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ABSTRACT Direction of arrival (DOA) estimation with co-prime array is a hot issue in array signal
processing. By using co-prime array structure, the degrees of freedom has been greatly improved, which
can estimate much more sources than that of the conventional array structure. In the scenario of impulsive
noise, the high-order (2-order or 4-order) moments of received signal do not exist, fractional low-order
moments (FLOM) can be applied. In this paper, the concept of the co-prime array is extended to be applied
on FLOM of received signal in presence of impulsive noise. And then MUSIC algorithm is used for
DOA estimation. The proposed method is tested on the numerical data. The simulation results prove the
effectiveness of the proposed method in impulsive noise scheme.

INDEX TERMS Co-prime array, impulsive noise, fractional low-order moments (FLOM), direction of

arrival (DOA).

I. INTRODUCTION
Direction of arrival (DOA) estimation is a long-lasting issue
for decades, which is widely used in the field of radar, sonar,
source positioning, wireless communication, efc. [1]-[3]. The
enormous amount of methods has been proposed to esti-
mate the DOAs of signals, such as subspace-based methods
MUSIC and ESPRIT [4], [5]. These methods are usually
applied on uniform linear array. For N sensors, the maxi-
mum number of the estimated sources is N — 1 due to the
limited degrees of freedom (DOFs). The distance between
two adjacent sensors should be less than half wavelength
of received signal in order to avoid the angle ambiguity.
Nevertheless, the closely space sensors can cause the mutual
coupling effect, which may decrease the estimation accuracy.
Therefore, it is important for the array geometry design and
optimization.

To solve the above mentioned problems, the concept of
co-prime array has been proposed [6], [7]. The co-prime array
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applies on a co-prime pairs of two uniform linear sub-arrays,
the number of corresponding sensors is M and N, respectively
(M and N are co-prime pairs). The two sub-arrays share
the first sensor, therefore, the total number of sensors are
M +N — 1. According to [7], the co-prime array structure can
achieve O(MN ) DOFs, which is much higher than the number
of physical sensors M + N — 1. Therefore, the co-prime
array structure greatly improves the number of detectable
signals [8]-[10]. Meanwhile, for co-prime array, the distance
between two adjacent sensors is greater than half wavelength
of received signal, thus the mutual coupling effect can also be
dropped. This technique attempts to vectorize the data covari-
ance matrix of the second-order statistics or fourth-order
cumulant of the received signal and construct a virtual array
involving the steering vectors with an extended aperture.

In the DOA estimation with co-prime array, the noise is
assumed to obey Gaussian distribution. However, in reality,
the noise often exhibits non-Gaussian properties [11]-[13].
Impulsive noise [14]-[16] is the best representative that
are frequently encountered in many practical wireless radio
systems, while natural phenomena such as ice cracks and
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thunderstorms are also impulsive. The probability density
function (PDF) of impulsive noise has thick tails than that
of the Gaussian noise. As mentioned in [17], [18], «-stable
distribution (SaS, 0 < o < 2) is suitable to describe the
impulsive noise. For impulsive noise, it is of infinite variance,
its second or high order moments do not exist; nevertheless,
it has finite fractional lower order statistics (FLOS) [19], such
as fractional lower order moments (FLOM) [17] and phased
fractional lower order moments (PFLOM) [20].

In this paper, we extend the co-prime DOA estimation
to the scenario of impulsive noise. Contrary to the scenario
of Gaussian noise (co-prime technique applies on the data
covariance matrix/high order cumulant), this work focuses
on the FLOS of received signal. By studying the properties
of FLOS of received signal, the general idea of co-prime
technique can then be adapted for DOA estimation in pres-
ence of impulsive noise. Moreover, after co-prime technique,
the power of signals replaces the snapshots (a single snap-
shot). As the power of signals is constant value, the problem
becomes coherent DOA estimation with a single snapshot.
In this situation, a Toeplitz reconstruction based methods
is applied for decorrelation. The main contributions of this
paper are concluded as follows:

o Apply the co-prime on fractional low-order statistics of
received signal, extend this technique in the scenario of
impulsive noise.

o The proposed methods extend the co-prime array tech-
nique to the scheme of fractional low-order statistics,
which provide new point of view on this technique.

The paper is organized as follows: Section 2 presents
DOA estimation with co-prime array in presence of additive
Gaussian white noise; in section 3, the co-prime array config-
uration is extended to the scheme of impulsive noise, and the
FLOM and phase FLOM (PFLOM) is applied. The numerical
results of the proposed method are provided in Sections 4, and
conclusions are drawn in section 5.

Notations: upper-case (lower-case) bold characters rep-
resent matrices (vectors). ()7, (0¥ and (-)* stand for the
transpose, conjugate transpose and conjugate, respectively.
diag (-) and vec (-) denote the diagonal matrices and vector-
ization operation, respectively. ® and © denote Kronecker
and Khatri-Rao products, respectively. Iy represents a N x
N identity matrix and E denotes the expectation operator.
|-| denotes the module of a complex value.

Il. DOA ESTIMATION WITH CO-PRIME ARRAY IN
PRESENCE OF ADDITIVE GAUSSIAN WHITE NOISE

A. SIGNAL MODEL WITH CO-PRIME ARRAY
CONFIGURATION

As shown in Fig. 1, the co-prime array configuration is
presented, where M and N M < N are the co-prime pairs.
Two sub-arrays are considered and the sensors are arranged
as follows:

L=Mnd|l0<n<N—-1}JU{Nmd|0<m<2M —1}
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FIGURE 1. The co-prime array configuration.

where d = A/2 with A the wavelength of received signal.
Definel = [I1, -+ , by+n—1], Ii € L as the positions of the
sensors. It can be seen from Fig. 1 that the first sensor at the
zeroth position is set to be the reference sensor (/; = 0) and
is shared by two sub-arrays, therefore, the total number of the
used sensors is 2M + N — 1.

Assume K far field narrow band uncorrelated sources
impinging on the co-prime array configuration shown
in Fig. 1, the received signal vector [4] at time t (f =
1,---, T, with ¢ the number of snapshots) can be written as

K
X() = ) a@)se(n) +n() = As@) +0() (1)
k=1
with
o S(t) = [51(2), s2(¢), - - -sK(t)]T is the source vector.
o A =1[a(f)),a(), - ,a(fk)] is the directional matrix.
o aly) = [17 @2l sin(0) | | , 2T hmn - Sin(9k)] denotes
direction vector corresponding to 6.
e n(?) is zero-mean Gaussian white noise with variance
matrix a,%IzMJrN,] .
Therefore, the data covariance matrix of received signal
x(t) [4] can be expressed as

R, =E {X(t)xH (r)} = ARAY + 0’Lyin_1. ()

As signals are uncorrelated, the source covariance matrix
R, = E {s(t)s” (1)} = diag (o}, - - , 0}) with o the power
of the kth signal.

B. VECTORIZATION OPERATION
With the estimated data covariance matrix, the next step is to
vectorize this matrix:

z = vec(R,) = (A* ® A)vec(Ry) + olfvec(IQM+N_1). 3)

For the uncorrelated signals, the source covariance matrix
R; is a diagonal matrix, therefore, (3) can be reformulated as

Zz=A"OA)s+ U,fvec(IQM+N_1)

= As+ U,%b.
where A = [a*(01) @ a)), - -+, a*(Ok) @ abk)], s =
[012, s o%]r is the single snapshot signal vector and b =

vec(Iopr+nv—1). The vector z can be regarded as the received
signal from a virtual array, whose directional matrix is A.
According to [21], z contains a lot of redundant information.
By removing these redundant items, we get new data infor-
mation z1, which can be expressed as

Z :A]S—i-O’nzbl @
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Therefore, by using the co-prime technique, the array aper-
ture is greatly improved, and more signals can be estimated.
However, after vectorization, the virtual signal s is a sin-
gle snapshot. The rank of noise free data covariance matrix
drops to 1, like coherent DOA estimation. In the situation,
subspace-based methods, like MUSIC and ESPRIT fail to
estimate the DOA of signals.

C. TOEPLITZ RECONSTRUCTION METHOD

Spatial smoothing techniques are the common way to decor-
relate the correlation between signals, but with aperture loss
[22]. In the section, a Toeplitz reconstruction method is
applied [23] for decorrelation. The first step is to construct
the uniform linear array. As mentioned in [10], the [-M (N +
1)+1, M(N + 1) — 1]th elements of the virtual array (4) make
up a uniform linear array with 2M (N 4 1) — 1 elements. The
received signal on this uniform linear array can be written as

71 =A1S+O'nzl;1 @)

where Al is the direction matrix of 2M (N + 1) — 1 elements
and by is a 2M(N + 1) — 1) x 1 vector.

Based on the received signal model from the constructed
uniform linear array (5), the following step is to reconstruct
a rank restored data covariance matrix by using Toeplitz
reconstruction method [23]:

7(0) i(=1) ---72(1—=YS)

z(1) z(0) ---z(2-29)
Ry = : : .. : (6)
z(S—1)z(S—-2)--- z(0)

where S = M(N + 1) — 1. After applying Toeplitz recon-
struction method, the rank restored data covariance matrix Ry
is obtained. Subspace based method can then be applied for
DOA estimation.

1lIl. DOA ESTIMATION WITH CO-PRIME ARRAY IN
PRESENCE OF IMPULSIVE NOISE

A. o STABLE DISTRIBUTION

When noise in (1) is impulsive noise, the data covariance
matrix or high order cumulant of received signal does not
exist. The performance of Gaussian white noise based DOA
estimation methods can be significantly decreased. Accord-
ing to [17], [18], a-stable distribution (SaS, 0 < o < 2)
is suitable to describe the impulsive noise. The parameter «
stands for the characteristic exponent of the SaS distribu-
tion, which is used to determine the sharpness of impulsive
noise. The smaller the value of «, the thicker the tails. When
o = 2, SaS distribution becomes a Gaussian distribution, and
Cauchy distribution for @ = 1. Therefore, with the change of
o, SaS distribution with different probability density func-
tion (PDF) can be found.

As mentioned in [17], [18], impulsive noise with «-stable
distribution has finite FLOM. Therefore, instead of using
high order moments, in this paper, we extend the co-prime
array technique to FLOM and PFLOM, and propose

VOLUME 9, 2021

Toeplitz- FLOM, Toeplitz-PFLOM combined with MUSIC
algorithm for DOA estimation.

B. TOEPLITZ-FLOM METHOD
According to the basic idea of FLOM presented in [17],
the (i, j)th element of FLOM Rpp oM can be defined as

Reowi ) =E (x50 2xof, @)

wherei,j=1,---,2M + N — 1, x;(¢) is the ith element of x
and 1 < p < «a < 2 is the order of the moments. The FLOM
of received signal Rgp oM can then be expressed as [11]

ReLom = ArLoMAA o + YTomn—1 €]

where A is a fractional lower-order correlation matrix of
signals; for the uncorrelated signals, A is a diagonal matrix.
y is a scalar, which based on statistics of the signal and noise
components of the received signal vector and A.

By applying vectorization operation on Rpy oy, it can be
deduced that

zrLom = vec(RpLom)
= (A;LOM O A rLom)srLom + yvec(opr4n—1)
= ArLomSFLOM + ¥b 9)

where sprom is a K x 1 vector, whose elements are the
diagonal elements of matrix A. Zrrom can be considered as
the received signal from a virtual array by co-prime array
technique in the scenario of FLOM.

Similar to the case of additive Gaussian white noise, a uni-
form linear array (2M (N + 1) — 1 elements) is built by using
the [-M(N +1)+1, M(N + 1) — 1]th elements of this virtual
array. Therefore, the received signal can then be written as

rLom = ArLomiSFLoM + b (10)

where Aprom; is the the [~M (N + 1)+ 1, M(N + 1) — 1]th
sub-matrix of Ap om. Then, by applying Toeplitz reconstruc-
tion method on Zg oM, We construct the new data covari-
ance matrix with restored rank. Afterwards, subspace-based
method MUSIC can be used for DOA estimation.

C. TOEPLITZ-PFLOM METHOD

It can be seen from the definition of FLOM that the selection
of exponent parameter « is restricted within interval [1, 2].
The proposed Toeplitz-FLOM fails when o € [0, 1]. There-
fore, in this subsection, the PFLOM is applied with o € [0, 2].
According to [20], the (i, j)th element of PFLOM matrix
RprrLoMm can be expressed as

Rerontis ) =E {x" 0o} an
For a complex value z, the operation (b) is defined as
|Z|b+l
o= 270 (12)
0, z=0
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where 0 < b < % is the order of the moments. Therefore,
the PFLOM of received signal Rppp oM can be expressed as

RprLoM = AprLoM @PAHL ov + Vplomn—1 (13)

where & is the phase fractional lower-order correlation matrix
of the signals, which is a diagonal matrix for uncorrelated
signals. v, is a scalar, which based on statistics of the signal
and noise components.

Similar to the Toeplitz-FLOM method, we apply vectoriza-
tion operation on Rppr om and deduce that

zprLoM = vec(RprLom)
= (AprLom © APFLOM)SPFLOM
+ypvecopyrn—1)
= ApFLOMSPFLOM + ypb (14)

and

ZPFLOM = APFLOMISPFLOM + fo) (15)

where sprrom i1s a K x 1 vector, whose elements are the
diagonal elements of matrix . APFLOMl is the the [-M (N +
1) + 1,M(N + 1) — 1]th sub-matrix of APFLOM- ZPFLOM
is considered as the received signal from a virtual array by
co-prime array technique in the scenario of PFLOM, and
ZprLoM is the received signal model from the [-M (N + 1) +
1, M(N + 1) — 1]th elements of this virtual array (a uniform
linear array with 2M (N + 1) — 1 elements). Then, we apply
Toeplitz reconstruction method to restore the rank of the data
covariance matrix of Zppr om and use MUSIC algorithm to
esstimate the DOAs of incoming signals.

D. GENERAL STEPS OF THE PROPOSED METHOD
To conclude, the general steps of the Toeplitz-FLOM and
Toeplitz-PFLOM are shown as following:

o Estimate the FLOM Rgrom and PFLOM Rpgrom of
received signal by (7) and (11), respectively.

« Apply vectorization operation on FLOM and PFLOM of
received signal, and obtain the signal models Zgy onm and
ZprLoM from virtual arrays with the improved aperture.

o Apply Toeplitz reconstruction method on Zg om and
ZprLoM. and estimate the rank restore data covariance
matrices.

o Apply MUSIC algorithm on rank restore data covariance
matrices for DOA estimation.

IV. NUMERICAL RESULT

In this section, the performance of the proposed methods is
tested on the simulated data with four different simulations.
A co-prime array with two sub-arrays is considered. One is
with 8 isotropic sensors (M = 4) and the distance between
two adjacent sensors is equal to SA /2 (N = 5); another is with
5 isotropic sensors and the distance between two adjacent sen-
sors is equal to 2XA. Therefore, the total number of sensors of
co-prime array configure is 2M + N — 1 = 12. In the simula-
tion, the sample sign covariance matrix (SCM) or normalized
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FIGURE 2. Case I pseudo-spectrum of Toeplitz-FLOM, Toeplitz-PFLOM and
Toeplitz-SCM, GSNR = -5 dB, o = 1.2.

covariance matrix [11] combined with Toeplitz reconstruc-
tion method is taken as comparison (Toeplitz-SCM). The
above mentioned methods share similar computational com-
plexity in DOA estimation. Instead of signal to noise ratio
(SNR), the generalized SNR (GSNR) [15] is applied in the
scheme of impulsive noise as follows:

2
GSNR = 101log (M) .

A. FIRST SIMULATION

In the first simulation, the pseudo-spectrums of the proposed
methods are estimated for multiple sources with different
exponent parameter «. Two cases (I and II) are studied with
o = 1.2 and 0.6. The number of snapshots is 600.

Case I: 21 sources are studied, their DOAs range from
—50° to 50° with an interval of 5°. The characteristic expo-
nent ¢ = 1.2 and GSNR is fixed at —5 dB.

Fig. 2 plots the pseudo-spectrum of Toeplitz-FLOM,
Toeplitz-PFLOM, Toeplitz-SCM. The peaks correspond to
the estimated DOA of signals by three methods. It can be
seen for Fig. 2 that Toeplitz-PFLOM and Toeplitz-SCM have
better accuracy than that of Toeplitz-FLOM when o = 1.2,
since the Toeplitz-FLOM estimates the DOAs of signals with
bias. In addition, the Toeplitz-PFLOM and Toeplitz-SCM
shares similar performance in this situation.

Case II: 17 sources are studied, their DOAs range from
—40° to 40° with an interval of 5°. The characteristic expo-
nent o = 0.6. Because Toeplitz-FLOM only works when 1 <
o < 2.In this case, only Toeplitz-PFLOM and Toeplitz-SCM
are considered. GSNR is set to be 0 dB and 5 dB.

Figs. 3-4 shows the pseudo-spectrum of Toeplitz-PFLOM
and Toeplitz-SCM when GSNR = 0 dB and = 5 dB. When
GSNR = 0 dB, Toeplitz-SCM is not able to detect all the
DOAs of signals correctly, some peaks do not correspond to
the true DOAs of signals. While Toeplitz-PFLOM remains
robust in this situation. When GSNR= 5 dB, similar perfor-
mance can be found.
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B. SECOND SIMULATIONS
In the second simulation, the statistics performance of
the proposed methods versus characteristic exponent « is
assessed with a Monte-Carlo process of 500 independent
runs. The Root Mean Square Error (RMSE) of the estimated
DOA is defined as follows:

1 K J R 2
GEElv-a)

k=1 j=1

RMSE =

where ékj denotes the estimated DOA of the kth incoming
signal for the jth run of the algorithm, and J represents the
total number of Monte-Carlo trials. 3 sources are considered,
the corresponding DOAs are 10°, 20°, 30°, respectively.
Two cases are studied: a. 1 <« <2and b.0.1 < o < 1.
GSNR is fixed at —5 dB, the number of snapshot is 600.
Case a: Fig. 5 indicates the RMSEs of estimated DOA ver-
sus @, | < a < 2 by Toeplitz-FLOM, Toeplitz-PFLOM and
Toeplitz-SCM. It can be seen that RMSEs are continuously
decreasing with « increases. The proposed Toeplitz-PFLOM
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FIGURE 5. Case a RMSE of DOA estimation versus characteristic
exponent a.
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FIGURE 6. Case b RMSE of DOA estimation versus characteristic
exponent o.

provides the best performance with the lowest RMSE at each
o among three methods, especially when « is small.

Case b: Only Toeplitz-PFLOM and Toeplitz-SCM are
taken into consideration. Fig. 6 indicates the RMSEs of esti-
mated DOA versus «, 0.1 < o < 1 by Toeplitz-PFLOM
and Toeplitz-SCM. As shown in Fig. 6, similar to Case a,
the RMSEs are also decreasing with «. The proposed
Toeplitz-PFLOM performs better than that of Toeplitz-SCM
within 0.1 <o < 1.

C. THIRD SIMULATION

In the third simulation, decorrelation method spatial smooth-
ing is applied. Then the methods can be called SS-FLOM and
SS-PFLOM, respectively. Their performance is compared
with that of Toeplitz-FLOM and Toeplitz-PFLOM. The sim-
ulation parameter is set as follows: 3 sources are considered
with DOAs [10°, 20°, 30°], characteristic exponent o« = 1.2
and snapshots 77 = 600. GSNR varies from —10 to 0 dB with
a Monte-Carlo process of 500 independent runs.

Fig. 7 plots the performance of Toeplitz-FLOM, Toeplitz-
PFLOM, SS-FLOM and SS-PFLOM. Similar performance
can be found because spatial smoothing and Toeplitz recon-
struction have similar decorrelation power.
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FIGURE 7. RMSE of Toeplitz-FLOM, Toeplitz-PFLOM, SS-FLOM and
SS-PFLOM versus GSNRs.
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FIGURE 8. RMSE of the estimated DOAs versus GSNRs, o = 1.2.

D. FOUR SIMULATION

In the fourth simulation, the statistics performance of the
proposed methods versus GSNRs with a Monte-Carlo process
of 500 independent runs. 3 incoherent sources are considered
with DOAs [10°, 20°, 30°]. The characteristic exponent
o = 1.2 and 0.6, respectively.

1) RMSE VERSUS GSNR

In this case, the number of snapshots is set to be 600. GSNR
varies from —10 to 0 dB. Figs. 8-9 show the RMSEs of
the estimated DOAs of signals versus GSNR with o =
1.2 and 0.6, respectively. As expected, when « = 1.2
and 0.6, the RMSE:s is decreasing with GSNR increases for
all methods. The proposed Toeplitz-PFLOM is much more
robust to the impulsive noise (with lower RMSE) than that of
Toeplitz-FLOM and Toeplitz-SCM, especially at low GSNR
level. With high GSNR, the performance of the above men-
tioned methods tends towards the same.

2) RMSE VERSUS NUMBER OF SNAPSHOTS

In the simulation, the performance of the proposed methods
versus the number of snapshots is evaluated with o« = 1.2
and 0.6. GSNR is set to be —5 dB. Figs. 10-11 provide the
RMSEs of the estimated DOAs of signals as function of
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FIGURE 11. RMSE of the estimated DOAs versus snapshots, o = 0.6.

number of snapshots. when the number of snapshots is small,
all the methods fail to estimate the DOAs of signals. With an
increasing number of snapshots, the RMSEs decrease. The
proposed Toeplitz-PFLOM has a more significant decrease
of the RMSE than that of other methods.

It can be concluded that the proposed Toeplitz-PFLOM has
good accuracy for DOA estimation of co-prime array config-
uration in the scenario of S«S distribution noise (impulsive
noise) with various of o, GSNR and number of snapshots.
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V. CONCLUSION

In this paper, two methods: Toeplitz-FLOM and Toeplitz-
PFLOM are proposed for DOA estimation with co-prime
array configuration in presence of impulsive noise. The pro-
posed methods extend the co-prime array technique to the
scheme of fractional low-order statistics, which provide new
point of view on this technique. The high order statistics
based co-prime array techniques may also be adapted to the
scenario of fractional low-order statistics. Simulation results
demonstrate the effectiveness of the proposed methods in a
wide range of environment of impulsive noise.
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