
Received December 12, 2020, accepted February 2, 2021, date of publication February 5, 2021, date of current version February 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3057565

Static Profiling and Optimization of Ethereum
Smart Contracts Using Resource Analysis
JESÚS CORREAS 1, PABLO GORDILLO 1, AND GUILLERMO ROMÁN-DÍEZ 2
1Departamento de Sistemas Informáticos y Computación, Facultad de Informática, Complutense University of Madrid, 28040 Madrid, Spain
2Lenguajes, Sistemas Informáticos e Ingeniería de Software, E.T.S. de Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Madrid, Spain

Corresponding author: Pablo Gordillo (pabgordi@ucm.es)

This work was supported in part by the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU) through the Agencia Estatal de
Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (EU) Project under Grant RTI2018-094403-B-C31, in part by
the Comunidad de Madrid (CM) Projects co-funded by the Fondos Estructurales y de Inversión Europeos (EIE Funds) of the European
Union under Grant S2018/TCS-4314 and Grant S2018/TCS-4339, and in part by the Universidad Complutense de Madrid (UCM) under
Grant CT27/16-CT28/16.

ABSTRACT Profiling tools have been widely used for studying the behavior of the programs with the
objective of reducing the amount of resources consumed by them. Most profilers collect the information
with dynamic techniques, i.e., execute an instrumented version of the program with some specific input
arguments to profile the measures of interest. This article presents a novel static profiling technique for
Ethereum smart contracts that, using static resource analysis, is able to generate upper-bound expressions
that can be used to produce profiling information about the measure of interest. Unlike traditional profiling
tools, we get upper-bounds on the measures of interest expressed in terms of the input arguments or the state
variables of the smart contracts. The information that can be obtained by the upper-bounds allows us to detect
gas-expensive fragments of a Solidity program or to spot resource-related vulnerabilities at specific program
points of the program. Moreover, in this article we propose an automatic optimization of Solidity programs
which reduces their gas consumption replacing the accesses to state variables by gas-efficient accesses to
local variables. We have experimentally evaluated our technique and we have detected that 6.81% of the
public functions analyzed can be optimized and 1.43% are vulnerable to execute arbitrary code.

INDEX TERMS Blockchain, Ethereum, resource analysis, smart contracts, static analysis.

I. INTRODUCTION
Ethereum [37] is an open-source platform for decentralized
applications and nowadays has become the world’s leading
programmable blockchain. One of the reasons of this success
is that Ethereum smart contracts can be programmed using
a Turing complete language and it includes a powerful set
of tools for its development. An immutable version of the
compiled smart contract can be deployed in the Ethereum
platform and will be executed using the Ethereum Virtual
Machine (EVM). As other blockchains, Ethereum has its
native cryptocurrency named Ether and the execution fees
for running smart contracts on the Ethereum blockchain are
metered in units of gas. It is a measure of the amount of com-
putational effort spent on executing each single EVM bytecode
operation. The gas consumption of each EVM instruction is
detailed in [37]. Miners get paid an amount in Ether that
results of applying a gas price to the total amount of gas
that took them to execute a complete transaction. Using

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Hammad Memon .

this model, Ethereum prevents the emitters from wasting
computational power, discourages the programmers to use
gas-expensive operations (e.g. as the cost of replicating data
in a decentralized environment is high, storage bytecodes
are gas-expensive) and prevents from DoS attacks and non-
terminating executions.

Solidity [15] is a programming language to write smart
contracts and its compiler produces EVM code to be deployed
in the Ethereum platform. The Solidity compiler includes
several static analyses that produce useful information during
the contract development phase. Among this information it
can be found the amount of gas that a function will consume
for its execution. The Solidity compiler is able to produce
precise constant gas bounds, however, when the cost expres-
sion depends on input parameters (or information stored in
the contract state), the compiler simply returns ∞ as gas
bound, and we found it occurs in almost one in every ten
public functions [3]. Furthermore, minimal modifications on
the code make the compiler unable to detect unbounded loops
and it does not warn the programmer about this potential
risk.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 25495

https://orcid.org/0000-0002-3219-0799
https://orcid.org/0000-0001-6189-4667
https://orcid.org/0000-0002-5427-8855
https://orcid.org/0000-0002-8680-1831

J. Correas et al.: Static Profiling and Optimization of Ethereum Smart Contracts Using Resource Analysis

In this article, we present the formal details of a resource
analyzer and optimization technique that is able to infer para-
metric bounds and optimize the gas consumption of Solidity
smart contracts. The resource analysis works at the level of
EVM bytecode taking as input a smart contract (either in EVM,
disassembled code, or in Solidity source code) and a public
function, and returns a closed-form upper-bound, expressed
in terms of the input values of the function of the contract,
the state or environment data (e.g. the size of the message sent
to start the transaction). Gas is probably the most valuable
resource in Ethereum. Despite this fact, our techniques can
be parameterized with different kinds of cost models that can
be used to obtain interestingmeasures like the total number of
instructions executed by the program or the number of times a
function might be executed. Additionally, based on the ideas
of program profiling [38], where programs are instrumented
to collect execution information, e.g. the memory allocated or
the amount of times a piece of code is executed, our analyzer
can statically infer a bound on these kind of measures. To do
so we use the notion of static profiler , which defines the cost
centers to which the cost of the instruction will be attributed.
With these static profilers, our analysis can determine, among
other measures, the amount of gas consumed by a particular
part of the source code or the number of times the program
might access to the blockchain persistent storage. Note that,
in contrast to the classical dynamic profiling techniques, our
approach does not instrument the code under analysis and
it does not perform any execution of the code in order to
obtain the measures of the resources under consideration.
We extend static resource analysis techniques to generate
upper-bounds, expressed in terms of the input arguments of
the program, that can be used to get profiling information
(e.g. the number of times a function can be executed or the
amount of gas consumed by a fragment of the program or a
subset of EVM instructions) by replacing the input arguments
by concrete values.

The resource analysis we describe in this article has a
wide range of applications: (1) as we will show, the use
of static profilers in the gas analysis can be used to detect
gas-expensive fragments of the Solidity code; (2) the cost
models and static profilers can be used to identify well-
known vulnerabilities at EVM level; and (3) the combination
of different static profilers makes our technique capable of
detecting which state variables are over-accessed and is able
to automatically reduce the amount of accesses by making a
local copy of these state variables.

We have experimentally evaluatedmore than 40,000 public
functions contained in 5,675 real smart contracts. With our
analyses we can infer that the upper-bounds of a 9.02% of the
public functions analyzed are parametric, 6.81% of the public
functions can be optimizable, and at least 1.43% of them are
potentially vulnerable.

A. CONTRIBUTIONS
This work is an extension and formalization of [2] including
the following new contributions:

1) We extend the techniques presented in [2] by generaliz-
ing the notion of cost center to the notion of static pro-
filer, including the possibility of combining the profiles
within Boolean expressions.

2) We present the theoretical framework of the use of
static profilers to obtain upper-bounds for different pro-
filing information of EVM programs without running
them.

3) We provide an experimental evaluation of our tech-
niques by applying a variety of analyses with multiple
combinations of profilers on 40,219 public functions
contained in 1,557 Solidity files.

Our first contribution allows us to make the resource ana-
lyzer orthogonal to the profilers, which was not possible in
our previous work [2]. The technique presented in [2] only
allows us to generate expressions that involve one cost model
and one cost center. The novelty of this work consists in the
generalization of [2] to the notion of static profiler, which is
able to attribute to different cost centers their corresponding
cost. Furthermore, by means of these profilers, we can relate
several cost models to different cost centers in a single expres-
sion by means of Boolean expressions (as it is explained in
Section IV). This extension allows us to define a theoretical
framework that has several applications: the inference of
unbounded gas loops, the detection of gas-related vulnera-
bilities, or the optimization of Ethereum smart contracts. A
preliminary version of the optimization phase appeared in [2].
However, the profilers that we introduce in this article provide
the formal basis of our approach. Finally, we significantly
extend our previous experimental evaluation by applying
multiple analyses, with 8 different configurations of profilers
(see Section VI for more details), to more than 5,000 real
smart contracts. We also study the accuracy and performance
of these analyses. In [2] only 7 Solidity files were analyzed
to describe the use of the optimization tool.

B. ORGANIZATION
The rest of the article is organized as follows: Section II
reviews the current state-of-the art of analysis and profil-
ing tools of Ethereum smart contracts; Section III briefly
describes the EVM language and the resource analysis of EVM
programs; Section IV et seq. present the main contributions
of this article: Section IV defines the notion of profiler and
its use in the detection of resource-related vulnerabilities;
Section V describes an automatic optimization of programs
whose number of accesses to state variables can be reduced;
Section VI experimentally evaluates the techniques described
in previous sections; and SectionVII contains the conclusions
and future work.

II. RELATED WORK
The number of smart contracts deployed in Ethereum
blockchain is growing exponentially in the last few years.
As a consequence, several tools [12]–[14], [19]–[21], [24]–
[27], [29], [30], [34] have been developed to analyze and
verify smart contracts both at Solidity and EVM level. Some of
these approaches [20], [21], [24]–[26], [30], [34] are dynamic

25496 VOLUME 9, 2021

J. Correas et al.: Static Profiling and Optimization of Ethereum Smart Contracts Using Resource Analysis

and try to identify potential vulnerabilities such as unhandled
exceptions, transaction state dependencies, integer over- and
under-flows or reentrancy vulnerabilities inspecting concrete
execution traces using SMT solvers. However, a small part
of the current state-of-the art approaches are focused on
resource analysis [19], [27].

In the recent years, some tools [12]–[14], [29] focused on
optimization of smart contracts have been published. In [13],
the authors present the tool GASPER. It identifies 7 gas
costly patterns and advises the users that the analyzed Solidity
code can be optimized. This work has been extended in
two different tools: the tool GasReducer [14] increases the
number of identified patterns to 24, and replaces the patterns
by predefined EVM sequences that consume less gas than
the original ones; the tool GasChecker [12] improves the
performance of GASPER proposing a new approach based
on a parallelized symbolic execution and cloud computing.
Nevertheless, these tools are not fully automatic: the patterns
need to be identified manually and they are not open-source
or they are not publicly available, so we cannot compare our
approach to theirs. ebso [29] tool works at EVM level and
tries to superoptimize EVM code applying some simplifica-
tion rules and generating an SMT encoding based on bit-
vector theory. These optimizations are intra-block while our
approach analyzes several blocks and is focused on optimiz-
ing storage-expensive fragments of Solidity code.
Program profiling is a dynamic program analysis technique

for locating places of the code where optimizations are worth
to be performed. It is based on collecting information during
the execution of the program (number of times a function
or code fragment is executed, execution paths, number of
instructions executed, number of accesses to specificmemory
positions, etc.). They are usually implemented either instru-
menting the code of the program being analyzed, or using
some simulation tool. However, the dynamic nature of profil-
ing makes difficult to apply this technique in many contexts
in which either it is difficult to obtain a representative set
of input data for executing the program, or its execution for
some test cases is excessively expensive or even impossi-
ble. Due to these limitations, there are a number of works
focused on profiling techniques combined with information
obtained by means of static analyses [8], [9], [38]. Static
profiling analyzers have been traditionally used for obtaining
low-level information such as jump prediction probabilities,
and are combined with heuristics on the behavior of the
program [39]. Nevertheless, purely static profiling techniques
have also been applied to several contexts to obtain bounds
of the accumulated cost of the execution of programs [22].
Regarding Ethereum and smart contracts, there are some tools
for dynamically profiling contracts such as sol-profiler,1 sol-
function-profiler,2 solidity-coverage,3 and eth-gas-reporter,4

1https://github.com/Aniket-Engg/sol-profiler
2https://github.com/EricR/sol-function-profiler
3https://github.com/sc-forks/solidity-coverage
4https://github.com/cgewecke/eth-gas-reporter

although to the best of our knowledge there is no profil-
ing tool that uses static analysis techniques for obtaining
profiling information for smart contracts. There are some
approaches [6], [11], [36] focused on other aspects rather than
the code such as the behavior and the interaction between
smart contracts or the CPU time that each instruction takes
to be executed. The tool Visualgas [32] uses a dynamic
approach to the analysis of gas cost of smart contracts. In this
case, it is based on fuzz testing techniques [5], [23] combined
with symbolic execution to generate test cases with high
coverage. The approach presented in [33] uses pprof and
geth to obtain execution measures such as the use of CPU
or memory of Solidity code previously instrumented. The
tool GasMet [10] uses a set of predefined metrics to evaluate
the quality of the code depending on the gas it consumes. In
contrast, our approach diverges from the classical dynamic
profiling approaches, as it is based on static analysis with
cost centers and lets us infer measures that are used to spot
profiling information. It allows us to get information about
different resources (not only related to gas consumption)
at multiple levels of granularity, without instrumenting and
executing the EVM bytecode under analysis.

III. BACKGROUND: EVM AND RESOURCE ANALYSIS
In this section we briefly introduce some relevant concepts
used throughout this article that are the starting point for the
contributions presented. We first review some characteristics
of EVM programs and compare it with other stack based
languages. Then we introduce the use of a resource analysis
applied to EVM programs to obtain an upper-bound on the
use of a resource of interest, and we finally describe how
this analysis can be used to obtain an upper-bound of the gas
consumption of a transaction to prevent out-of-gas errors.

A. EVM LANGUAGE
The EVM language is a simple stack-based language with
words of 256 bits with a local volatile memory that behaves
as a simple word-addressed array of bytes, and a persistent
storage that is part of the blockchain state. A detailed descrip-
tion of the language and the complete set of operation codes
can be found in [37]. In this section we will overview some
relevant aspects of EVM. In comparison to other stack-based
languages like Java, EVM presents some relevant differences:
(1) EVM language is an untyped language; (2) there is no
notion of data functions, the calls between different methods
are modeled with (conditional or unconditional) jumps to
corresponding addresses of the bytecode; (3) data structures
are not visible in the bytecode; (4) the elements stored in
the stack, memory5 or storage are 256-bits words; (5) the
jump addresses are not known at compilation time and they
are read from the execution stack; (6) the size of the stack
is not fixed, a program point of the EVM bytecode may be
reached with different sizes of the stack as it will depend

5Internally, EVM has opcodes to access both single bytes and 32-byte
words of memory.

VOLUME 9, 2021 25497

J. Correas et al.: Static Profiling and Optimization of Ethereum Smart Contracts Using Resource Analysis

on the execution context. In the Ethereum environment, once
the EVM of a smart contract is deployed, it can be invoked
by parties of the blockchain (users or other contracts) by
means of transactions. The execution of a transaction with a
contract as recipient implies the execution of the EVM code
of a public function of the contract. Each EVM instruction
consumes an amount of gas specified in [37]. Gas is a notion
of major importance and the motivation behind the use of
gas is twofold: on one hand, it rewards miners operating the
blockchain, and on the other hand it is used to avoid denial-
of-service attacks on the platform. If the amount of gas sent
to a transaction to be executed is less than the gas that it
actually consumes, the transaction is aborted. Interestingly,
the amount of gas is platform-independent. However, it is not
a standard resource model as there are some EVM bytecodes
that consume a fixed amount of gas, other bytecodes that
consume a fixed amount of gas but it depends on some
condition, and others that consume a non-constant amount
of gas. In the last two cases, the amount of gas consumed
depends on the current state of the execution environment.
Example 1: The following function is an excerpt of a

verified smart contract VestingContract6 taken from
Etherscan 7 service:
1 contract VestingContract {
2

3 uint public totTok; // originally totalTokens
4 uint[] vestingSchedule;
5

6 function updateVestingSchedule(uint256[]
memory _vestingSchedule) public onlyOwner {

7

8 require(vestingStartTime == 0);
9

10 vestingSchedule = _vestingSchedule;
11

12 for(uint i=0; i<vestingSchedule.length; i++){
13 totTok = totTok.add(vestingSchedule[i]);
14 }
15 }
16 · · ·

17 }

This code shows function updateVestingSchedule,
which receives an array _vestingSchedule as a parameter
and copies it to a state variable (Line 10, L10 for short).
Additionally, by means of the loop at L12, it accumulates
all values received in the array in a state variable totTok.
The addition is performed by means of library SafeMath,
widely used in Ethereum programs, which implements the
basic mathematical operations with an overflow check.
Interestingly, though this code apparently executes only one
loop, the EVM code obtained from this function includes three
different iterative parts: (a) the assignment in L10 produces a
loop that copies all values contained in _vestingSchedule
to the state variable; (b) L10 produces another loop that
executes when the array stored at vestingSchedule is
longer than the array stored at _vestingSchedule, setting

6https://etherscan.io/address/0×1273c54cc3a7d5320b210437906eda3ea1
aa1a36

7https://etherscan.io/

to zero the remaining elements of vestingSchedule;

and, (c) the loop at L12, which traverses all elements in
vestingSchedule. �

B. RESOURCE ANALYSIS
Static resource analyzers aim at inferring a bound on the
resource consumption (a.k.a. cost) of executing a program on
a given input data. Resource analysis is usually performed in
two phases [35]:
• a first phase whose goal is the generation of the cost
relations from the program to be analyzed (see [4], [18]);

• and a second phase that aims at computing a closed-form
upper-bound from the cost relations [1], [16].

In this article, we aim at producing a cost relation system
from EVM programs and, using off-the-shelf solvers (e.g. [1],
[7], [16]), obtain upper-bounds from the cost relation system.
In the context of Ethereum smart contracts, working with
the EVM code presents the following advantages: (i) only 1%
of the source code of the deployed smart contracts is avail-
able [19] (the blockchain only stores the EVM bytecode of the
contract); (ii) there is valuable information that is available
at EVM level (e.g., the information needed to compute the
gas consumption, or related to verification purposes); (iii) the
code may be subject to optimizations made by the compiler,
which might be overlooked by a source-code analyzer.

The first phase of our resource analysis of EVM programs
is described in detail in [3]. The transformation of an EVM
program into a cost relation system is done in three steps: (1)
a first step that produces a stack-sensitive control flow graph
(S-CFG) [3], which replicates those nodes that can be reached
with different stacks to capture all possible execution traces
of the program; (2) a second step that takes the S-CFG of
the smart contract and produces a rule-based representation
(RBR) of the program [3], which preserves the flow of the
program and where recursion is the only form of iteration;
and, (3) a third step that produces a cost relation system from
the RBR [3], which models the cost of the program in a set of
cost equations.

Cost equations are syntactically close to recurrence rela-
tions. They can be converted into closed-form expressions,
written in terms of the input parameter, which bound the cost
of the program with respect to a specific cost measure. The
structure of invocations in the cost relation system can be
directly obtained from the rule base representation. In gen-
eral, given an EVM program, we can compute a cost relation
system composed of equations of the form:

C(x) = cexp+
k∑
i=1

Yi(yi)+ C(z), ϕ (1)

where C is the equation name and x its parameters; cexp is
the cost produced by the execution of the code related to the
equation;

∑k
i=1 Yi(yi) is the addition of the cost produced

by calls to other equations; C(z) includes the cost associated
with recursive invocations; and ϕ is a set of linear constraints
relating the values of the variables x, yi and z.

25498 VOLUME 9, 2021

J. Correas et al.: Static Profiling and Optimization of Ethereum Smart Contracts Using Resource Analysis

One fundamental component that is used to produce the
cost relation system is the cost model. A cost model is a func-
tion θ that, depending on the type of resource to be measured,
assigns a measure of the cost of executing each instruction
in the program. Cost models are used in the computation
of the cost associated with each equation cexp as follows:
given a rule with instructions b1, . . . , bn, its cost associated
is cexp =

∑
i=1,...,n θ (bi). In our approach we only consider

platform-independent costmodels, e.g. the number of instruc-
tions or the gas consumed by the program. On the contrary,
those resources that depend on the execution environment,
like the execution time or energy consumed by a program,
are not considered in our approach.

A simple cost model, which assigns cost 1 for all instruc-
tions, can be defined to compute an upper-bound on the
number of EVM bytecode instructions that might be executed
by an EVM program:
Definition 1 (number of instructions cost model): Given

an EVM bytecode instruction b, the cost model θI (b) is a
function defined as follows:

θI (b) = 1

The set of linear constraints ϕ in equation (1) and the
cost equations are used to compute the upper-bounds. The
computation starts with the inference of the ranking functions
[17], [31] of the recursive equations. The ranking functions
allow us to guarantee the termination of the program and
bound the number of recursive invocations. Then, the worst
case cost of executing an equation is computed bymultiplying
its maximum number of executions and the worst case cost
of executing it, which will be computed by using ϕ. With this
technique, we can compute constant, logarithmic, polynomial
or exponential cost expressions.

We use UI to refer to the upper-bound computed using the
cost model θI . In what follows, we will use UX to refer to the
upper-bound computed by using the cost model θX .
Example 2: Using θI , we get that an upper-bound on the

amount of EVM instructions executed by the function shown
in Example 1 is the expression:

UI = 333+
21 ∗ nat(_vs)+ (a)
17 ∗ nat(vs− _vs)+ (b)
77 ∗ nat(_vs)+ (c)

In what follows, the cost expressions uses _vs to refer to the
length of _vestingSchedule and vs refers to the length of
the state variable vestingSchedule. Function nat(x) is a
function used in cost expressions to avoid negative values: it
returns x if x > 0 and 0 otherwise. Observe that it is needed,
not only to handle negative values in the input parameters,
but also to avoid negative values operations like vs − _vs.
In the cost expression above we can see the three parametric
expressions, within the nat functions, which corresponds to
the three loops mentioned in Example 1. Subexpression (a)
includes the number of instructions needed for copying the
parameter to the state variable, (b) includes the instructions of

cleaning the remaining vs−_vs elements; and (c) corresponds
to the instructions of the loop at L12. Observe that, though the
loop at L12 is bounded by vestingSchedule, its number
of iterations in the upper bound is expressed in terms of the
length of the input argument _vs. �

C. GAS ANALYSIS
The most common gas consumption vulnerabilities in
Ethereum are caused by iterative operations whose number
of iterations are bounded by unknown values. The static
analyses included in the Solidity compiler detect constant
gas bounds and some patterns that might potentially produce
out-of-gas errors, for instance, loops that are bounded by a
state or a parameter value, methods that receive an array as
a parameter or delete operations over a state array. These
vulnerabilities might be detected at compilation time. Thus,
a client invoking a contract whose source code is not available
might be potentially vulnerable but it will not be warned by
the platform.

The second relevant point to note happens when the gas
is bounded by a parametric expression. In these programs,
the Solidity compiler does not infer a precise bound, returning
∞ as gas bound for them. This information only warns the
programmer in the use of loops, however, if the use of loops
cannot be avoided, it is not useful for determining the range
of values that are acceptable to run without out-of-gas errors.
The computation of the amount of gas consumed by each
instruction is defined in [37] and it is a complex model: the
gas consumed by some instructions depends on the execution
context, i.e., the amount of gas consumed might depend on
some values stored in the stack (e.g. EXP, CALLDATACOPY),
on the maximum amount of memory allocated of the value
(e.g. MLOAD, MSTORE), or on the previous values stored in a
storage location (e.g. SSTORE). As a consequence, the com-
putation of the gas consumed by each instruction requires
a complex cost model, θG , which allow us to infer an
upper-bound on the amount of gas consumed by an EVM
program. The details of θG can be found at [3] and we will
use it as a black box in the rest of the paper.
Example 3: The computation of the upper-bound using

θG returns two expressions UG and U ′G : the first one that
corresponds to the gas consumed by the EVM instructions
executed, and the second one, whose cost depends on the
amount of memory used by the program (see [3], [37] for
details). When applied to the code of Example 1 the results
are:

UG = 22608 +
3 ∗ nat(_vs) + (d)
20070 ∗ nat(_vs) + (a)
5057 ∗ nat(vs− _vs) + (b)
21066 ∗ nat(_vs) (c)

U ′G = 3 · (nat(_vs)+ 9)+
⌊
(nat(_vs)+ 9)2

512

⌋
As before, we see that the upper-bound UG depends on the
same loops detected in Example 2 plus a new cost expression

VOLUME 9, 2021 25499

J. Correas et al.: Static Profiling and Optimization of Ethereum Smart Contracts Using Resource Analysis

(d) which depends on nat(_vs). This subexpression appears
when using θG because the amount of gas needed to copy
the input array to memory depends on the length of the
array (the details of the cost of CALLDATACOPY can be found
at [37]). In U ′G , the amount of gas depends on the high-
est memory address accessed by the program. As the array
_vestingSchedule is passed as a parameter to the function
updateVestingSchedule at L6, it is copied to memory
before starting the execution of the function. Hence, themem-
ory gas bound U ′G is also parametric on the length of the input
array. By means of these expressions we can determine how
much gas is needed to successfully process the transaction
that executes function updateVestingSchedule and, thus,
the upper-bounds might help to avoid potential out-of-gas
errors. �

IV. STATIC PROFILING OF EVM PROGRAMS
USING RESOURCE ANALYSIS
In this section we describe how our resource analysis can be
used to prevent resource-related vulnerabilities and how we
can extend it to attribute the cost to different cost centers by
using the notion of static profilers.

The application of the resource analysis using the cost
models previously described in Section III produces a cost
expression which over-approximates the cost accumulated
by the execution of the whole program. An interesting and
flexible extension of our resource analyzer can be done by
incorporating to it the notion of cost centers [28]. Cost centers
are symbolic artifacts of the form c(x) that can be used in
the computation of the cost expressions as we are able to
attribute the cost to the cost center responsible of producing
it. The combination of cost centers and cost models will
allow us to perform a static profiling of the program by
distributing the resource consumption between the different
parts of the program. Our approach splits the computation
of cexp from equation (1) in two parts: the application of
the cost model to get the cost associated to the instruction as
it was described in Section III-B and the generation of the
cost centers responsible of executing it. We use P to denote
a function responsible of generating the cost center expres-
sion of a given program point of the program. The concrete
definition of P will depend on the granularity and the kind of
information we aim at profiling, as e.g., the program counter
of the bytecode instruction responsible of the cost.

In this way, by using a profiler we enrich the cost expres-
sions of the cost relation system: given a profilerP(pp), a cost
model θ and a rule with a list of program points pp1, . . . , ppn
of the form pp ≡ pc:b, where pc corresponds to the program
counter and b to the EVM bytecode instruction, we compute
cexp as follows:

cexp =
n∑
i=1

P(ppi) ∗ θ (bi)

The use of a profiler produces a closed-form upper-bound
that includes expressions of the form c(x), where the values of

x will depend on the profiler used. For instance, if the profiler
includes the program counter, in expressions of the form c(x),
the value of x could be all program counters of the program.
We use UX

Y to refer to the upper-bound computed by using
PX and θY . In order to obtain the cost associated to a given
cost center λ, i.e., UX

Y |λ, we replace c(λ) by 1 and c(_) by
0 for all other cost centers in the upper-bound. We can easily
extend the computation of an upper-bound for a given set of
cost centers S, i.e., UP

θ |S , by replacing c(λ) by 1 if λ ∈ S and
by 0 otherwise.

Depending on the information we are interested in, we can
define different profilers. For instance, the EVM instructions
profiler, PB, allows us to separate the resource consumption
in terms of the different EVM bytecode instructions executed
by the program:
Definition 2 (EVM instructions profiler): Given an EVM

program point pp, we define PB as follows:

PB(pp) = c(b)

In this profiler we are accounting the cost according to
the specific EVM bytecode instruction that is responsible of
the corresponding resource consumption. The computation
of UB

I allows us to infer the amount of times a program
point might be executed (e.g. external calls, arithmetic opera-
tions, etc.) or whether the program could be executing a high
number of memory or storage accesses as we can see in the
following example.
Example 4: Given the Solidity code shown at Example 1,

by computing

UB
I |{SLOAD,SSTORE} = 8+ 6 ∗ nat(_vs)+ nat(vs− _vs)

we get an upper-bound on the number of storage (state vari-
ables) accesses performed by the function under analysis.
Analogously, by using θG , we obtain a bound on the amount
of gas consumed due to storage accesses:

UB
G |{SLOAD,SSTORE} = 21400 + 40800 ∗ nat(_vs) +

5000 ∗ nat(vs− _vs)

�

Thanks to their flexibility, the use of profilers allows us to
bind the resource consumption with the program point where
this consumption is produced by using these program points
in the profiler definition.
Definition 3 (program point profiler): Given a program

point pp, we define PS as follows:

PS (pp) = c(pc)

Interestingly, the use of the program point in the upper-
bound computation allows us to integrate the information
generated from the compilation of a Solidity program with
the results obtained by our resource analyzer at EVM level.
The information produced by the Solidity compiler includes
a mapping that binds each EVM program point with the corre-
sponding piece of Solidity code that produces it. For instance,
with this information, given a line number l in the Solidity
code, we will use function get_line_pps(l) to refer to the set

25500 VOLUME 9, 2021

J. Correas et al.: Static Profiling and Optimization of Ethereum Smart Contracts Using Resource Analysis

of EVM program points generated for line l of the Solidity
program. Analogously, we will use get_func_pps(f), where
f is a Solidity function (public or private), for referring to the
EVM program points produced by the code in f . Combining
the profilers defined above we can get relevant information
about our Solidity program: (1) given a Solidity line of
code we can use UB

G |get_line_pps(l) to compute the amount
of gas consumed by a specific line of code (or a set of
lines) discarding the gas consumed by other lines of code;
or (2) given a Solidity function, we can use UB

G |get_func_pps(f)
to determine the amount of gas consumed within a Solid-
ity function ignoring the cost due to the rest of the
functions.
Example 5: The computation of UB

G |get_line_pps(10) returns
a bound on the amount of gas consumed at L10:

UB
G |get_line_pps(10) = 2236+ 20070 ∗ nat(_vs)

+5057 ∗ nat(vs− _vs)

Observe that this upper-bound clearly shows the two hid-
den loops produced by the array assignment of L10 and its
corresponding number of iterations: the first loop, bounded
by nat(_vs), which copies the array from memory to the
state variable; and the second one, which cleans the potential
remaining part of the state variable array when its original
size is larger than the input array. �

A relevant issue to note of the static analyses built by
Ethereum on top of the Solidity compiler is that they can-
not warn some common gas-efficient practices. It spots a
potential vulnerability when a loop is bounded by a state
variable (basic variable or array) or by a parameter variable
passed to a function. However, very simple modifications
like the use of a local variable to save the value stored
in the state variable before its use to bound the loop, are
not detected by the compiler analyses. Interestingly, we can
use the cost model θI , not only to bound the number of
iterations of the loops, but also to find out which are the
input parameters involved in the number of iterations. If the
upper-bound is parametric with respect to an input variable,
a parameter or a state variable, we are able to spot a poten-
tial vulnerability at the corresponding line of the Solidity
program.
Example 6: Given the code shown in Example 1, the static

analyses included in the compiler determine that there is
a loop over a dynamic array with a non-fixed number of
iterations. However, a very simple modification, like saving
the value of vestingSchedule.length in a local variable,
hides the potential vulnerability to the compiler. For instance,
if we replace the code at L12 of the running example by the
following gas efficient code:

uint len = vestingSchedule.length;
(?) for (uint i=0; i<len; i++)

The analyses of the Solidity compiler will not spot any
potential vulnerability. On the contrary, bymeans of our static
profiling we can produce the following upper bound in the

number of instructions executed at the line marked with (?):

UI
G |get_line_pps(?) = 10+ 16 ∗ nat(_vs)

Note that, as before, in spite of the modification, our resource
analysis is able to detect that the number of iterations of the
loop depends on the length of the longest array. �

Profilers flexibility allows us to extend the capabilities
of the resource analysis by combining multiple profilers in
a unique cost expression. This combination can be done
by using a logical formula L(pp) to represent the relations
between the different profilers P1(pp), . . . ,Pn(pp) included
in the formula, which adheres the following grammar:

L = P | E ∨ E | E ∧ E

Note that we do not include the parameter pp as it is
clear from the context. Using a logical formula to model
the relation between the different profilers we can express
complex properties combining the information included in
the cost centers returned by the profilers. Given a formula
L that relates a list of profilers, we use C(L) to refer to the
following transformation:

C(L) =

P if L = P
C(E) ∗ C(E) if L = E ∧ E
max(C(E), C(E)) if L = E ∨ E

In this way, given a rule of the RBR with program points
pp1, . . . , ppn, a list of profilers P1, . . . ,Pm and a logical
formula L(pp) defined on P1, . . . ,Pm, the cost equations are
computed as follows:

cexp =
n∑
i=1

C(L(ppi)) ∗ θ (bi)

Analogously, when an upper-bound is computed using a
logical formula L defined on P1, . . . ,Pm, it can receive mul-
tiple sets of cost centers SP1 , . . . , SPm , one set per profiler:

UL
θ |SP1 ,...,SPm

Example 7: By using this generalization, the conjunction
ofPB andPS , i.e.,L = PB∧PS , allows us to get the amount
of storage accesses performed in a specific line of code L10:

UL
I |{SLOAD,SSTORE},get_line_pps(10) = 2+ nat(_vs)

+nat(vs− _vs)

�

V. OPTIMIZING GAS CONSUMPTION
One of the most interesting applications of resource analysis
is the detection of potential optimizations during the deve-
lopment process. During this phase, our analysis might help
to spot possible bottlenecks in the code: e.g. functions that
might be consuming a high amount of resources and can help
the programmer to reduce this consumption.

As mentioned above, the most relevant resource in the
Ethereum context is the amount of gas consumed by the
program. In this section we present how our tool helps in

VOLUME 9, 2021 25501

J. Correas et al.: Static Profiling and Optimization of Ethereum Smart Contracts Using Resource Analysis

the development phase to detect improvable functions and we
propose an automatic optimization of those programs access-
ing to state variables when those accesses can be replaced by
gas-efficient stack accesses. In particular, we aim at replacing
multiple accesses to the (global) storage data within a frag-
ment of code (each write access costs 20,000 units of gas in
the worst case and 5,000 in the best case) by accesses to local
variables. To do so, when it is safe, we first copy the data in
the storage into a newly defined local variable with the same
name of the storage variable. Bymeans of this transformation,
the accesses to the storage variable are now performed with
the local variable instead of the original storage variable,
reducing the amount of gas needed to execute the operations.
Finally, when it is needed, we update the storage variable
with the data of the local variable. In essence, in this trans-
formation the local variable acts as a cache for the storage
variable. Unluckily, as we are copying global data into local
variables, this transformation is not safe when other functions
can read or modify the storage variable. For guaranteeing the
soundness of the transformation we first need to check two
conditions:
(a) the storage variable is only accessed in the function to

be optimized;
(b) there are no external calls at any function reachable from

the function of interest.
The first condition (a) guarantees that there are no tran-

sitive calls from the function to be optimized that modify
neither read the state variable of interest. To do so, we define
a profiler to include in the upper-bound which is the state
variable being accessed when executing a storage instruction.
Given a program point pp whose instruction b is SLOAD or
SSTORE, we assume the existence of a function getStVar(pp)
which returns the state variable s accessed at pp or ⊥ if the
variable cannot be statically computed (e.g. if it is used to
traverse an array). We use getStVar(pp) in the definition of
the storage profiler :
Definition 4 (storage profiler): Given a program point pp,

we define PT as follows:

PT (pp) =
{
c(getStVar(pp)) if b ∈ {SLOAD, SSTORE}
0 otherwise

The following combination of profilers allows us to com-
pute the number of storage accesses performed at the different
program points of the program:

Lst = PB ∧ PS ∧ PT

With Lst , given a set of state variables S and a function f ,
we can compute the amount of storage accesses performed to
state variables in S in the code of f . To do so, we compute
ULst
I and evaluate it as follows:

ULst
I |{SLOAD,SSTORE},get_func_pps(f),S

Analogously, we can also get the amount of accesses to
storage locations performed in other functions just by using

the set with the rest of the program points of the code:
notin_func_pps(f).
Example 8: The upper-bound obtained by analyzing the

running example using Lst allows us to compute the amount
of storage accesses attributed to totTok in the function
updateVestingSchedule (upVs for short):

ULst
I |{SLOAD,SSTORE},get_func_pps(upVs),{totTok} = 2 ∗ nat(_vs)

�

The second condition (b) checks the existence of external
calls to avoid potential reentrant calls whichmight modify the
values hold in the state variables. This can be done by means
of a flow analysis over the EVM code or we can use the upper
boundUB

I |{CALL,STATICCALL,DELEGATECALL} > 0 to evaluate this
property.
Definition 5 (optimizable state variable): Given a func-

tion f , its EVM code and a basic type storage variable s, we say
that s is optimizable in f , optimizable(f,s), when the following
conditions hold:

leftmargin=*
1) ULst

I |{SLOAD,SSTORE},get_func_pps(f),{s} > 2

2) ULst
I |{SLOAD,SSTORE},notin_func_pps(f),{s,⊥} = 0

3) UB
I |{CALL,STATICCALL,DELEGATECALL} = 0

Observe that constraint (1) restricts the optimization to
those state variables whose number of accesses can be
reduced, while restrictions (2) and (3) are safety conditions
to ensure that there are no accesses to the state variables of
interest in other functions.
Example 9: In the code described in Example 1,

we find one optimizable state variable: totTok (called
totalTokens in the original program). Its number of
accesses is 2 ∗ nat(_vs) as we have computed in Example 7;
it is not accessed in other methods reachable from
updateVestingSchedule; and the function is not per-
forming calls to external addresses because invoca-
tions to functions defined in libraries (like SafeMath)
replace the invocation by the code of the invoked library
function. �

Our transformation is performed in the Solidity pro-
gram and it consists in saving in local variables the val-
ues of the state variables at the beginning of the func-
tion of interest. At the end of the function we restore the
state variables with the values stored in the local vari-
ables which might be modified along the function execu-
tion. Given a Solidity function f , we assume that exists a
function getStVars(f), which returns the set of basic type
storage locations s1, . . . , sn accessed in the code of f . Those
accesses that cannot be statically obtained are not returned
by getStVars(f). We use function type(s) to get the Solidity
type of the storage variable s. We define the transformation as
follows:
Definition 6 (function optimization): Given a function f

of the form f (x) m returns (r){code} where x,m, r are the
parameters, modifiers and returned values of f , respectively,
and S={s | s ∈ getStVars(f) ∧ optimizable(f , s)}, the

25502 VOLUME 9, 2021

J. Correas et al.: Static Profiling and Optimization of Ethereum Smart Contracts Using Resource Analysis

optimized function is of the form:

f (x) m returns (r){
(1) type(s) s = get__s(); ∀ s ∈ S
(2) code
(3) set_s(s);
} ∀ s ∈ S

(4) function get_s() private returns (type(s)){ ∀ s ∈ S
return s;
}

(5) function set_s(type(s) val) private { ∀ s ∈ S
s = val;
}

We add some pieces of code for all optimizable state
variables in the transformation. The optimization process is
applied in five steps: (1) the contents of the state variables are
copied to local variables with the same names; (2) the original
code is kept unchanged but now it accesses local variables due
to the shadowing of the state variables; (3) modified values in
local variables are copied back to the storage; (4) a private
function is defined to get the state variable value; and (5)
another function is defined to copy the value back to the
storage. Observe that points (3) and (5) are not needed when
the state variable is not changed in the code of the function.
Example 10: Given the running example, the optimization

of updateVestingSchedule produces the following trans-
formed code:

1 function updateVestingSchedule(uint256[] memory
_vestingSchedule) public onlyOwner {

2 uint totTok = get_totTok();
3

4 require(vestingStartTime == 0);
5

6 vestingSchedule = _vestingSchedule;
7

8 for(uint256~i=0; i<vestingSchedule.length; i
++) {

9 totTok = totTok.add(vestingSchedule[i]);
10 }
11 set_totTok(totTok);
12 }
13

14 function get_totTok () private returns (uint) {
15 return totTok;
16 }
17

18 function set_totTok (uint val) private {
19 totTok = val;
20 }

Note that we have only optimized totTok because variable
vestingSchedule is not a basic variable and cannot be
optimized. The computation of UG now returns an expression
which clearly reduces the total amount of gas:

UG = 42044+ (e′)
3 ∗ nat(_vs)+ (d ′)
20070 ∗ nat(_vs)+ (a′)
5057 ∗ nat(vs− _vs)+ (b′)
860 ∗ nat(_vs) (c′)

TABLE 1. Statistics of the 40,219 public functions analyzed.

Observe that we get a reduction with respect to UG of Exam-
ple 3 because the accesses to totTok are only performed
once and the cost of these accesses is moved from (c) in
Example 3 to the constant gas cost (e’). �

VI. EXPERIMENTS
This section provides the experimental results obtained
from the analysis of more than 5,000 real smart contracts.
Section VI-A contains some statistics generated using the
cost models and profilers defined in the previous sections.
The results show that they can be used not only to identify
storage optimizations but also to detect several well-known
security vulnerabilities. Section VI-B compares our approach
and the results obtained in our experimental evaluation with
different state-of-the art tools.

A. EXPERIMENTAL EVALUATION
The experiments have been executed on an Intel Core
i7-7700T at 2.9GHz x 8 and 7.7GB of Memory, running
Ubuntu 16.04. Our tool is able to analyze smart contracts writ-
ten in Solidity (from versions 0.4.0 until 0.7.48) or bytecode
for the Ethereum Virtual Machine up to version 1.9.23. We
use PUBS [1] to solve the cost relation system produced by
our analysis and compute the upper-bound expressions.

We downloaded the last 1,800 verified open-source smart
contracts from Etherscan service whose source code was
available at 15th October 2020. From them, we removed those
contracts that raise a compiler error and those whose source
code was stored as a json dictionary rather than a Solidity
file. After this process, we have obtained 5,675 real smart
contracts stored in 1,557 Solidity files. These contracts con-
tain 40,219 public functions that have been analyzed using
different cost models and profilers getting the results shown
in Table 1.

A 5.23% of the smart contracts were written using the
version 0.4 of the compiler, 44.46% using the version

8Latest version released up to October 2020

VOLUME 9, 2021 25503

J. Correas et al.: Static Profiling and Optimization of Ethereum Smart Contracts Using Resource Analysis

0.5, 35.95% using the version 0.6 and 14.36% using the
version 0.7.

The results are split in three sections: Resource Analysis,
Optimization and Vulnerable External Calls. Each section con-
tains three columns: the first one shows a description of the
results of the analysis applied; the second column shows
the number of public functions inferred for each case; and
the third column contains the percentage of each case with
respect to the total number of public functions analyzed.
Using the cost model θI (without a profiler) we can infer if
a function is constant or if it is parametric with respect to
any of its input parameters. As shown in the first two rows
of Table 1, 80.84% of the analyzed functions have a con-
stant upper-bound while 9.02% are parametric. From those
functions whose bound is parametric, we get that 98% have
a linear bound: 71.37% whose cost depends on the value of a
state variable, 13.84% on input variables and 14.79% on data
related to the execution context (such as CALLDATASIZE).
As we have seen, these bounds can be used, not only to
prevent the users from a potential out-of-gas error, but also to
determine the valid input values that can be used to success-
fully execute the transaction. The third row shows the number
of public functions that reach a timeout (set to 60 seconds).
In all cases, the timeout is reached during the process of
solving the cost equation system to get the closed-form upper-
bound. The last row shows the number of public functions that
raise any of the errors produced by the solver. These errors
may occur, among other reasons, due to a loss of precision in
the decompilation phase (see Section III-B) or limitations of
the solver (e.g. the bit-wise operations are not handled by the
solver and have to be abstracted).

In section Optimization in Table 1, we show the num-
ber of public functions that can be optimized according to
Definition 5. For a 16.68% of the optimizable public func-
tions we are able to optimize more than one state variable.
As before, 4.42% of the functions analyzed reach a timeout
and the solver raises an error for 2.49% of them. We have
proved that the 2,739 optimized public functions consume
less gas than the original ones by using the cost model θG .
Furthermore, we have checked that (i) all state variables
that have been safely optimized correspond to basic type
variables; and (ii) that all the gas-expensive storage accesses
in the public functions analyzed that correspond to basic type
variables have been optimized if the conditions described in
Section V hold (i.e., it does not infer neither false positives
nor false negatives, respectively).

Finally, in the third section of Table 1, Vulnerable Exter-
nal Calls we show the number of functions (first row) that
execute a bytecode that performs an external call (CALL,
DELEGATECALL, STATICCALL) and the number of functions
that might execute the CALL bytecode (second row). Note
that the second row is a subset of the first row of this
section. The number of functions that make an external call
and those that execute the bytecode CALL are computed
using the cost model θI and the profiler PB. For the num-
ber of functions that make an external call, the computed

TABLE 2. Performance statistics of the analyses executed.

upper-bound UB
I |{CALL,STATICCALL,DELEGATECALL} has to be

greater than 0. The number of functions that execute CALL
bytecode is a subset of the previous one and is computed using
the upper-bound UB

I |{CALL}. In the last row of the section,
we consider a function as potentially vulnerable if it has a
call to an external contract and the call is not generated with
the instructions send or transfer. These instructions avoid
re-entrancy recursive attacks as they only transfer 2,300 units
of gas, the minimal amount to execute an external function.
called contract. This amount of gas makes impossible to
execute any instruction located in the fallback method of
the invoked contract. Although the inference of this informa-
tion is straightforward if the solidity file is available, these
instructions are translated into the same bytecode CALL at
EVM level. To identify the CALL bytecodes that come from a
send or transfer instruction we have defined the following
cost model θSD:

θSD(b) =
{
stack[3] if b ≡ CALL

0 otherwise

This cost model θSD takes as its cost the amount of gas
provided to the external call to be executed (stored in the
3 top-most stack location) if the bytecode is CALL and 0 other-
wise. Thus, using the cost model θSD and the profiler PS we
identify the source of the bytecode CALL. We have checked
that we do not get false negatives, i.e., all the 459 public func-
tions out of the 40,219 analyzed that have a send or transfer
instruction in its source code are identified as secure.

The information related to the efficiency of the tool is
shown in Table 2. The time needed in the generation of the
intermediate representation (it is executed just one time) is
negligible compared to the time taken by the analyses. The
resource analysis referenced in Table 1 takes 163,807.26s,
the optimization analysis takes 160,843.35s and the optimizer
takes 0.28s. Finally, the cost model and profilers used in
upper-bounds generated in the vulnerability analyses carried
out are similar and the analyses take 158,998.66s in the worst
case.

Note that a function takes 4.07s to be analyzed in average.
The time that our tool needs to analyze a function depends
on the cost model and the profiler used. If we compare the
average of the efficiency results presented in [3] using the
cost model θG (without any profiler) with those obtained by
the other cost models, it is clear that the solver needs less time
to infer the upper-bounds.

25504 VOLUME 9, 2021

J. Correas et al.: Static Profiling and Optimization of Ethereum Smart Contracts Using Resource Analysis

B. COMPARISON WITH OTHER TOOLS
In addition, we have also have compared some of the results
obtained in Table 1 with the output of three open-source tools:
Solidity compiler solc, the static analyzer of Remix 9 and
Oyente [26]. The cost models θI and θG allow us to know
if any loop of the functions analyzed depends on a state or
input variable. In comparison to Remix and solcwe claim that
our resource analysis produces more precise results, as they
only infer a precise bound for the public functions whose gas
cost is constant. In the case of constant gas bounds, we get
the same precision as solc and Remix. However, if the bound
is parametric, they only return ∞ as gas bound, showing a
warning to the programmer during the development phase
(not for already compiled contracts). In addition, the gas static
analyzer of Remix is only able to spot potential vulnerabilities
when the state or input variables is directly involved in the
loop. If it is shadowed using a local variable (as showed in
Example 6 above), it is not able to identify it as potentially
vulnerable. A 16.07% out of the 3,627 public functions whose
upper-bound is parametric (see Table 1) are not detected as
potentially vulnerable by Remix static analyses.

Oyente [26] is one of the most popular open-source EVM
analyzers. It is focused on finding five types of vulnerabil-
ities: (1) transaction-ordering dependencies occur when the
final state of a transaction depends on the execution order of
two instructions, (2) timestamp dependencies happen when
the EVM instruction TIMESTAMP is involved in external calls
or conditional statements, (3) exceptions dependencies occur
when there are unchecked return values of external calls,
(4) reentrancy vulnerabilities, and (5) integer overflows vul-
nerabilities. Oyente provides programming patterns to fix the
identified vulnerabilities. In addition, it is able to compute
the gas consumed by a transaction and the number of EVM
instructions executed. However, it is based on symbolic exe-
cution, the CFG that Oyente generates to build the traces is
not complete (losing execution paths), it limits the number of
nodes and the depth of the CFG and it unwinds the loop to
a fixed limit. In addition, it does not handle conditional gas
consumption and some of the EVM bytecodes considered are
underpriced (see [3] and [37] for more details). Thus, the tool
is neither sound nor complete and the results reported would
not be valid for certifying gas consumption.

Regarding the 2,558 vulnerable external calls (reentrancy
vulnerabilities) shown in Table 1, Remix static analyzer
reaches the same precision as our tool, i.e., it identifies the
same 1,688 public functions as potentially vulnerable (those
where the external calls are not performed with the instruc-
tions send or transfer) out of the 2,147 that execute a CALL.
As Remix works at Solidity level it cannot be used for already
deployed contracts. On the contrary, Oyente works at the level
of EVM bytecode, but it spots a high number of false positives
because it is not able to identify if a CALL comes from a
send or transfer function and, as a consequence, it marks
all the functions that might execute a CALL as vulnerable.

9https://remix.ethereum.org/

TABLE 3. Vulnerable functions according to the definitions of [25]
and [24].

Concretely, Oyente considers the 2,147 public functions that
execute a CALL shown in Table 1 as vulnerable. Thus, it spots
the 459 public functions that we identify as secure, as poten-
tially vulnerable.

Some other tools with similar purposes such as
GASPER [13], GasReducer [14], teEther [25] or Zeus [24]
are not open-source or they are not available online so we
cannot make a deeply experimental comparison. Anyway,
our analysis is able to further assist the contract developer
for detecting some additional vulnerabilities: For instance,
if we compute the upper-bound UB

I |{CALL,SELFDESTRUCT},
we infer the number of critical operations (as defined
in [25]) executed in the functions analyzed. We can also
use the upper-bound UB

I |{CALLCODE,DELEGATECALL} to known
the number of public functions that may execute arbitrary
code (also defined in [25]). And thanks to the upper-bound
UB
I |{TIMESTAMP,COINBASE,NUMBER,DIFFICULTY,GASLIMIT} we can

infer if a public function may execute some of the bytecodes
that can be modified by miners (defined in [24]), making the
contract vulnerable. The results of the analysis of the 40,219
public functions using the above cost models and profilers
can be seen in Table 3.

We have confirmed that there are no more public functions
that execute bytecodes related to the vulnerabilities analyzed,
i.e., our approach identifies all public functions potentially
vulnerable in the dataset studied. In addition, we have manu-
ally studied 500 random public functions for all cases shown
in Table 3 to confirm that the bytecodes involved in the
corresponding vulnerability are executed. We have verified
that the Solidity code that involves these bytecodes is not
opaque or dead. Thus, the bytecodes involved in the vulnera-
bility might be eventually executed. Note that some tools, like
GASPER [13], are able to analyze if a Solidity file has opaque
or dead code, but unluckily they are not publicly available to
compare their results.

VII. CONCLUSION AND FUTURE WORK
In this work, we present the notion of static profiler applied
on Ethereum smart contracts. The flexibility of the profilers
allows us to handle those properties that can be modeled
within the information statically available at EVM level. We
have formalized several cost models and profilers that can be
used within a resource analyzer to generate different sound
upper-bounds on a variety of resources (such as the number of
storage instructions, gas consumed by some EVM operations,
total ether sent by an external call, etc.). These upper-bounds
provide useful metrics that can be used by developers and
users. In addition, it can be used to optimize smart contracts
(when the source code is available) by analyzing the accesses

VOLUME 9, 2021 25505

J. Correas et al.: Static Profiling and Optimization of Ethereum Smart Contracts Using Resource Analysis

to storage. It proposed a sound transformation that replaces
the accesses to storage by accesses to memory that con-
sume less gas. We have applied them to analyze more than
40,000 real public function of smart contracts getting that a
9.02% are parametric, a 6.81% of them can be optimized, and
4.19% may be potentially vulnerable.

An interesting direction for future work is to improve the
precision of our tool optimizing, not only basic type variables,
but also complex type variables such as arrays, structs or
maps. In addition, we plan to relax the conditions defined
to optimize storage accesses in Section V and generalize the
optimization to functions which access to the state variables
in other functions of the contract different to the one under
analysis. Additionally, we would study the applicability of
the optimization at EVM level, which is a more complex case
as we would modify the structure of the EVM bytecode and
it may affect to the size and the addresses of the original
bytecode.

REFERENCES
[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla, ‘‘Closed-form upper

bounds in static cost analysis,’’ J. Automated Reasoning, vol. 46, no. 2,
pp. 161–203, Feb. 2011.

[2] E. Albert, J. Correas, P. Gordillo, G. Román-Díez, andA. Rubio, ‘‘GASOL:
Gas analysis and optimization for Ethereum smart contracts,’’ in Proc.
26th Int. Conf. Tools Algorithms Construct. Anal. Syst., in Lecture
Notes in Computer Science, vol. 12079. Dublin, Ireland: Springer, 2020,
pp. 118–125.

[3] E. Albert, P. Gordillo, A. Rubio, and I. Sergey, ‘‘Running on fumes:
Preventing out-of-gas vulnerabilities in Ethereum smart contracts using
static resource analysis,’’ in Proc. 13th Int. Conf. Verification Eval. Com-
put. Commun. Syst. (VECoS), in Lecture Notes in Computer Science,
vol. 11847. Porto, Portugal: Springer, 2019, pp. 63–78.

[4] D. E. Alonso-Blas and S. Genaim, ‘‘On the limits of the classical approach
to cost analysis,’’ in Static Analysis (Lecture Notes in Computer Science),
vol. 7460, A.Miné and D. Schmidt Eds. Deauville, France: Springer, 2012,
pp. 405–421.

[5] N. Ambroladze, ‘‘Fast and scalable analysis of smart contracts,’’ M.S. the-
sis, Swiss Federal Inst. Technol., Zürich, Switzerland, 2018.

[6] M. M. A. Aldweesh, M. Alharby, and A. V. Moorsel, ‘‘OpBench:
A CPU performance benchmark for Ethereum smart contract operation
code,’’ in Proc. IEEE Int. Conf. Blockchain (Blockchain), Jul. 2019,
pp. 274–281.

[7] R. Bagnara, M. P. Hill, and E. Zaffanella, ‘‘The parma polyhedra library:
Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems,’’ Sci. Comput. Program.,
vol. 72, nos. 1–2, pp. 3–21, 2008.

[8] C. Boogerd and L. Moonen, ‘‘Prioritizing software inspection results using
static profiling,’’ in Proc. 6th IEEE Int. Workshop Source Code Anal.
Manipulation. Washington, DC, USA: IEEE Computer Society, Sep. 2006,
pp. 149–160.

[9] C. Boogerd and L. Moonen, ‘‘On the use of data flow analysis in static
profiling,’’ in Proc. 8th IEEE Int. Work. Conf. Source Code Anal. Manipu-
lation, Sep. 2008, pp. 79–88.

[10] G. Canfora, A. D. Sorbo, S. Laudanna, A. Vacca, and C. AaronVisaggio,
‘‘Gasmet: Profiling gas leaks in the deployment of solidity smart con-
tracts,’’ CoRR, vol. abs/2008.05449, pp. 1–13, Dec. 2020.

[11] J. Charlier, S. Lagraa, R. State, and J. François, ‘‘Profiling smart contracts
interactions tensor decomposition and graph mining,’’ in Proc. 2nd Work-
shop Mining Data Financial Appl. Eur. Conf. Mach. Learn. Princ. Pract.
Knowl. Discovery Databases, Skopje, Macedonia, vol. 1941, Sep. 2017,
pp. 31–42.

[12] T. Chen, Y. Feng, Z. Li, H. Zhou, X. Luo, X. Li, X. Xiao, J. Chen, and
X. Zhang, ‘‘GasChecker: Scalable analysis for discovering gas-inefficient
smart contracts,’’ IEEE Trans. Emerg. Topics Comput., early access,
Mar. 6, 2020, doi: 10.1109/TETC.2020.2979019.

[13] T. Chen, X. Li, X. Luo, and X. Zhang, ‘‘Under-optimized smart con-
tracts devour your money,’’ in Proc. IEEE 24th Int. Conf. Softw. Anal.,
Evol. Reeng. (SANER). Washington, DC, USA: IEEE Computer Society,
Feb. 2017, pp. 442–446.

[14] T. Chen, Z. Li, H. Zhou, J. Chen, X. Luo, X. Li, and X. Zhang,
‘‘Towards saving money in using smart contracts,’’ in Proc. 40th Int. Conf.
Softw. Eng., New Ideas Emerg. Results, Gothenburg, Sweden, May 2018,
pp. 81–84.

[15] Ethereum. (2018). Solidity. [Online]. Available: https://solidity.
readthedocs.io

[16] A. Flores-Montoya and R. Hähnle, ‘‘Resource analysis of complex pro-
gramswith cost equations,’’ inProgramming Languages and Systems (Lec-
ture Notes in Computer Science), vol. 8858. Singapore: Springer, 2014,
pp. 275–295.

[17] R. W. Floyd, ‘‘Assigning meanings to programs,’’ in Program Verification.
Dordrecht, The Netherlands: Springer, 1993, pp. 65–81.

[18] A. Garcia, C. Laneve, and M. Lienhardt, ‘‘Static analysis of cloud elastic-
ity,’’ in Proc. 17th Int. Symp. Princ. Pract. Declarative Program., Siena,
Italy, Jul. 2015, pp. 125–136.

[19] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and A. Smaragdakis,
‘‘Madmax: Surviving out-of-gas conditions in Ethereum smart contracts,’’
in Proc. PACMPL, 2018, pp. 116:1–116:27.

[20] I. Grishchenko, M. Maffei, and C. Schneidewind, ‘‘A semantic framework
for the security analysis of Ethereum smart contracts,’’ in Principles of
Security and Trust (Lecture Notes in Computer Science), vol. 10804.
Thessaloniki, Greece: Springer, 2018, pp. 243–269.

[21] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,
M. Sagiv, and Y. Zohar, ‘‘Online detection of effectively callback free
objects with applications to smart contracts,’’ in Proc. ACM Program.
Lang., vol. 2, Jan. 2018, pp. 1–28.

[22] R. Haemmerlé, P. López-García, U. Liqat, M. Klemen, J. P. Gallagher,
and M. V. Hermenegildo, ‘‘A transformational approach to parametric
accumulated-cost static profiling,’’ in Functional and Logic Programming
(Lecture Notes in Computer Science), vol. 9613. Kochi, Japan: Springer,
2016, pp. 163–180.

[23] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev, ‘‘Learn-
ing to fuzz from symbolic execution with application to smart contracts,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., London, U.K.,
Nov. 2019, pp. 531–548.

[24] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, ‘‘ZEUS: Analyzing safety
of smart contracts,’’ in Proc. Netw. Distrib. Syst. Secur. Symp. Reston, VA,
USA: Internet Society, 2018, pp. 1–12.

[25] J. Krupp and C. Rossow, ‘‘Teether: Gnawing at Ethereum to automatically
exploit smart contracts,’’ in Proc. USENIX Secur. Symp. Berkeley, CA,
USA: USENIX Association, 2018, pp. 1317–1333.

[26] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, ‘‘Making smart
contracts smarter,’’ in Proc. ACM SIGSACConf. Comput. Commun. Secur.,
Oct. 2016, pp. 254–269.

[27] M. Marescotti, M. Blicha, A. E. J. Hyvärinen, S. Asadi, and
A. N. Sharygina, ‘‘Computing exact worst-case gas consumption for smart
contracts,’’ in Leveraging Applications of Formal Methods, Verification
and Validation. Industrial Practice (Lecture Notes in Computer Science),
vol. 11247. Limassol, Cyprus: Springer, 2018, pp. 450–465.

[28] R. G. Morgan and S. A. Jarvis, ‘‘Profiling large-scale lazy functional
programs,’’ J. Funct. Program., vol. 8, no. 3, pp. 201–237, May 1998.

[29] J. Nagele and M. A. Schett, ‘‘Blockchain superoptimizer,’’ in Proc. 29th
Int. Symp. Logic-Based Program Synth. Transformation (LOPSTR), 2019,
pp. 1–15. [Online]. Available: https://arxiv.org/abs/2005.05912

[30] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, ‘‘Finding the
greedy, prodigal, and suicidal contracts at scale,’’ in Proc. 34th Annu.
Comput. Secur. Appl. Conf., Dec. 2018, pp. 653–663.

[31] A. Podelski and A. Rybalchenko, ‘‘A complete method for the synthe-
sis of linear ranking functions,’’ in Verification, Model Checking, and
Abstract Interpretation (Lecture Notes in Computer Science). Venice,
Italy: Springer, 2004, pp. 239–251.

[32] C. Signer, ‘‘Gas cost analysis for Ethereum smart contracts,’’ M.S. thesis,
Swiss Federal Inst. Technol., Zürich, Switzerland, 2018.

[33] K. Toyoda, K. Machi, Y. Ohtake, and A. N. Zhang, ‘‘Function-level bottle-
neck analysis of private proof-of-authority Ethereum blockchain,’’ IEEE
Access, vol. 8, pp. 141611–141621, 2020.

[34] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. Vechev, ‘‘Securify: Practical security analysis of smart contracts,’’ in
Proc. ACM SIGSACConf. Comput. Commun. Secur., Oct. 2018, pp. 67–82.

25506 VOLUME 9, 2021

http://dx.doi.org/10.1109/TETC.2020.2979019

J. Correas et al.: Static Profiling and Optimization of Ethereum Smart Contracts Using Resource Analysis

[35] B. Wegbreit, ‘‘Mechanical program analysis,’’ Commun. ACM, vol. 18,
no. 9, pp. 528–539, Sep. 1975.

[36] X. Wei, C. Lu, F. R. Ozcan, T. Chen, B. Wang, D. Wu, and Q. Tang,
‘‘A behavior-aware profiling of smart contracts,’’ in Security and Privacy
in Communication Networks Security and Privacy in Communication
Networks (Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering), vol. 305. Orlando, FL,
USA: Springer, 2019, pp. 245–258.

[37] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction
ledger,’’ Ethereum Project Yellow Paper, 2014, vol. 151, no. 2014,
pp. 1–32.

[38] Y. Wu and J. R. Larus, ‘‘Static branch frequency and program profile anal-
ysis,’’ in Proc. MICRO. 27th Annu. IEEE/ACM Int. Symp. Microarchitec-
ture. New York, NY, USA: Association Computing Machinery, Dec. 1994,
pp. 1–11.

[39] S. Zekany, D. Rings, N. Harada, M. A. Laurenzano, L. Tang, and J. Mars,
‘‘CrystalBall: Statically analyzing runtime behavior via deep sequence
learning,’’ in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2016, pp. 1–12.

JESÚS CORREAS received the M.S. degree in
computer science and the Ph.D. degree in com-
puter languages and systems from the Universidad
Politécnica de Madrid, Spain, in 2000 and 2008,
respectively.

He was employed as an Assistant Professor with
the Complutense University of Madrid and the
Universidad Politécnica de Madrid. He has also
worked in private software development compa-
nies. He has been a tenured Lecturer with the

Complutense University of Madrid, since 2009. His main research interests
include static program analysis, constraint declarative programming, and
object-oriented concurrent and distributed systems. He has been involved in
several national and European research projects.

PABLO GORDILLO was born in Madrid, Spain,
in 1992. He received the B.S. degree in mathemat-
ics and computer science and the M.S. and Ph.D.
degrees in computer science from the Universidad
Complutense deMadrid, Spain, in 2015, 2017, and
2020, respectively.

He has been a Postdoctoral Researcher with the
Universidad Complutense de Madrid, since 2020.
He is also a Research Member of the COSTA
Group, since 2014. His research interests include

static and dynamic analyses, formal methods, testing and verification of
concurrent programs, and distributed systems. He is also working on analysis
and verification of Ethereum smart contracts. He has been involved in several
national and European research projects.

GUILLERMO ROMÁN-DÍEZ received the B.S.
and M.S. degrees in computer science and the
Ph.D. degree in software and systems from
the Universidad Politécnica de Madrid, Spain,
in 2004, 2008, and 2012, respectively.

He was an Assistant Professor with the Univer-
sidad Politécnica de Madrid, in 2016, where he
has been a tenured Lecturer since 2020. He was
employed as a Postdoctoral Researcher with the
Universidad Politécnica de Madrid and in private

companies involved in software development projects. His main research
interests include program analysis, namely, and static resource analysis
object-oriented concurrent and distributed systems. He is involved in national
and European research projects, and the participation in the design and
implementation of the COSTA and SACO systems among others.

VOLUME 9, 2021 25507

