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ABSTRACT Recently, AutonomousGroundVehicles (AGV) andmobile robots have been rapidly developed
in various engineering applications, such as Industry 4.0 factory and smart manufacturing. Indoor navigation
was one of the most important tasks for the mobile systems as they were often designed to move from
one location to another location autonomously without contacting the surrounding objects along the
moving path in a usually dynamic and complex indoor environment. There were two key steps to achieve
Simultaneous Localization and Mapping (SLAM). First, indoor positioning of the mobile system based on
some measurements was done. The second step was to navigate itself inside the indoor map. This was a
very challenging problem because there always existed uncertainties in the measurements. It was desired to
estimate the positioning errors and determine a safe moving path with high reliability. This paper presented
the methodologies for wireless indoor positioning and navigation of AGV with measurement uncertainties.
Two kinds of AGV moving trajectories with various design parameters were simulated: a linear trajectory
and a curved one. It was found that both greater number of sensors being used for wireless measurements
and greater number of measurement trials for multilateration could effectively improve the accuracy of AGV
positioning.

INDEX TERMS Autonomous ground vehicle (AGV), indoor positioning and navigation (IPN), Monte Carlo
simulations (MCS), multilateration, wireless distance measurement.

I. INTRODUCTION
In the era of Industry 4.0, manufacturing has been moving
on from industrial automations to massive needs of produc-
tion customizations in smart factories. Intelligent robotics
and vehicle systems have drawn great attentions and been
applied for automatic customization productions [1]. One of
the most attractive solutions to customized factory logistics
was to useAutonomousGroundVehicle (AGV) [2]–[5]. AGV
has been used in various smart manufacturing applications
with the advantages of reduced labor costs, reduced opera-
tion costs, increased reliability and productivity, and greater
safety [6], [7]. However, there are still many challenges in
indoor positioning and navigation (IPN) of AGVs. There
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were two key steps to achieve Simultaneous Localization
and Mapping (SLAM) [8], [9]. First, indoor positioning of
the mobile system based on some measurements was done.
The second step was to navigate itself inside the indoor map.
Three-dimensional measurement devices, such as stereovi-
sion and Lidar, have been greatly used for positioning of
AGV [10], [11].

On the other hand, wireless indoor positioning [12] has
drawn great attentions by many researchers because the
sensors for wireless distance measurements are cheaper
and have faster sampling rates. However, positioning based
on wireless distance measurements was less accurate due
to the existence of measurement uncertainties. This paper
introduced the methodologies of indoor positioning based
on wireless distance measurements with uncertainties.
Furthermore, indoor navigation of AGV based on wireless

25200
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-5907-7828
https://orcid.org/0000-0002-1187-1771


P. T. Lin et al.: Probabilistic IPN of AGV Based on Wireless Measurements

positioning with measurement uncertainties would be
presented. The statistical performances of wireless indoor
positioning were investigated to show the accuracy of AGV
positioning and navigation.

II. WIRELESS INDOOR POSITIONING WITH
UNCERTAINTY
A. MULTILATERATION FOR WIRELESS INDOOR
POSITIONING
Assuming the wireless sensors for distance measurements are
installed on a same plane, the position of the AGV, which
is denoted as P = [X ,Y ], is to be estimated based on the
method of multilateration [13]–[15]. Suppose there are N
sensors properly installed (i.e. separated and not in a line) in
the indoor workspace, the ith sensor position is denoted by
Si = [Si,1, Si,2]. The measurement from Si to P is denoted as
Li and satisfies the following equation:

‖Si − P‖ = Li (1)

Or,

S2i,1 − 2Si,1X + X2
+ S2i,2 − 2Si,2Y + Y 2

= L2i (2)

Subtracting the Eq. (2) for the jth wireless measurement from
the same equation for the ith measurement, the following
equation is obtained:

Ak = Bk,1X + Bk,2Y (3)

where

Ak ≡
(
L2i − S

2
i,1 − S

2
i,2

)
−

(
L2j − S

2
j,1 − S

2
j,2

)
(4)

Bk,m ≡ −2Si,m + 2Sj,m for m = 1, 2 (5)

In Eq. (3), the index k represents each unique permutation
group {(i, j)|i, j = 1, . . . ,N ; i < j}. For example, when
4 sensors are used (i.e. i, j = 1, 2, 3, 4), the permutation
groups are {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} resulting
6 different equations in Eq. (3).

At the end, the Eq. (3) can be expressed in a matrix form,
as shown below:

A = BP (6)

where

A ≡



A1
...

Ak
...

AM

 , B ≡



B1,1 B1,2
...

...

Bk,1 Bk,2
...

...

BM ,1 BM ,2

 (7)

and M is the total number of permutation groups of {(i, j)}.
SinceB is not a square matrix, the Eq. (6) cannot be solved by
inverse multiplication. Least Square Approximation (LSA)
could be used to find the solution with minimal squared error
of the position estimation, which is given by:

P =
(
BTB

)−1
BTA (8)

B. INDOOR POSITIONING WITH UNCERTAINTIES
The estimation of AGV position in Eq. (8) has the following
squared error:

Squared error =
M∑
k=1

(
Ak − Bk,1X − Bk,2Y

)2 (9)

If each wireless measurement Li is precise and each sensor
position Si is accurate, each term in Eq. (9), theoretically,
could be equal to zero. However, there exists uncertainty
in each measurement in practice. In this paper, the wireless
measurement was assumed to be normally distributed and
could be expressed as Li ∼ N (µi, σ 2

i ) where N () stands for
normal distribution; µi is the mean value of the normally dis-
tributed measurement of Li; σi is the standard deviation of Li.
Since Li was randomly distributed, the estimated position ofP
was then randomly distributed. In this paper, the standard
deviation of thewirelessmeasurement was assumed fixed and
independent to the distance between the sensor and the object.

FIGURE 1. Illustration of the estimated AGV positions (blue dots;
generated by 106 MCS) as there exist uncertainties in the measurements
from three different sensors (red dots) to the true AGV position (yellow
dot). Green point stands for the mean of the estimated positions
obtained by MCS. Unit is meter.

Fig. 1 showed an example of the randomly distributed
estimations of the AGV positions based on three sets of
wireless measurements. Unit of the figure was meter. The red
dots were the positions of the sensors. The positions of the
first, second and third sensors were [0, 0], [3, 2], and [0, 5],
respectively. The yellow dot was the true position of the AGV.
The measurements from the first, second and third sensors
to the AGV were assumed to be normally distributed with
the standard deviations of 0.2, 0.1 and 0.3 m, respectively.
We used Monte Carlo Simulations (MCS) with 106 trials
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to estimate the AGV position with the aforementioned mea-
surement uncertainties. The 106 estimated AGV positions by
MCS were shown as the blue dots in Fig. 1. In the s-th MCS
trial (i.e. s = 1, . . . , 106), the i-th wireless measurement
L(s)i was randomly generated following the aforementioned
normal distribution N (µi, σ 2

i ). The s-th estimation of the
AGV position P(s) was then determined using Eq. (8).
As illustrated in Fig. 1, the random distribution of the

estimated AGV positions was not normally distributed due to
the geometrical relationships between the AGV position and
the sensors. The mean of the 106 estimated AGV positions,
i.e. green point in Fig. 1, was very close to the true position,
i.e. yellow point. The error was less than 0.01 m. If the
number of MCS was not enough, the accuracy of the averag-
ing of AGV positions generated by MCS would be reduced.
The 95%-confidence ranges of the uncertain measurements
were also shown in Fig. 1. Although the uncertainty in each
wireless measurement was mutually independent to each
other; however, the estimation of the AGV position in Eq. (8)
depended on the uncertainty from each wireless measure-
ment. Thus, the geometrical relationship between the sensors
and the AGV, as well as the uncertain level of each random
wireless measurement, would affect the random distribution
of the estimated AGV positions. Fig. 2 shows the accuracy of
AGV positioning based on different numbers of MCS trials
as each MCS was repeated for 10 times with independent
random samples. From the results, it’s observed that the
statistical analysis of the positioning with uncertainties could
be essential for the accuracy and reliability of the wireless
indoor positioning of the AGV.

FIGURE 2. Accuracy of AGV positioning based on averaging of the
estimated AGV positions generated by different numbers of MCS. Each
MCS was repeated 10 times with independently generated random
samples. Error bar shows the range of ±1 sigma of the 10 repeated MCS
tests.

It’s noted that the randomness of the estimated AGV
positions was not normally distributed. At this point,
the mean of the randomly distributed positions is considered
as the estimated AGV position. As the uncertainty level
of sensors or other components in the system increases,

the randomness of the uncertainty could be more arbitrarily
shaped. Statistical models such as Kernel Density Estima-
tion (KDE) [16], [17] could be utilized to estimate the non-
normally distributed AGV positions for greater accuracy of
the indoor positioning. The probability of the AGV positions
could then be estimated by evaluating the approximate prob-
ability density function based on the KDE models.

C. INDOOR POSITIONING OF A MOVING AGV WITH
MEASUREMENT UNCERTAINTIES
The calculations in Eq. (8) assumed the AGV was stationary.
Therefore, the accuracy of the AGV positioning was expected
to decrease as the AGV was not stationary. The typical
moving speed of an AGV for the factory is around 2 m/s.
In this situation, the sampling rate of the wireless measure-
ment needs be high enough. An illustrative example is shown
in Fig. 3. An AGV was initially located at the position of
[2, 4] and began to move toward the position of [−1, 2] with a
constant speed. The duration of this movement was 1 second.
Suppose the sampling rate of the wireless measurement was
1MHz, there were 106 sets of wireless measurements and
indoor positioning based on Eq. (8) that were executed during
the 1-second duration. Each estimated AGV position was
illustrated by the blue points shown in Fig. 4 (a).

Since the AGV was not stationary, each set of wireless
measurement was based on a different AGV position. Con-
sidering all 106 sets of wireless measurements for AGV
positioning, as shown in Fig. 4 (a), resulted in a huge error
of the estimation of the final AGV position. To resolve this
issue, only the last 1000 sets of wireless measurements were
considered for the estimation of the final AGV position,
as shown in Fig. 4 (b). The last 1000 sets of measurements
were executed within the last 1 millisecond. The movement
of the AGV in the last 1 millisecond was around 0.0036 m,
whichwas smaller than the standard deviations of thewireless
measurements. Therefore, the accuracy of the estimation of
the final AGV position based on consideration of the last
1000 sets of wirelessmeasurements was 0.0156m,whichwas
slightly larger than the error in Fig. 1 but much more accurate
than the error in Fig. 4 (a).

III. INDOOR NAVIGATION OF AGV WITH MEASUREMENT
UNCERTAINTIES
A. NAVIGATION ALONG LINEAR MOVING TRAJECTORIES
In this section, a series of illustrative examples of indoor
navigation of AGV were presented. The information of the
sensors are given in Table 1. There were two kinds of
arrangements of the wireless sensors. The first case used
multilateration based on wireless measurements with sensor
numbers 1∼3 as the second case used the sensor numbers
1∼4. An AGV was desired to move from a starting point PA:
[1, 1] to an end point PB: [4, 4], as shown as the blue straight
line in Fig. 4. Suppose there were 9 intermediate waypoints,
denoted as P1, . . . ,P9, evenly distributed on the straight line
from PA to PB. It was assumed that the AGV was precisely
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FIGURE 3. Illustration of estimating the indoor position of a moving AGV (i.e. moving from [2, 4] to [−1, 2] in 1 second)
based on mean of the estimated positions determined from MCS (i.e. 106 samplings were made within the time): (a) taking
all 106 points for the calculation, (b) taking the last 1000 sampling points for the calculation.

TABLE 1. Sensor information in the illustrative examples.

placed at the starting point PA at the beginning. The AGVwas
expected to move from PA to PB through each waypoint Pi.
The coordinate of each waypoint Pi could be computed by:

Pi = PA + (PB − PA)×
i
10

(10)

It was considered that the AGV could only use the wireless
measurements and multilaterations, explained in section II,
to position itself. In the first example, a low number of MCS
trials was considered for wireless positioning as only 10 sets
of wireless measurements were considered at each waypoint,
Pi. An estimated AGV position, P̂i, was then obtained based
on averaging the 10 AGV positions from multilaterations.
In Fig. 4, the true AGV positions,

_

Pi, were illustrated by
the yellow points as the estimated AGV points, P̂i, were
illustrated by the green points. The cubic spline convex hull,
that was illustrated by the red closed contour in Fig. 4, was
used to show the range of the estimated AGV positions
from multiple multilaterations. As explained in section II,

the distribution of the estimated AGV positions was not
normally distributed. The shape of the distribution of the
estimated AGV positions varied with respect to the true AGV
position and its geometrical relationship with the sensors.

At the starting point, 10 sets of multilaterations were com-
puted using Eq. (8) with the existence of measurement uncer-
tainties. The estimated AGV position, denoted as P̂A, was
then obtained by averaging the 10 AGV positions computed
from multilaterations. The AGV was then controlled to move
from PA to a new position based on:

_

P1 =
_

PA +
(
Pi − P̂A

)
(11)

where
_

PA stands for the true position ofAGVat the beginning,
i.e.

_

PA = PA based on the assumption of precise starting
point;

_

P1 is the true AGV position at the first waypoint.
It was assumed that the AGV movement, i.e. (Pi − P̂A), was
precisely done. The navigation error was only caused by the
error of wireless positioning, i.e. there was error between P̂A
and PA. To avoid control divergence, another run of AGV
positioning based on 10 new sets of wireless measurements
and multilaterations was done to obtain a new estimation of
the AGV position, which was denoted as P̂1.

At the ith waypoint, the AGV was expected to move from
_

Pi to a next waypoint, that was computed by:
_

Pi+1 =
_

Pi +
(
Pi+1 − P̂i

)
for i = 1, . . . , 9 (12)
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FIGURE 4. AGV navigation along a linear trajectory based on averaging
of 10 sets of wireless positioning at each waypoint and 3 sensors: (a)
measurement distribution and the difference between the true and
estimated AGV positions at each waypoint, (b) Error of AGV position at
each waypoint.

At the end of the navigation, the final position of the AGV
was

_

P10. The dash line was the true trajectory of the AGV
movement. It was noted that neither

_

Pi or P̂i was precisely
located at the desired waypoint Pi. The true AGV position
_

Pi was not precisely located at Pi because there existed
measurement uncertainties in Eq. (12). The estimated AGV
position P̂i was not accurate because only 10 sets of wireless
measurements and multilaterations were used for positioning
at the ith waypoint. In order to quantify the accuracy of the
AGV navigation, the position error at each waypoint was
computed as:

Errori =
∥∥∥_

P i − Pi
∥∥∥ (13)

FIGURE 5. AGV navigation along a linear trajectory based on averaging
of 1000 sets of wireless positioning at each waypoint and 4 sensors:
(a) measurement distribution and the difference between the true and
estimated AGV positions at each waypoint, (b) Error of AGV position at
each waypoint.

Fig. 4 (b) showed the error at each waypoint. The 10th way-
point was the end point PB. Furthermore, the total error at
every waypoint could be calculated by

∑
i Errori.

The numerical simulations were repeated for 10 times. The
average and standard deviation of total error of waypoints
were listed in Table 2. As 10 sets of wireless measure-
ments based on 3 sensors were used, the total error at way-
points was averagely 0.933 m. Therefore, the average error
at each waypoint was around 0.093 m, which was slightly
smaller than the variations of wireless measurements shown
in Table 1.

In the next example, 1000 sets of wireless measurements
based on 4 sensors were used at each waypoint. Fig. 5 (a)
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FIGURE 6. AGV navigation along a curved trajectory based on averaging
of 10 sets of wireless positioning at each waypoint and 3 sensors: (a)
measurement distribution and the difference between the true and
estimated AGV positions at each waypoint, (b) Error of AGV position at
each waypoint.

showed that the estimated AGV positions based on 1000 sets
of measurements were more precise than the one based on
10 sets of measurements. The error at each waypoint was
shown in Fig. 5 (b). The total error reduced to averagely
0.113 m indicating the average error at each waypoint was
only 0.011 m, which was 1 order smaller than the variations
of the wireless measurements in Table 1.

From the listed results of total error of waypoints
in Table 2, it was noted that more sensors were used, bet-
ter accuracy indoor positioning was achieved. Furthermore,
increasing the number of MCS points greatly increased the
accuracy of indoor positioning.

FIGURE 7. AGV navigation along a curved trajectory based on averaging
of 1000 sets of wireless positioning at each waypoint and 4 sensors:
(a) measurement distribution and the difference between the true and
estimated AGV positions at each waypoint, (b) Error of AGV position at
each waypoint.

B. NAVIGATION ALONG CURVED MOVING TRAJECTORIES
Next, the AGVwas desired tomove along a circular trajectory
with a center at [2, 3] and a radius of 2.5 m. Fig. 6 and
Fig. 7 showed an example of the curved movement. There
were 9 intermediate waypoints along the curve. The blue
curve was the desired trajectory. The green points were the
estimated AGV positions based on multilaterations. The yel-
low points were the true AGV positions. The dash line was
the true AGV moving trajectory. In Fig. 6 (a), 10 sets of
wireless measurements based on 3 sensors were used for the
positioning at each waypoint. The error at each waypoint
of this case was shown in Fig. 6 (b). On the other hand,
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TABLE 2. Total error of waypoints for linear movements based on 10
repeated simulations.

TABLE 3. Total error of waypoints for curved movements based on 10
repeated simulations.

Fig. 7 (a) showed one example of AGV navigation along
the curved trajectory based on 1000 sets of measurements
with 4 sensors at each waypoint. The error at each waypoint
was shown in Fig. 7 (b). The total errors of waypoints of
all tested cases were shown in Table 3. It was noted that
greater number of sensors being used for wireless measure-
ments could improve the accuracy of AGV positioning. Also,
greater number of MCS trials at each waypoint improved the
accuracy of AGV positioning.

IV. CONCLUSION
In this paper, the indoor positioning and navigation of
Autonomous Ground Vehicle (AGV) based on wireless dis-
tance measurements with uncertainties was investigated. The
distances from the AGV to multiple sensors were measured
and used to estimate the AGV position based on multilatera-
tion. Since there were uncertainties in the wireless measure-
ments, multiple sets of measurements and multilaterations
were performed. The AGV position was obtained by aver-
aging the estimated AGV positions from the Monte Carlo
Simulations (MCS) of multiple wireless measurements and
multilaterations. Our investigations showed that the accu-
racy of the AGV positioning increased as the number of
MCS trials increased. Furthermore, the proposed methodolo-
gies were used for indoor navigation of AGV. In the first
numerical example, the AGV was expected to move from
one point to another point along a straight line. The AGV
positions were determined based on the proposed wireless
distance measurements and multilaterations. Although the
largest standard deviation of the distance measurement was
0.3 m, the accuracy at each waypoint of the AGV was aver-
agely 0.108 m based on 10 sets of wireless distance mea-
surements andmultilaterations (in a curvedmoving trajectory
using 3 sensors). As the number of distance measurements
and multilaterations at each way point along the desired

moving trajectory increased to 1000, the accuracy at each
waypoint of the AGV improved to averagely 0.014 m. The
results are promising as the sensors of wireless distance
measurements mostly have high sampling rates and are cheap
but not accurate. Thus, these sensors are very suitable for
the proposed methodologies for indoor positioning and nav-
igation of AGV based on wireless distance measurements
and multilaterations, delivering a cheap and effective solution
for Simultaneous Localization and Mapping (SLAM). For
example, this research group has tested the proposed method
to a LiDaR (Light Detection and Ranging) sensor, which has
an accuracy of∼25mm.Withmultilateration, the accuracy of
indoor positioning based on the LiDaR measurements could
be improved to ∼6.5 mm.
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