]

Random value ry, r, are in [0,1];

The percentage of Py, individuals which receive position
information from Gy, (C1): 5%;

The percentage of Gy« which move to the final goals (C,): 5%;
The percentage of migration  : 10%;

The percentage of migration probability y : 5%

The stop condition: either when the tolerance fitness < 0.0001
or when the number of movement loops > 1000;

The SA’s parameters

Initial temperature: 100;

Cooling rate: 0.9;

Termination temperature: 0.0001;
Number of iterations: 1000;

multiple threads. Each thread corresponds to each swarm that
runs separately. The second stage is improving and diversi-
fying tests. This stage happens when there is a change in
the value of Gpeg of each swarm (for each thread) in the
first stage. In this second stage, migration happens between
swarms to exchange information between running threads to
improve the convergence and diversity of solutions.

The condition for migration in the swarm is when the
fitness values of Gpeg in the current generation are different
from those of Gypegst in the previous generation (better fitness
Ghest in the previous generation).

IV. EXPERIMENTAL STUDIES

To ensure fairness between the tests, each test should be
extracted from a question bank with similar difficulty and
each student should have a different test. This problem is
important when extracting multiple tests with similar diffi-
culty for multiple students at the same time. We compare the
efficiency of algorithms such as PSO following sequential,
parallel and parallel migration; Simulate Annealing Algo-
rithm [7]; and Random Algorithm [4], using the same criteria
for the experiments. Based on the average statistical method
after 10 runs, we examine the number of successful solutions,
accuracy, standard deviation, search speed, and number of
questions overlapping between the exam questions, as well as
changing the search space (large and small question banks),
changing the number of individuals, changing the number
of groups (number of questions), and changing the difficulty
requirements of the test.
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The experimental data includes two question banks. One
has 1,000 different questions (the small question bank) and
the other 12,000 different questions (the large question bank).
The small question bank consists of multiple sections and
each section has more than 150 questions with different
difficulty levels (Figure 2). The large question bank includes
12,000 different questions in which each part has 1,000 ques-
tions with different difficulty levels (Figure 3). The experi-
mental parameters of PSO [36] are presented in Table 2. The
results are shown in Tables 3 to 8.

Regarding the results, each run extracts them by changing
a large number of tests simultaneously and each test has a
fitness value. Each run also requires a number of iteration
loops to successfully extract the required tests. The average
runtime for extracting tests is the average of the runtimes of
all 10 experimental runs. The average fitness is the average
of all fitness values of a large number of tests generated
from 10 runs. The average duplicate indicates the average
number of duplicate questions among a large number of tests
generated from all 10 runs. The average duplicate is also used
to indicate the diversity of tests. The lower the value, the more
diverse the tests.

A. EXPERIMENTAL ENVIRONMENT

The algorithms are implemented in C#, (Microsoft Visual
Studio 2013), using Windows 8.1 Operating System, and
running on a computer with a 2.5GHz of CPU and 4 GB
RAM.
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TABLE 3. Experimental results for changing numbers of individuals in the large question bank.

The The . l‘lﬁlziel::;g:()r Average
Algorithms number of number Difficult | Number Succe_ssful extracting Average duplicate Stal:ldi'll‘d
individuals of level of runs solutions tests fitness (%) deviation
swarms (seconds)
10 100 0.5 10 1000 9.27 0.0000475833 0.90 0.000028287
20 100 0.5 10 1000 13.21 0.0000493549 0.90 0.0000274907
40 100 0.5 10 1000 19.68 0.000048586 0.90 0.0000286029
60 100 0.5 10 1000 26.88 0.0000466945 0.90 0.0000286299
80 100 0.5 10 1000 32.14 0.0000486801 0.90 0.0000291263
Se‘i}‘;gﬁa' 100 100 0.5 10 1000 37.19 0.0000464449 0.90 00000286816
120 100 0.5 10 1000 45.12 0.0000463716 0.90 0.000029507
140 100 0.5 10 1000 51.92 0.0000456173 0.90 0.000029046
160 100 0.5 10 1000 55.62 0.0000450677 0.90 0.0000280032
180 100 0.5 10 1000 63.95 0.0000457174 0.90 0.0000283821
200 100 0.5 10 1000 68.67 0.0000439222 0.90 0.0000280759
10 100 0.5 10 1000 4.18 0.0000477304 0.90 0.0000289519
20 100 0.5 10 1000 7.84 0.000049483 0.90 0.0000292806
40 100 0.5 10 1000 14.92 0.0000477106 0.90 0.0000290143
60 100 0.5 10 1000 21.31 0.0000475484 0.90 0.0000286469
80 100 0.5 10 1000 28.66 0.0000466015 0.90 0.0000286927
Parallel PSO 100 100 0.5 10 1000 37.01 0.0000462559 0.90 0.0000285836
120 100 0.5 10 1000 43.95 0.00004626 0.90 0.0000285891
140 100 0.5 10 1000 50.86 0.000045679 0.90 0.0000282073
160 100 0.5 10 1000 56.8 0.0000449725 0.91 0.0000286526
180 100 0.5 10 1000 63.79 0.000044487 0.89 0.0000295167
200 100 0.5 10 1000 70.81 0.0000450223 0.90 0.0000279527
10 100 0.5 10 1000 4.01 0.0000506994 0.90 0.0000287676
20 100 0.5 10 1000 7.21 0.0000499046 0.89 0.0000283824
40 100 0.5 10 1000 13.77 0.0000484824 0.90 0.0000289764
60 100 0.5 10 1000 18.69 0.0000484881 0.89 0.0000291892
Parallel 80 100 0.5 10 1000 24.65 0.0000469823 0.89 0.0000288724
Migration 100 100 0.5 10 1000 30.21 0.000047517 0.90 0.000028687
PSO 120 100 0.5 10 1000 41.1 0.0000466806 0.91 0.0000283357
140 100 0.5 10 1000 47.74 0.0000465141 0.91 0.0000292992
160 100 0.5 10 1000 58.62 0.0000456067 0.90 0.0000280124
180 100 0.5 10 1000 66.64 0.0000444451 0.90 0.0000293941
200 100 0.5 10 1000 70.24 0.0000433255 0.90 0.0000284653
10 100 0.5 10 32 32.72 0.0029871794 0.90 0.0027284722
20 100 0.5 10 52 54.01 0.0016628545 0.90 0.001503191
Random 40 100 0.5 10 112 84.39 0.0007790784 0.90 0.0008087782
Algorithm [4] 60 100 0.5 10 162 129.03 0.0005769422 0.91 0.000568634
80 100 0.5 10 204 166.46 0.000400958 0.90 0.0003859342
100 100 0.5 10 279 188.56 0.0003168756 0.89 0.0003194892
120 100 0.5 10 329 206.53 0.0002596932 0.89 0.0002537287
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TABLE 3. (Continued.) Experimental results for changing numbers of individuals in the large question bank.

140 100 0.5 10 353 286.91 0.0002256974 0.90 0.0002186149
160 100 0.5 10 383 322.47 0.0002032915 0.90 0.0002072332
180 100 0.5 10 421 356 0.0001922599 0.90 0.0001893135
200 100 0.5 10 460 397.64 0.0001602609 0.90 0.000164197
10 100 0.5 10 187 63.11 0.0008725566 0.91 0.0009278136
20 100 0.5 10 174 63.29 0.0009224878 0.90 0.0009694452
40 100 0.5 10 173 62.65 0.0009293273 0.90 0.0009579109
60 100 0.5 10 169 64.58 0.0008841845 0.90 0.0008827386
Simulated 80 100 0.5 10 187 63.31 0.000920168 0.90 0.0009930869
Annealing 100 100 0.5 10 194 62.17 00008983694 0.89 0.0009152836
Algorithm
SA) 7] 120 100 0.5 10 190 62.69 0.0008599878 0.90 0.0008618551
140 100 0.5 10 173 62.94 0.0008785079 0.90 0.0009322298
160 100 0.5 10 176 62.91 0.0008929886 0.90 0.0009304746
180 100 0.5 10 191 62.43 0.0008562141 0.90 0.000888402
200 100 0.5 10 192 62.57 0.0009092435 0.90 0.0009533097
The allocation of the difficulty level of questions in the small question bank
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FIGURE 2. The allocation of the difficulty levels of questions in the small question bank.

Our experiments focus on implementing the formula (3),
which derives the average levels of difficulty requirements of
the tests.

Parameter values for all experiments are taken from
Table 2.

B. CHANGING NUMBERS OF INDIVIDUALS IN SWARMS
In this section, we present evaluations for the algorithms
regarding the stability when the level of difficulty is 0.5. In
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this, we prove that PSO methods find good solutions in huge
search spaces.

These experiments aim to find the number of individuals
of each swarm that will help the algorithm performs its best.

1) LARGE QUESTION BANK (LARGE SPACE SEARCH)

The experimental results of the algorithms after 10 runs show
that when we increased the number of individuals in the
swarm of both methods there was a decline in the standard
deviation at the same rate. Furthermore, the runtime of both
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TABLE 4. Experimental results of changing numbers of individuals in the small question bank.

The The rlﬁl‘t,ie:lig:or Average
Algorithms number of number Difficult | Number Succe.ssful extracting Average duplicate Star.ldz}rd
individuals of level of runs solutions tests fitness (%) deviation
swarms (second)
10 100 0.5 10 1000 5.46 0.0000485788 16.36 0.0000294872
20 100 0.5 10 1000 7.63 0.0000491318 16.35 0.0000284884
40 100 0.5 10 1000 10.16 0.000048263 16.37 0.0000285867
60 100 0.5 10 1000 11.31 0.0000489896 16.35 0.0000288344
80 100 0.5 10 1000 13.59 0.0000483362 16.36 0.0000285393
Seduential 100 100 0.5 10 1000 1043 0.0000467882 | 1636 | 0.0000286272
120 100 0.5 10 1000 15.21 0.0000448535 16.35 0.0000287417
140 100 0.5 10 1000 15.74 0.0000475482 16.35 0.0000287489
160 100 0.5 10 1000 17.19 0.0000449274 16.40 0.0000284039
180 100 0.5 10 1000 18.1 0.0000465619 16.35 0.0000285808
200 100 0.5 10 1000 19.4 0.0000461644 16.39 0.0000286931
10 100 0.5 10 1000 1.45 0.0000490743 16.38 0.0000284969
20 100 0.5 10 1000 2.09 0.0000485699 16.37 0.0000287301
40 100 0.5 10 1000 2.94 0.0000476597 16.37 0.0000295002
60 100 0.5 10 1000 3.52 0.0000479225 16.36 0.0000285087
80 100 0.5 10 1000 4.26 0.0000466083 16.36 0.0000291629
Parallel PSO 100 100 0.5 10 1000 49 0.0000474935 16.36 0.0000293683
120 100 0.5 10 1000 5.35 0.0000476945 16.36 0.0000286132
140 100 0.5 10 1000 5.76 0.0000454825 16.37 0.0000283482
160 100 0.5 10 1000 6.12 0.0000489147 16.36 0.0000290475
180 100 0.5 10 1000 6.43 0.0000462391 16.39 0.0000287697
200 100 0.5 10 1000 7.13 0.0000463028 16.36 0.0000289394
10 100 0.5 10 1000 1.38 0.0000502326 16.36 0.0000282002
20 100 0.5 10 1000 1.81 0.0000486829 16.34 0.0000285621
40 100 0.5 10 1000 2.71 0.0000485772 16.38 0.0000282944
60 100 0.5 10 1000 3.58 0.0000474141 16.36 0.0000288159
Parallel 80 100 0.5 10 1000 4.56 0.0000464707 16.38 0.0000286011
Migration 100 100 0.5 10 1000 4.84 0.0000469956 16.38 0.0000288997
PsO 120 100 0.5 10 1000 5.5 0.0000473538 16.37 0.0000293038
140 100 0.5 10 1000 6.6 0.00004609 16.37 0.0000291581
160 100 0.5 10 1000 7.12 0.000047141 16.36 0.0000287308
180 100 0.5 10 1000 797 0.0000461727 16.38 0.0000282494
200 100 0.5 10 1000 7.88 0.0000460534 16.38 0.0000287818
10 100 0.5 10 13 2.46 0.0057252527 16.29 0.0047719024
Random 20 100 0.5 10 24 3.88 0.0032980439 16.34 0.0029639127
Algorithm [4] 40 100 0.5 10 47 7.16 0.0017181989 16.38 0.0015965904
60 100 0.5 10 89 11.12 0.0011470363 16.35 0.0010965322
80 100 0.5 10 104 13.71 0.0008501147 16.34 0.0008525693
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TABLE 4. (Continued.) Experimental results of changing numbers of individuals in the small question bank.

100 100 05 10 140 18.24 0.0006748943 | 1637 | 0.0007067955

120 100 05 10 147 2076 0.0005880672 | 1636 | 0.0005641431

140 100 05 10 173 2.4 0.0004892003 | 1636 | 0.0004926219

160 100 0.5 10 215 27.34 0.0004322328 | 1637 | 0.0004486355

180 100 0.5 10 222 29.17 0.0003919978 | 1639 | 0.0003715946

200 100 0.5 10 250 32.63 0.0003593847 | 1634 | 0.0003587486

10 100 0.5 10 115 5.12 00015175520 | 1637 | 0.0015152884

20 100 0.5 10 99 5.11 0.001480097 | 1636 | 0.0015100509

40 100 0.5 10 108 5.32 0.0015752111 | 1636 | 0.0014991383

60 100 0.5 10 89 5.5 0.0015581609 | 1637 | 0.0014904079

Simulated 80 100 0.5 10 93 5.37 0.0015432605 | 1639 | 0.0015467513
Annealing 100 100 0.5 10 90 5.19 0.0016645228 | 1633 | 0.0017063568
Algorithm [7] 120 100 0.5 10 92 5.11 00016152642 | 1633 | 0.0015446802
140 100 0.5 10 85 522 0.0015963398 | 1634 | 00015733574

160 100 0.5 10 100 5.15 00015382702 | 1636 | 0.0015290549

180 100 0.5 10 86 5.09 0.0015875156 | 1636 | 0.0015790137

200 100 0.5 10 97 5.12 0.0015432396 | 1635 | 0.0015110477

The allocation of difficulty levels of questions in the large question bank
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FIGURE 3. The allocation of difficulty levels of questions in the large question bank.

methods increased when the number of individuals in the
swarms increased in Table 3. Simulated Annealing has better
results than random on some criteria, such as number of suc-
cessful solutions, runtime and fitness value. However, PSO
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methods always give better results than SA for all criteria. In
the PSO methods, serial PSO takes more time than parallel
PSO and migrating parallel PSO. Migrating parallel PSO has
better performance than parallel PSO in terms of execution
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TABLE 5. Experimental results of changing numbers of swarms in the large question bank.

Average
. The The Difficult | Number | Successful runtlme. for Average Avel"age Standard
Algorithms number number of . extracting duplicate N
e e s level of runs solutions fitness deviation
of swarms | individuals tests (%)
(second)

100 50 0.5 10 1000 23.26 0.0000472395 0.90 0.0000286476

200 50 0.5 10 2000 44.8 0.0000477435 0.90 0.0000288388

Sequential 400 50 0.5 10 4000 86.11 0.0000478514 0.90 0.0000287717

PSO 600 50 0.5 10 6000 128.7 0.0000480706 0.90 0.0000288401

800 50 0.5 10 8000 165.82 0.0000479367 0.90 0.0000288821

1000 50 0.5 10 10000 202 0.0000483328 0.90 0.0000289065

100 50 0.5 10 1000 16.83 0.0000465153 0.92 0.0000280296

200 50 0.5 10 2000 34.67 0.0000468262 0.90 0.0000289542

Parallel 400 50 0.5 10 4000 78.15 0.0000483981 0.90 0.0000286759

PSO 600 50 0.5 10 6000 100.68 0.0000484697 0.90 0.0000287467

800 50 0.5 10 8000 121.86 0.0000479001 0.90 0.0000290576

1000 50 0.5 10 10000 155.91 0.0000480649 0.90 0.0000288733

100 50 0.5 10 1000 19.28 0.0000493758 0.90 0.0000292478

200 50 0.5 10 2000 44.51 0.0000474914 0.90 0.0000289322

Parallel 400 50 0.5 10 4000 71.73 0.0000476021 0.90 0.0000288632
Migration

PSO 600 50 0.5 10 6000 91.96 0.0000472607 0.90 0.0000287841

800 50 0.5 10 8000 125.78 0.0000482725 0.90 0.0000287967

1000 50 0.5 10 10000 153.05 0.0000481303 0.90 0.0000289165

100 50 0.5 10 151 107.67 0.000641586 0.90 0.0006404184

200 50 0.5 10 263 203.58 0.0006555891 0.90 0.000639235

Random 400 50 0.5 10 552 304.01 0.0006275829 0.90 0.0006296122

Algorithm [4] 600 50 0.5 10 863 541.78 0.0006404427 0.90 0.0006338492

800 50 0.5 10 1146 832.48 0.0006461646 0.90 0.0006405529

1000 50 0.5 10 1401 1043.43 0.0006443684 0.90 0.0006352166

100 50 0.5 10 178 64.54 0.0009070393 0.90 0.0009486412

200 50 0.5 10 373 126.84 0.0008935623 0.90 0.0009291475

Simulated 400 50 0.5 10 711 249.79 0.0008944092 0.90 0.0008925994
Annealing

Algorithm [7] 600 50 0.5 10 1159 382.05 0.0008742549 0.90 0.0009136319

800 50 0.5 10 1482 491.04 0.000879932 0.90 0.0009090217

1000 50 0.5 10 1870 619.11 0.0008838192 0.90 0.0009211429

time, the diversity of solutions, and standard deviation over
generations.

2) SMALL QUESTION BANK (SMALL SPACE SEARCH)

With the small question bank the search time is faster, but
most of the criteria are not as good as with the large one.
However, they still meet all the conditions of the problem.
The results in Table 4 show that the success rate for Random
and SA is low. In contrast, the PSO methods’ success rate
still guarantees 100%. With a small search space, we show
that parallel migration PSO is more efficient than parallel
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PSO and sequential PSO in terms of execution time, fitness
average, and standard deviation.

In short, given the small or large search space of the ques-
tion bank, PSO methods always give better results than SA
and Random in Tables 3 and 4. This experiment helps decide
on the number of individuals for each swarm for extracting
tests in the online deployment, which is between 40 and 60.

C. EFFECT OF NUMBER OF SWARMS
In this section, we present evaluations for algorithms regard-
ing the stability when the level of difficulty requirement is
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TABLE 6. Experimental results of changing numbers of swarms in the small question bank.

Average
The The . runtime for Average
Algorithms number number of Difficult | Number Succe§ stul extracting Average duplicate Stal.ld?rd
R level of runs solutions fitness o deviation
of swarms | individuals tests (%)
(second)
100 50 0.5 10 1000 10.37 0.0000472491 16.38 0.0000284972
200 50 0.5 10 2000 19.35 0.0000478532 16.36 0.0000288602
Sequential 400 50 0.5 10 4000 39.9 0.000048561 16.37 0.0000289575
PSO 600 50 05 10 6000 59.6 0.0000485378 1637 | 0.0000284544
800 50 0.5 10 8000 79.57 0.0000481051 16.37 0.0000289799
1000 50 0.5 10 10000 94.12 0.0000476358 16.37 0.00002884
100 50 0.5 10 1000 2.81 0.0000479555 16.38 0.0000291595
200 50 0.5 10 2000 5.94 0.0000482158 16.35 0.0000289604
Parallel 400 50 0.5 10 4000 11.95 0.0000492851 16.37 0.0000287574
PSO 600 50 0.5 10 6000 17.78 0.0000481608 16.36 0.0000289531
800 50 0.5 10 8000 22.81 0.0000483982 16.37 0.0000289413
1000 50 0.5 10 10000 29.5 0.000048291 16.36 0.0000288598
100 50 0.5 10 1000 2.81 0.0000491176 16.35 0.0000285017
200 50 0.5 10 2000 5.7 0.000047928 16.38 0.0000292795
Parallel 400 50 0.5 10 4000 11.49 0.0000480467 16.36 0.0000289465
Migration
PSO 600 50 0.5 10 6000 19.26 0.000048059 16.36 0.0000286953
800 50 0.5 10 8000 22.89 0.0000484262 16.37 0.0000284147
1000 50 0.5 10 10000 28.4 0.0000484063 16.37 0.0000288804
100 50 0.5 10 63 9.06 0.0012812332 16.36 0.0012514842
200 50 0.5 10 125 17.89 0.001328366 16.35 0.0012859584
Random 400 50 0.5 10 291 33.17 0.0013339178 16.36 0.0013279629
Algorithm [4] 600 50 0.5 10 416 49.1 0.0013456784 1635 | 0.0012898299
800 50 0.5 10 561 65.31 0.0013478387 16.36 0.0013304604
1000 50 0.5 10 722 82.06 0.0013438138 16.36 0.001292203
100 50 0.5 10 94 5.64 0.0015682236 16.36 0.0015306442
200 50 0.5 10 205 10.61 0.0014757251 16.35 0.001466698
Simulated 400 50 0.5 10 388 20.25 0.0015567327 16.35 0.0015512228
Annealing
Algorithm [7] 600 50 0.5 10 564 30.34 0.0015493265 16.36 0.0015167352
800 50 0.5 10 698 41.97 0.0015714664 16.36 0.001516793
1000 50 0.5 10 909 50.02 0.0015781129 16.36 0.001550871

0.5. This experiment determines the effect of the number of
swarms required for extraction of the operational process of
the algorithm.

1) LARGE QUESTION BANK

When changing the number of swarms (changing the num-
ber of tests created by single run), the SA algorithm has a
higher success rate than Random but does not guarantee to
find the correct number of solutions as a requirement. Also,
the PSO methods always guarantees a 100% success rate,
where sequential PSO is more time-consuming than parallel
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PSO or parallel migration PSO. Parallel migration PSO has
better solution diversity than parallel PSO in Table 5.

2) SMALL QUESTION BANK

With the small search space, PSO methods are always more
efficient than Random or SA. PSO methods also find 100%
successful solutions in Table 6, which shows that increasing
the number of swarms in the algorithm does not decrease the
quality of the search results for the bank with a large number
of questions. However, the solution diversity of all algorithms
is not good as with the large question bank, but is still within
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TABLE 7. Experimental results of changing difficulty level requirements in the large question bank.

Average
The The runtime for Average
. Difficult number | Number | Successful . Average . Standard
Algorithms number of . extracting duplicate .
level s of of runs solutions fitness o deviation
individuals tests (%)
swarms
(second)
0.3 50 100 10 1000 92.57 0.0000492182 1.50 0.0000293427
0.4 50 100 10 1000 51.45 0.0000480883 1.04 0.0000291715
Seql;‘se(';“al 0.5 50 100 10 1000 22 0.0000490234 0.90 0.0000288239
0.6 50 100 10 1000 50.11 0.000049519 1.03 0.0000295357
0.7 50 100 10 1000 91.24 0.0000467931 1.48 0.000029086
0.3 50 100 10 1000 32.62 0.0000489596 1.51 0.0000289335
0.4 50 100 10 1000 22.89 0.0000465526 1.05 0.0000285598
P;‘;‘gﬂ 0.5 50 100 10 1000 16.3 0.0000491724 0.90 0.0000285169
0.6 50 100 10 1000 21.89 0.0000490775 1.03 0.0000288687
0.7 50 100 10 1000 33.21 0.000047343 1.48 0.0000286973
0.3 50 100 10 1000 29.76 0.0000489974 1.51 0.0000289427
0.4 50 100 10 1000 22.27 0.0000486969 1.04 0.0000289297
Parallel
Migration 0.5 50 100 10 1000 16.06 0.0000472455 0.90 0.0000284014
PSO
0.6 50 100 10 1000 21.21 0.0000470135 1.03 0.0000289434
0.7 50 100 10 1000 29.77 0.0000473716 1.49 0.0000287463
0.3 50 100 10 - - - - -
0.4 50 100 10 - - - - -
Ral.ldom 0.5 50 100 10 151 56.81 0.0006396715 0.90 0.0006429522
Algorithm [4]
0.6 50 100 10 - - - - -
0.7 50 100 10 - - - - -
0.3 50 100 10 0 67.88 0.1437704138 0.94 0.0123036347
Simulated 0.4 50 100 10 0 67.57 0.0430468291 0.94 0.0121575194
Annealing 0.5 50 100 10 177 61.38 00009304813 091 0.0009499761
Algorithm [7]
0.6 50 100 10 0 67 0.039578313 0.95 0.0121070314
0.7 50 100 10 0 67.23 0.1391715678 0.95 0.0122603345

the allowed threshold. Parallel migration PSO has the better
runtime and standard deviation than parallel PSO.

We show that the processing time increases as the num-
ber of swarms increases, and the standard deviation of both
PSO methods is unaffected by changing swarm numbers.
However, with question banks that are small, we can see
a difference in the search capability of the methods. The
processing time of the migration method is always better than
that of the non-migratory one, and the standard deviation is
significantly improved with better search results. The exper-
imental results show that the average rate of change depends
on the number of swarms. PSO methods are stable at 100%,
and these demonstrate the diversity of solutions. The average
rate does not depend that much on the number of swarms of
the algorithm.
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D. EVALUATION OF DIFFICULTY LEVEL REQUIREMENTS
In this section, we present evaluations for the algorithms
regarding the stability when level of difficulty requirements
is varied from 0.3 to 0.7. This experiment aims to evaluate the
effect of difficulty level requirements of the algorithms.

1) LARGE QUESTION BANK

Based on the experimental results, we could have a general
idea that when difficulty level requirements change this will
affect the search capability of the algorithms. In particular,
Random and SA only found the solution when the difficulty
was 0.5, but the success rate was low. And the PSO methods
show that the closer the difficulty level to the margins the
more difficult it is to extract tests, so the processing time
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TABLE 8. Experimental results of changing the difficulty level requirements in the small question bank.

Average
The The runtime for Average
. Difficult number | Number | Successful g Average . Standard
Algorithms number of . extracting duplicate .
level R of of runs solutions fitness o deviation
individuals tests (%)
swarms
(second)
0.3 50 100 10 38 299.48 0.0164667586 39.85 0.0106887404
0.4 50 100 10 1000 60.37 0.0000484941 22.75 0.0000287457
Seqlfsegml 0.5 50 100 10 1000 9.67 0.0000474847 16.36 0.0000286675
0.6 50 100 10 1000 33.25 0.0000494227 18.04 0.0000280752
0.7 50 100 10 998 82.74 0.0000584815 28.34 0.0003273015
0.3 50 100 10 43 78.04 0.0169418951 39.67 0.0109329888
0.4 50 100 10 1000 17.03 0.000047108 22.71 0.0000288838
P;rg‘ge' 0.5 50 100 10 1000 323 0.0000472743 16.39 0.0000290218
0.6 50 100 10 1000 9.32 0.0000466661 18.02 0.0000278257
0.7 50 100 10 1000 243 0.0000474793 28.38 0.0000292347
0.3 50 100 10 41 66.1 0.0169272424 39.77 0.0109041026
0.4 50 100 10 1000 13.31 0.000047068 22.77 0.0000283605
Parallel
Migration 0.5 50 100 10 1000 2.76 0.0000481289 16.36 0.0000293622
PSO
0.6 50 100 10 1000 7.68 0.0000475494 18.02 0.0000282301
0.7 50 100 10 998 18.2 0.0000477812 28.34 0.0000485107
0.3 50 100 10 - - . - -
0.4 50 100 10 . . . . .
Random 0.5 50 100 10 78 4.61 0.0013501261 16.34 0.0012932811
Algorithm [4]
0.6 50 100 10 - - . - -
0.7 50 100 10 . - . . .
0.3 50 100 10 0 5.68 0.1876096688 16.66 0.0082875696
Simulated 0.4 50 100 10 0 5.54 0.0878377059 16.65 0.0081876554
Annealing 0.5 50 100 10 104 521 0.0015220039 16.34 0.0015335744
Algorithm [7]
0.6 50 100 10 0 536 0.0352358466 16.64 0.008081353
0.7 50 100 10 0 538 0.1348998311 16.64 0.0080307427

for generation and the standard deviation is longer. However,
the results of the migration of multiple swarm PSO methods
demonstrate that the processing speed and diversity of the
solutions are better than for non-migratory PSO, as show
in Table 7.

2) SMALL QUESTION BANK

With changing the difficulty from 0.3 to 0.7 in Table 8, PSO
methods have a lower success rate compared with that seen
in the large question banks and the difficulty level is 0.3,
the average duplicate is over the threshold (~10%). Besides,
the time needed to find the solution alternates between lev-
els of difficulty. However, PSO methods are very feasible.
In contrast, Random and SA are not effective in this case.
Parallel migration PSO also shows faster processing time than
non-migratory methods. Especially at the difficulty levels
of 0.5 and 0.6, both algorithms find the correct solution to
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the problem, which again proves that when the difficulty level
requirements are varied it always affects the search capability
of the algorithms.

The above experiments show that there are some limita-
tions if we only use PSO to solve optimization problems.
For example, in a few special cases the PSO is only good
for global optimization but not good for local optimization.
To overcome this limitation, we proposed the application of
a parallel multi-swarm algorithm based on the Lewis theory
of migration. The theory is based on a basic concept from
economics with some modifications for the PSO algorithm
to help execute multiple swarms and obtain multiple solu-
tions. We have proven the effectiveness of the PSO in par-
allel migration in the problem of extracting multiple-choice
tests with a difficulty level predefined by the user. Besides,
we have evaluated and compared the efficiency of the pro-
posed algorithm and other algorithms from previous works,
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such as Random [4] and SA [7]. Our proposed algorithms are
always highly effective based on the evaluation criteria for
the change in the number of individuals in the swarm, change
in the number of swarms, and change in the difficulty of the
test.

V. CONCLUSION AND FUTURE STUDIES

In this paper, we present an approach to extract the abundance
of tests with equivalent levels of difficulty and approximate
the specific difficulty level requirement given by the user
based on question banks and parallel multi-swarm migra-
tion in PSO algorithm. Our approach performs better than
the other techniques, such as Simulate Annealing [7], Ran-
dom [4], etc., in terms of the execution time and quality of
the tests. The experimental results are compared with those
from PSO methods such as sequential PSO, parallel PSO
and parallel migration PSO and assessed in light of several
essential criteria, including number of successful solutions,
accuracy, standard deviation, search speed, and number of
questions overlapping between the exam questions, as well
as for changing the search space (large and small question
banks), changing the number of individuals, changing the
number of groups (number of questions), and changing the
difficulty requirements of the test. The results demonstrated
that the developed algorithm produces solutions of good
quality (with optimal and near-optimal solutions) in a short
amount of computing time.

Future studies may focus on investigating the use of a
hybrid approach [31], [34] to solve other NP-hard and combi-
natorial optimization problems, which a focus on fine-tuning
the PSO parameters by using some of adaptive strategies.
Additionally, we will extend our problem to provide feedback
to instructors from multiple choice data, such as using fuzzy
theory by Le and Fujita [35], and PSO with local search algo-
rithms for mining association rules to compute the difficulty
levels of questions.
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