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ABSTRACT High-Performance Computing (HPC) systems need to be constantly monitored to ensure their
stability. The monitoring systems collect a tremendous amount of data about different parameters or Key
Performance Indicators (KPIs), such as resource usage, IO waiting time, etc. A proper analysis of this data,
usually stored as time series, can provide insight in choosing the right management strategies as well as the
early detection of issues. In this paper, we introduce a methodology to cluster HPC jobs according to their
KPI indicators. Our approach reduces the inherent high dimensionality of the collected data by applying
two techniques to the time series: literature-based and variance-based feature extraction. We also define a
procedure to visualize the obtained clusters by combining the two previous approaches and the Principal
Component Analysis (PCA). Finally, we have validated our contributions on a real data set to conclude that
those KPIs related to CPU usage provide the best cohesion and separation for clustering analysis and the

good results of our visualization methodology.

INDEX TERMS Clustering, feature extraction, high-performance computing, time series analysis.

I. INTRODUCTION

Research in different areas is currently highly dependent on
intensive computation tasks and/or complex simulations [1].
High-Performance Computer (HPC) systems provide the
computing infrastructure needed to carry out these tasks.
However, HPC systems are inherently complex and costly
systems that need specific monitoring systems to ensure
their reliability [2]. These monitoring systems are constantly
checking the performance of each one of the vast number of
nodes [3] by collecting the information obtained by sensors.
This performance indicators, also known as Key Performance
Indicators (KPIs) [4] are usually grouped under different
categories, like CPU usage, memory usage, network traf-
fic, and other hardware sensors. The information received
is usually stored as time series: each value consists of the
reading (KPI value) and the time (date and time) when it was
collected. Thus, abnormal variations in KPI time series may
be an early evidence of a problem in the execution of a job
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and/or in the usual behavior of a node in the HPC system [5].
The early detection of these anomalies is critical to help the
system administrators take proactive measures to identify the
source of the problem and to prevent more serious escalation
of the problem, which may cause job failures.

However, the HPC system generates a tremendous amount
of KPIs that are very hard to analyze. The KPIs are collected
via sensors from jobs executing on hundreds of parallel nodes
daily, with a high frequency (approximately one sample each
minute), and are usually stored as time series. Thus, analyzing
these time series is a very challenging and computation-
ally costly problem. Additionally, and since this data is not
labeled, some approaches, as clustering, are considered the
most adequate to face the analysis of the KPI time series
[6], [7]. Time series clustering helps to identify patterns
of performance behaviors by grouping similar time series.
However, time series clustering is a complex problem due
to its high data dimensionality, which may cause problems
such as highly biased estimates and decreases clustering
performance [6]. Therefore, dimensionality reduction tech-
niques play an important role in this field [8] by transforming
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a high-dimensional data representation into a lower low-
dimensional data representation [9].

In this study, we propose a new methodology to cluster and
visualize HPC jobs based on their performance KPIs. In order
to deal with the high dimensionality problem (inherent to
time series and aggravated by the huge amount of collected
data), we propose to face the time series clustering in terms of
their features, usually related to statistical behavior or global
parameters (trend, seasonality, skewness, periodicity, etc.) of
the time series. The underlying idea is selecting only those
features that are relevant for the job clustering, assuming
that these features are usually correlated and redundant. With
this aim, we propose a twofold feature selection: on the one
hand, a literature-based feature selection, and, on the other
hand, a variance-based feature selection. We also compare
the obtained results to the results of a previous approach [7]
that tried to face HPC jobs clustering by applying Principal
Component Analysis (PCA) techniques. Our second contri-
bution, additionally to the time series clustering proposal,
deals with the visualization problem of clustering for massive
data. We propose applying the same mechanism of feature
selection used for clustering to focus the visualization tasks
only on the two and three most relevant features, to create a
2D and 3D plot, respectively.

In order to validate our contributions (clustering and visu-
alization), we have created a data set with data gathered
from the Centro de Supercomputacién de Galicia (CESGA):
195 running nodes, 11 KPIs, 9,006 jobs executed in a period
of ten months and a sample rate from 60 to 120 seconds
between samples. These characteristics entailed a data set
with 35,761,300 samples per KPI and per job. Our results are
promising since visualization is already much more effective,
and the quality clustering metrics offer better results than in
our previous analysis [7].

To the best of our knowledge, the main novelties of our
analysis are the following ones: (i) the wide variety of
extracted features used for the job clustering: KPIs related to
CPU usage, memory usage, network traffic, and other hard-
ware sensors; (ii) the twofold feature selection techniques
used to identify the most relevant features; (iii) the methodol-
ogy to help in the visualization tasks and (iv) the selection of
the two-dimensionality reduction techniques features applied
in our previous work [7] and the feature extraction applied in
this study to cluster the HPC jobs.

The rest of the paper is organized as follows. Section II
summarizes the background about the techniques used in this
study, whereas Section III offers an overview of the most
relevant approaches in the state-of-the-art in the time series
dimensionality reduction field and in the HPC analysis field.
The data set used for our analysis is described in Section IV.
Section V describes the methodology for clustering and visu-
alization. Results are summarized in Section VI. Finally,
discussion is in Section VII, and Section VIII covers the
conclusions and future work.
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Il. BACKGROUND

The emergence of ubiquitous sensing infrastructure offers the
possibility of gathering huge volume of data from numer-
ous sensors, which usually send this information frequently
[10], [11]. Within this context, time series data offer an appro-
priate mathematical framework to gather and analyze the
collected information. However, time series data inherently
entails a high dimensionality of the data. Each time series
length is high and usually much larger than the number of
time series (number of sensors). Additionally, the number
of features that can be extracted from each time series is
also high. Considering both (i) the large number of time
series (number of sensors) and (ii) their extracted features
involvement in any analysis causes the so-called Curse of
the Dimensionality [12], which also entails problems with
calculation of distance metrics. In this section, we summarize
previous approaches in two supplementary fields related to
our proposal: (i) time series dimensionality reduction, as a
way to face the high dimensionality problem; and (ii) clus-
tering techniques, since we propose to use this mathematical
technique for our research work.

A. TIME SERIES DIMENSIONALITY REDUCTION

Analyzing time series with the aim of checking similarities
usually involves a non-trivial problem due to the high dimen-
sionality of the data. In the specialized literature, there are
several approaches that faces the dimensionality reduction
issue from different perspectives.

Some techniques are based on representing the data under
a different form, which simplifies the data volume, in such
a way that minimizes the global reconstruction error. Within
this field, there are some remarkable approaches, like Sin-
gular Value Decomposition (SVD) [13], the Discrete Fourier
transform (DFT) [14] or the Discrete Wavelet Transform
(DWT) [15]. Other proposals are based on a different phi-
losophy: to obtain a new and approximate time series that
summarizes the behavior of the original one. Within this
field, there are some interesting approaches like the Piece-
wise Aggregate Approximation (PAA), which divides the
original time series into sections and records mean values
of these sections for analysis, and its evolution into a more
dynamic technique [16], coined as Adaptive Piecewise Con-
stant Approximation (APCA) [17].

Other approaches do not face a transformation of the time
series directly, but a selection or extraction of relevant fea-
tures to be analyzed. These lines of research, also known as
dimensionality reduction, are based on the following assump-
tion: depending on the nature of the time series, its features
are usually correlated and redundant. Usually, approaches
in this line are categorized into two groups [6], [18], [19]:
feature selection and feature extraction. The former focuses
on selecting the most significant features from the original
data set by applying different techniques, such as univariate
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statistical tests, variance thresholds, or Principal Component
Analysis (PCA) [20]-[23].

The selection of the best feature set only depends on the
data set and there is not a selection technique that performs
well with any data set [24]. The variance threshold tech-
nique [25] is considered the simplest and most commonly
used; it selects as relevant features those of them whose
variance is greater than a threshold:

n 2
Hvariance Xi) = n%l (X,'(k) - % in(k)) (D
i=1
where K is the identifier of each time series, n is the number
of samples in the time series, and xi(k) is the iteration instance
of the time series Xy, i € {1, ..., n}.

Feature extraction, on another hand, is based on extract-
ing new features from the original data set. In the time
series field, these new features are usually related to statis-
tical behavior or global parameters of the time series [26],
like trend, seasonality, periodicity, skewness, etc. Thus, the
underlying idea is obtaining a time series summary in terms
of its correlating structure, distribution, entropy, etc. [27],
which gives interesting information about the time series
characteristics and enables different analysis (classification,
clustering, comparison, outlier detection, etc.). Within this
line, a time series feature extraction package in Python was
recently published, called Time Series FeatuRe Extraction on
the basis of Scalable Hypothesis tests (Tsfresh) [28], which
is widely used because of its clear advantages. First, it was
conceived precisely to identify and extract meaningful fea-
tures from time series, so it is able to combine 63 time series
characterization methods to compute (by default) a total of
794 features. Second, it implements standard APIs, so it
can be used together with other machine learning libraries
(e.g. Scikit-learn [29], Numpy [30], or Pandas [31]). Finally,
it also includes methods to evaluate the power and impor-
tance of these characteristics for regression or classification
purposes.

B. CLUSTERING ALGORITHMS

Clustering algorithms try to split up a set of data objects into
subsets or clusters that group objects similar to one another,
but dissimilar to objects in other clusters. There are multi-
ple clustering methods, which are generally classified in the
following four categories [32]: (i) Partitioning methods: Data
points are organized in a given number $k$ of groups, so there
is at least an element in each group; (ii) Grid-based methods:
The object space is quantized into a finite number of cells that
form a grid structure on which the clustering is performed;
(iii) Hierarchical methods: The data set is decomposed into
multiple levels, organizing the data into a tree of clusters. It is
quite inflexible, since once a step is done it cannot be undone;
and (iv) Density-based clustering methods: The notion of
density is used. The general idea is to grow a given cluster
while its density excesses a given threshold. This way clusters
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are formed in dense areas while the points in sparse areas are
considered as noise.

Cluster analysis has been the solution in many applica-
tion domains like text mining, information retrieval, social
network analysis, image and video processing, bioinformat-
ics, image processing, and so on in past years [33], [34].
Clustering algorithms are used to identify homogeneous
groups of objects and useful patterns in a dataset [35], [36].
Cluster analysis offers a diverse number of clustering algo-
rithms such as K-means, Db-scan, Hierarchical clustering,
and Gaussian Mixture Model (GMM) [37].

One of the most widely used clustering techniques is
K-means [34], [37], [38] a partition method that organizes
data into K-clusters. K is predefined, by assigning each
object (data observation) to the cluster with the nearest cen-
troid, which is usually measured by using the Euclidean
distance [39]. The algorithm begins defining K centroids
(randomly) and then uses multiple iterations to update these
centroids in such a way that the distance values of data objects
and the nearest centroids are minimized. The iterations end
when the ideal centroids are identified:

n
dp.g)= |Y_ pi—aq) ©)
i=1
where d (p,q) represents the distance between two

n-dimensional vectors p and q.

Thus, K-means cluster centroid is considered the arith-
metic mean of all the objects inside this cluster [40]. K-means
was successfully applied in different application fields, from
image processing to parallelization or to analyze behavior in
urban areas [33], [35], [36], [40].

K-shape [41] was designed specifically for time series clus-
tering. This method relies on a scalable and iterative refine-
ment procedure that assesses the distance among clusters by
using a normalized version of the cross-correlation measure,
which is used to take into account the shapes of time series in
the comparison process. Thus, contrary to other approaches,
K-shape considers the shapes instead of treating the obser-
vations in time series as independent attributes. Based on the
properties of the shape-based distance measure, the algorithm
computes the centroids, used to capture the share charac-
teristics of the data and to assign time series to clusters.
Its robustness has been experimentally evaluated against
other partition methods, like K-means or K-medoid [42].
K-means was chosen for this study due to its simplicity
and efficiency with large datasets. K-means usually offers
faster computation results than other algorithms when K is
small. Furthermore, the clusters that results from the K-means
algorithm are usually more cohesive than other algorithms
such as hierarchical clustering [43]. Lastly and most impor-
tantly, the visualization methodology applied in our proposed
framework (Section V.C) depends on the K-means clustering
centroids, which were used to rank features influences to the
clustering model to plot the clustering results.
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Most of clustering algorithms consider all feature compo-
nents of the data to be equally important. However, some
of them are irrelevant and might cause incorrect clustering
results. This is especially relevant when talking about time
series, since the high number of features is one of the issues
when applying clustering. Consequently, some approaches,
usually known as Feature-weighted techniques, have arisen
to take into account the importance of features before per-
forming the clustering algorithms. This is the case of the
Simultaneous Weighting on Views and Features (SWVF) [44]
or the Weighted Multi-view Clustering with Feature Selection
(WMCEFS) [45]. Both of them assign weights to features
before clustering, however they do not reduce their number.
This approach was adopted by Feature-Reduction Multi-
View K-means (FRMVK) [46], where irrelevant features are
directly removed from the analysis.

This is, precisely, the approach we have followed in this
case, applied to a different context but with the same under-
lying philosophy: trying to detect those features in the time
series data that are not relevant for the analysis and that might
be removed before applying the clustering algorithm.

C. CLUSTER VALIDATION TECHNIQUES

Quality assessment of the clustering results is key to validate
the analysis [47] and might help to identify, for instance, the
best optimal number of clusters in a data set [48], beyond
the experience of the data analysts. Some validation methods
require from labeled data to evaluate the goodness of the clus-
ters (external methods [49]), whereas others do not need from
this information (internal methods). In our research work, and
since we do not have tagged data, we apply internal methods.
Usually, clustering validation techniques are based on two cri-
teria. On the one hand, compactness, i.e. the members of each
cluster should be as close to each other as possible. Variance
is a common measure of compactness, which must be mini-
mized within each cluster. On the other hand, separation, i.e.
the clusters should be widely spaced. There are three common
approaches to measure the distance between two clusters:
(i) single linkage, which measures the distance between the
closest members of the clusters; (ii) complete linkage, which
measures the distance between the most distant members; and
(iii) comparison of centroids, which measures the distance
between the centers of the clusters.

There are three popular approaches that take into account
the two previously mentioned criteria (compactness and
separation): (i) the Silhouette coefficient [50]; (ii) the
Calinski-Harabasz index [49] and (iii) the Davies-Bouldin
index [51]. However, the Silhouette index (SH) is, because
of its simplicity, the most widely used. It generates a score
between —1 and 1, which is independent from the cluster-
ing algorithm, and that represents the quality of the cluster
results [49]. A SH score can be interpreted as follows: a score
between 0.71 and 1 shows excellent clusters results, a score
between 0.51 and 0.70 shows acceptable clusters results,
a score between 0.26 and 0.50 shows poor clusters results,
and, finally, less than 0.25 is considered a not acceptable

VOLUME 9, 2021

result [52], [53].

b —al)
SO = b a0 ©

where a (i) represents the mean distance between an object i
and each point within the same cluster and b (i) represents
the mean distance between an object i and the points in all
the other clusters.

IIl. RELATED WORK

As it was previously mentioned, feature extraction is based
on extracting new features from the original data and, in the
time series field, these new features are usually related to
the statistical behavior or the global parameters of the time
series. This approach was previously applied in different
application fields with the aim of reducing the number of
variables (features) for the analysis. After an exhaustive anal-
ysis of the specialized literature, Table 1 summarizes previ-
ous approaches that have used different time series features
for their analysis, such as skewness, mean, trend, variance,
seasonality, etc.

There are interesting proposals in this line of research
applied to different areas. For instance, the authors of
[54] and [55] tried to discover the best forecasting method
based on the accuracy of the predictions, using extracted
measures such as trend, seasonality, periodicity, etc. Within
the classification field, [56] proposes a hybrid algorithm
(Zeus) to classify lightning time series data. This algorithm
uses progressive computation for features extraction and
selection, which were fed for classification using a support
vector machine (SVM) [57]. It reduces, to a great extent,
the number of features needed. Also, in [58] a new feature-
based approach is proposed to recognize patterns in drilling
time series data. In this case, the drilling data dimensionality
was reduced using feature extraction and selection methods
to improve the accuracy of the classifiers. The approach
improved the rate of classification accuracy by 10% with a
faster learning time. Feature extraction was also successfully
used for anomaly detection in different areas. For instance,
the authors of [59] and [60] proposed a framework coined
as EGADS to identify anomalous time series by using some
relevant features (trend, frequency, seasonality, etc.). This
approach achieved more accurate and faster detection than
other compered methods.

We have also found some proposals that focus on clustering
time series by reducing the number of features to be analyzed.
This is the case of the work in [61] where clustering of time
series is based on their structural characteristics instead of
clustering point values using a distance metric. The set of fea-
tures used (trend, seasonality, periodicity, serial correlation,
skewness, kurtosis, chaos, nonlinearity, and self-similarity)
achieved high accuracy clusters with benchmark time series
datasets. In [62] the research work focused on farming, clus-
tering farms based on similar time series statistical features
of meat inspection in pig slaughterhouses. This information

25525



IEEE Access

M. S. Halawa et al.: KPIs-Based Clustering and Visualization of HPC Jobs: A Feature Reduction Approach

TABLE 1. Time series features.

Features References Features References
Skewness [54], [55], [56], [58], [61], [62], [63], [64], [65], [66] Count above mean [60]
Kurtosis [54], [55], [56], [58], [61], [62], [63], [64], [65], [66] Count below mean [60]
Mean [56], [58], [59], [60], [62], [64], [66], [67], [68], Historical change [60]
Autocorrelation or Serial correlation [54], [55], [59], [61], [62], [63], [65] Simple moving average [60]
Standard deviation [55], [56], [58], [62], [63], [64], [67] Weighted moving average [60]
C3 (nonlinearity) [54], [55], [61], [62], [63] Percentiles [58]
Max [56], [58], [60], [63], [64], [66], [67], Difference [60]
Min [56], [58], [60], [63], [64], [67], [66] Integration [60]
Trend [541, [55], [59], [61], [62], Friedrich_coefficients [63]
Variance [56], [58], [59], [64], [66], [67], Linear trend slope [63]
Median [58], [64], [67], [68] Linear trend intercept [63]
Seasonality [54], [55], [61], [62] Large standard deviation [63]
Periodicity (frequency) [54], [61] Remainder [62]
Lyapunov exponent [55], [62] Length [64]
Self-similarity [54], [61], [65] Integral [56]
Season Strength of seasonality [541, [59] Step changes [55]
Sum [56], [58], [67] Ratio of Means [56]
Mode [58], [68] Number of peaks [55]
Chaotic [54], [61] Peak [59]
Spkt welch density(Powers pectrum) | [55], [63] Trough [59]
Hurst [62] Mean change [60]
Entropy, spectral entropy [58], [59] Lumpiness [59]
Partial autocorrelation [55], [63] Predictability [55]
: Lshift Level shift using rolling

Interquartile range [58], [66] window. [59]
Range [58] Variance change. [59]
Linearity [59], [65] Flat spots [59]
i}\;};cr);lg:ually Weighted Moving [60] ot i [59]
Mean second derivative central [60] Absolute sum of changes [60]
Du'rbin7Watson statistic of regression [55] Klscore [59]
residuals

Time reversal asymmetry statistic [63] Spikiness [59]

was useful to detect farm level risk factors causing health
problems based on disease incidence and trend.

Going deeper in the use of this technique in the analy-
sis of HPC systems, there are very interesting approaches
that extract features from the time series data in order to
perform a more efficient analysis. Geelen er al. [63], for
instance, presented a method for detecting and localizing
pipe leakage using real-time pressure sensor measurements
named Monitoring Support. The method applied both time
series instance-based and feature-based clustering to detect
recurring pressure anomalies, which are suspected to be
damages or leaks of the water distribution network. The
results showed that feature-based clustering performed better
in detecting anomalies on two pressure sensor data sets with
accuracy F1-scores of 92% and 94%. Klinkenberg et al. [64]
proposed a supervised prediction model to predict nodes’
failures in HPC systems. The prediction model used extracted
statistical features of the time series frame from the nodes
monitoring data before a failure occurred. This prediction
model was able to classify defected nodes with arecall of 91%
and a precision of 98%. Tuncer et al. [65] proposed a new
framework to automatically detect previously occurred per-
formance anomalies in HPC systems using applications per-
formance counter data. In the framework, statistical features
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were extracted from the application’s performance counters
time series data to reduce the data scale and improve the
performance of the machine learning algorithms to iden-
tify the anomalies. The evaluation of the proposed frame-
work showed outstanding results in detecting anomalies with
F-score over 0.97. Tuncer et al. [66] proposed a frame-
work to classify performance variations in HPC systems.
The framework extracted several statistical features of the
KPIs collected by the HPC monitoring system. After, these
features were used to classify the system behavior using
different machine learning algorithms. The results showed
that the Random Forest algorithm achieved the best accuracy.
Frank et al. [67] tried to identify failed nodes that are being
used by running large-scale applications on the HPC sys-
tem. The authors proposed a new feature-based system for
node failure predictors using machine learning with a low
percentage of false alarms at large scales. The failure pre-
diction system proved its usefulness after achieving a reused
unnecessarily triggering checkpoints (UC) with a lead-up
time of four minutes in a large production cluster. Finally,
Jin et al. [68] designed a feature-categorizing-based hybrid
system to detect anomalies in communication systems. The
proposed system extracted statistical features from each KPI
time series. Then, the extracted features were categorized by
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FIGURE 1. Cloud monitoring system.

the KPI category identifier to different groups of features
based on similar statistical characteristics. Afterwards, each
feature group was fed to the applicable anomaly detector tech-
nique. Finally, aggregation of the results of all the anomaly
detector techniques was used to detect an anomaly in terms
of the entire feature space. The system has proven it could
detect different anomalies with lower false alarms.

Our proposal faces the KPIs analysis from a simi-
lar perspective to other previous approaches in the litera-
ture [64]-[68]. However, our approach has the following
differences that allow us to state that we provide a wider anal-
ysis: (i) we gather data from different KPIs categories (CPU
usage, memory usage, network traffic, and other hardware
sensors); (ii) we have obtained a more representative data set,
since the data collection was done for a long period of time
and data was gathered from a large number of jobs in the HPC
system; (iii) we have faced a pre-assessment of the different
extracted features from time series in order to analyze the
most representative ones by using two different approaches
(variance-based and literature-based). Finally, we have also
added a final step to visualize the job clusters based on
ranking job features.

IV. DATASET DESCRIPTION

HPC system includes hundreds of computational nodes that
execute an enormous amount of jobs daily. The constantly
increasing complexity of these systems also requires complex
monitoring systems that obtain raw data about the usage of
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the available resources, such as disk, CPU, traffic, etc. These
monitoring systems gather raw data or KPIs from each sin-
gle computational node, which is organized into time series
(one per metric), as Figure 1 shows.

For our analysis, we have obtained our data set from the
CESGA Foundation (https://www.cesga.es/en). This Gali-
cian data center is a non-profit organization that has the
mission to contribute to the advancement of Science and
Technical Knowledge by means of research and applica-
tion of high-performance computing and communications,
as well as other information technologies resources. CESGA
Foundation is considered an instrument for sustainable socio-
economic development, devoting special attention to the
relations of cooperation between research centers, whether
public or private, and the productive sector. This is the frame-
work that enables the cooperation between this institution and
the Universidade de Vigo.

The CESGA center has different computing platforms with
different available architectures to help users to select the
best one for their computation requirements: Supercomputer
Finisterrae II, Cloud Computing architecture, and a Big Data
architecture [69]. First, Finisterrae II is a supercomputing
platform that is usually used for highly intensive simula-
tions and calculations. The Finisterrae II cluster is composed
of 306 nodes, each one with two Haswell 2680v3 processors
(24 cores) and 128 GB of RAM [69]. Second, the cloud
computing platform provides a virtual and elastic comput-
ing infrastructure that can be customized to the end-user
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TABLE 2. Selection of the performance metrics.

Category Metric Definition
aggregation.cpu-average.percent.idle (IDLE) The aggregated average Percent of time when the CPU is idle.
CPU usage aggregation.cpu-average.percent.system (SYSTEM) The aggregated average Percent of time when the CPU is working.
aggregation.cpu-average.percent.wait (WAIT) The aggregated average Percent of time when the CPU is waiting
Network interface.bond0.if_octets.rx (RX) The number of bytes received over the network per second.

(interface) traffic interface.bond0.if octets.tx (TX)

The number of bytes transmitted over the network per second.

IPMIL.CPU1_Temp (CPU1)
IPML.CPU2_Temp (CPU2)

The temperature readings of CPU1
The temperature readings of CPU2

IPMI IPMIL.PW_consumption (PW) The power consumed by the system hardware
IPMLSystem Temp (SYSTEM TEMP) The temperature readings of the system
System Load load.load.shortterm (SHORTTERM) System load average over the last minute

Memory usage memory.cached.memory (MEMORY)

Cached Memory occupied

requirements (operating system, number of processors, etc.).
Finally, the Big Data architecture supports the parallel pro-
cessing of huge volumes of information by using the power
of the state-of-the-art technologies and software focused on
data management and processing. The Big Data platform is
composed of a dedicated cluster of 38 nodes, each one with
2 Intel Xeon E5-2620 v3 processors (12 cores) and 64GB
of RAM. These three computing platforms can be remotely
accessed through a Secure Shell (SSH) terminal and a simple
Web User Interface (WebUI) [69].

In this study, we have used the CESGA Big Data platform
to extract our KPIs data. This platform uses the third version
of the Hadoop framework and it offers the Hadoop ecosystem
core components. Hadoop is an open-source framework that
processes offline big data in a distributed manner. Hadoop
is characterized for having different key components for this
computation, such as the Hadoop Distributed File System
(HDFS) [70], a MapReduce framework [71], the Hive ware-
house [72], the Apache HBase distributed database [73],
etc. HDFS is the primary storage in Hadoop and it man-
ages the storage of data in blocks to be processed by any
job [74]. Hadoop uses the MapReduce framework to perform
the computation in two different stages: (i) the Map stage,
which divides the task (computation) of the job in parts to be
computed by different nodes (in parallel) and (ii) the Reduce
stage, which processes and summarizes the data coming from
the Map stage (different nodes) [74]. Hive is a Data ware-
house infrastructure that uses SQL queries (HiveQL) to query
data from Hadoop [72]. It converts the input program written
in HiveQL into MapReduce jobs executed on Hadoop [75].
Finally, HBase is an open-source, column-based database
built on top of the Hadoop file system, which offers ran-
dom real-time read/write access to data in the Hadoop File
System [70]. The CESGA Big Data platform uses Apache
Spark [76] to improve the parallelism processes. Apache
Spark is a unified analytics engine and a set of modules for
parallel data processing on computer clusters [77]. It runs
over Hadoop to speed the parallel processes since it may run
on the memory and not on the disk, as Hadoop does [78].
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The HPC monitoring systems used in CESGA generate
over 44,280 different KPIs from different categories, which is
actually an overwhelming number of KPIs for any analysis.
Therefore, and within the line of our previous collaboration
with CESGA [7], we have followed the technical recommen-
dation of the CESGA technicians to focus our analysis only
on the 11 KPIs summarized in Table 2. These KPIs belong
to five categories (CPU usage, memory usage, system load,
IPMI, and network interface) and were selected according to
their importance and clear representation of the performance
of jobs.

The data from the 11 KPIs was collected by submitting
a specific spark job through one of the Hadoop 3 cluster
login nodes. The job was designed to gather the KPIs data
using Hive queries from the Hadoop cluster (typically one
master node and several slaves). The results of each KPI
query was held in a dataframe using the Spark dataframe
APIL. Finally, these dataframes are stored in the Hadoop Dis-
tributed File System (HDFS), just prepared for the analysis.
We have chosen HDEFS since it is the primary storage in
Hadoop. The data extractor ran from February 1st, 2019 to
October 31st, 2019 gathering data (as dataframes) from the
HPC monitoring system of 195 parallel nodes, where a
total number of 9,006 jobs were running. Each one of the
11 extracted KPI time series dataframe contains four columns
with the following information: (i) the value of the KPI,
(i1) the time of the machine when the value was acquired,
(iii) the job, and (iv) the node to which this value belongs.
Afterwards, for each KPI, the job information was filtered
by its identifier to collect the time series information to each
one of the nodes where the job was executed, as Figure 2
shows.

Each KPI has a different sampling frequency that variates
from 60-120 seconds in the case of CPU usage metrics,
System load, and Memory usage in Table 3 to the 90 seconds
in the case of Network interface and IPMI system in Table 3.
That means that, on average, we obtain 35,761,290 samples
per KPI and per job: an overwhelming amount of
data.
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FIGURE 2. Example of information gathered per KPI (n jobs and m nodes).

TABLE 3. Performance metrics description.

. The metric length

Category Metric Sample frequency (Number of samples for all jobs)
IDLE 60/120s 35,761,301
CPU usage SYSTEM 60/120s 35,761,297
WAIT 60/120s 35,761,300
Network RX 90-93s 35,761,301
(interface) traffic TX 90-93s 35,761,298
CPUI 90-93s 35,761,301
CPU2 90-93s 35,761,300
IPMI PW 90-93s 35,761,301
SYSTEM_TEMP 90-93s 35,761,299
System Load SHORTTERM 60/120s 35,761,301
Memory usage MEMORY 60/120s 35,761,200

V. METHODOLOGY
As it was previously mentioned, the challenge of analyzing
data gathered by the HPC monitoring systems is the huge
amount of information that is collected. Each computing
node is monitored by a set of sensors that are sampling the
information of a high number of variables or KPIs (CPU
usage, temperature, humidity, memory usage, etc.) and store
this data as a set of time series, one per KPI. Each job, which
is running on a set of nodes, has as many data about its
behavior as the KPIs from all the nodes where it is executed.
In our case, and as it was summarized in the previous section,
we have collected information from 11 KPIs that monitor
195 nodes where 9,006 jobs were executed; on average,
we have gathered 35,761,300 samples per KPI and per job.
We propose to face this massive analysis by reducing the
large scale and dimensionality as it is summarized in Figure 3.
With this aim, we firstly (phase 1 in Figure 3) extract a
set of features per each one of the time series (or KPI).
These features represent the statistical behavior and general
parameters of the KPI (time series): such as skewness, mean,
trend, variance, seasonality, etc. In our proposal, we apply
the Phyton extraction package Tsfresh [28], which has
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several advantages (previously mentioned in Section II.B).
Section V.A details the different steps within this first phase.

Then (phase 2 in Figure 3), we propose to select only those
features those are, indeed, relevant and perform a clustering
analysis. For the first sub-task (step 2.1: feature selection) we
trust in two different and supplementary approaches. On the
one hand, we consider the information collected from other
approaches in the specialized literature to analyze each KPI
(time series) individually. On the other hand, we take into
account the variance threshold using three different percent-
ages (80%, 85%, and 90%). For the second sub-task (step 2.2:
clustering) we conducted two experiments using the K-means
algorithm (Section V.D): one of them analyzing the KPIs
(times series) individually and the other using a combined
approach. In both cases, we used the Silhouette index to
determine the optimal number of clusters. Section V.B details
the different steps within this second phase.

Finally (phase 3 in Figure 3), we use the obtained clusters
to visualize the data (Section V.C). With this aim, we calcu-
lated the cluster centroids and, using the Euclidean distance,
we tried to identify the three features that have the most
influence on the K-means clustering. These three features
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FIGURE 3. HPC job clustering and visualizing methodology using time series feature extraction.

were used to provide 2D and 3D plots that help to visualize
the clustered jobs and to identify the common characteristics.

A. PHASE 1: TIME SERIES FEATURE EXTRACTION

As it was previously mentioned, we have opted to use time
series features to represent their characteristics and behav-
ior in an attempt to reduce the amount of data and the
dimensionality problem consequence of a huge data set. With
this aim, we have used the Python library Tsfresh [28].
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Although this library supports the extraction of 794 features
per time series, we have decided to extract the 36 features
summarized in Table 4, whose definitions are stated
in Table 12 (appendix) [4].

This first selection was done taking into account the usual
features used in the literature, as well as our own expe-
rience in time series analysis. The extracted features were
labeled as follows: ‘“NodelD_KPIName_FeatureName™,
where KPIName is taken from Table 2 (second column).
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TABLE 4. Extracted features (Tsfresh) and their parameters.

Feature Parameters Feature Parameters
length None longest_strike below mean None
abs_energy None mean_change None
mean None sample_entropy None
median None standard_deviation None
count above mean None percentage of reoccurring values_to_all values None
T T None Ef;centage_of_reoccurring_datapoints_to_all_datapoi None
absolute_sum_of changes None fft aggregated {Centroid, variance, skew, kurtosis}
mean_abs_change None friedrich_coefficients {0,1,2,3}
mean_second_derivative_central | None spkt_welch_density_coeff {2,5,8}
maximum None index mass quantile {10,20,30,40,50,60,70,80,90} %
minimum None ar_coefficient {0,1,2,3,4}
Skewness None augmented dickey_fuller {Teststat, pvalue, usedlag}
Kurtosis None time reversal asymmetry statistic Lag {1,2,3}
first_location of maximum None c3 Lag {1,2,3}
first_location_of minimum None quantile {10,20,30,40,50,60,70,80,90} %
binned_entropy None autocorrelation Lag{1,2,3,4,5,6,7,8}
variance None number peaks {5,10,15,20,30,35,40,50,100}
longest_strike above_mean None linear trend s{il‘éil;e’ rvalue, intercept, slope,
KPI ‘ ‘ KPI Feature(F)
| Nodey |‘ Node; | Nodey | | Nodews ” Noden | | Node, | Node; | Nodes | Nodews | Nodes
B e | - (| BB - | v | v | o [ e | e |
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FIGURE 4. Dimensionality reduction based on feature extraction: on the left on KPI dataframe, on the right the reduced data.

For instance, ‘“‘c6937_idle_median’’ would be the ‘“median”
value of the time series “idle” (the aggregation.cpu-
average.percent.idle KPI) for the node whose identifier is
“c6937”. Thus, we obtain matrices similar to the one shown
in Figure 4 per feature of each KPI and per node, instead of
having the huge set of values included in the time series.
Once the features are extracted (per KPI and per node),
we have normalized the results to be within a range of [0,1]
to uniform the results, which are expressed using different
measurement units. Table 13 (appendix) summarizes the vari-
ances obtained for all the scaled features and Figure 5 shows,
for instance, the variance of the 36 features of one of the
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KPIs (Idle in Table 2). In this specific case, the feature per-
centage_of_reoccurring_values_to_all_values has the high-
est variance value.

B. PHASE 2: SELECTION AND CLUSTERING
Although we have reduced the dimensionality after the first
phase (feature extraction), in the second phase we go a step
further with the aim to reduce even more the number of
features, selecting only those ones that are relevant. With this
aim, we apply two different approaches.

On the one hand, a literature-based feature selection was
done applying the data in Table 1 (summary of the different
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FIGURE 5. Variance of the 36 features extracted for one of the eleven KPIs.
TABLE 5. Literature-based selection of features.
Features Parameters Features Parameters
maximum None C3 (nonlinearity) Lag {1,2, 3}
minimum None time reversal asymmetry statistic Lag {1,2,3}
median None autocorrelation or Serial correlation | Lag {1, 3,5, 8}
mean None sample entropy None
index mass quantile {10,20,30,40,50,60,70,80,90} % linear trend {Intercept, pvalue, rvalue, slope, stderr}
skewness None longest strike below mean None
Kurtosis None variance None
abs energy None longest strike above mean variance | None
absolute sum of changes None mean abs change None
ar coefficient K10 coeff(0, 1,2,3,4) mean second derivative central None
augmented dickey fuller {Usedlag, teststat, pvalue} quantile {10,20,30,40,50,60,70,80,90} %
binned entropy Bins 10 mean change None
first location maximum None number of peaks {5, 10, 20, 25, 50, 100}
first location minimum None percentage of reoccurring values to | None
all values
percentage of reoccurring None
datapoints to all datapoints

approaches in the specialized literature) and the informa-
tion in Table 4 (features obtained from the Tsfresh library).
The intersection of both sources is summarized in Table 5
29 features to be analyzed since they were considered as
relevant for time series cluster analysis.

On the other hand, a variance-based feature selection was
done, taking as relevant only those ones whose variance is
greater than a previously defined threshold. Thus, as result
of Phase 1, we have obtained a collection of 36 features that
characterize the time series behavior of the different KPIs
and nodes. These values were normalized to be within the
range [0,1]. In this step, we try to reduce this number by
using the variance threshold technique [79], [80], i.e. using
a threshold to select only those features whose variance is
equal or higher. By eliminating low variance features, we are
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trying to remove from the analysis those features that are not
meaningful. We have used three different thresholds, 80%,
85%, and 90%, to perform this selection. Table 6 summarizes
the results obtained. The first and second column represent
the name of each one of the 11 KPIs. Then, the third, fourth,
and fifth columns indicate, respectively, the results for the
80% threshold, 85% threshold, and 90% threshold: (i) the
threshold value for the variance (second row); (ii) the number
of features selected for all the KPIs (third row) and (iii) the
subsequent rows indicate the name of the features selected
per KPL.

Finally, we apply clustering techniques within this phase
following two different approaches. On the one hand,
we apply the K-means algorithm to the jobs using as cri-
teria each KPI individually, that is, using the 29 selected
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TABLE 6. Features variance thresholds and their corresponding selected features.

Threshold 80% 85% 20%
percentage
Catesor Threshold 0.16 0.12 0.09
E # of features
selected from all 3 7 21
KPIs
P erce;;zlgse_tgfileo\(/::ll:l r;ng_v p ercvc:;igse&())f;ﬁto\f:& ;r;ng_ percentage of reoccurring values to_all values
‘“dex—ma“—ﬂj“a”“]e 190} index_mass_quantile {70,80,90} %
0
Median median
IDLE Quantile{50,60,70,80,90} % Quantile{10,20,30,40,50,60,70,80,90} %
c3{1,2,3}
first location of minimum
mean
CPU usage minimum
maximum
first_location_of minimum first_location_of minimum
SYSTEM -
first_location_of maximum
WAIT - -- index mass_quantile {80,90} %
Network RX - - -
(interface)
traffic TX - - -
CPU1 - - -
CPU2 - - -
TPMI PW - -- linear_trend {Pvalue}
SYSTEM_TEMP -- -- None
S first location of maximum
]{zt:"in SHORTTERM - - minimum
Number peaks{5}
Augme?;iililglk ey full Augme?;iilifr ey full Augmented dickey full {pvalue}
s
first_location_of maximum first_location_of maximum first_location_of maximum
N{leslzlllg: Y MEMORY maximum
percentage of reoccurring datapoints_to_all_dat
apoints
percentage of reoccurring values to_all values

features (according to the literature-based criterion) as data
to perform the clustering. On the other hand, we apply the
K-Means algorithm to the jobs using as criteria the whole
set of KPIs and using as data to perform the clustering the
3, 7 or 21 features in Table 6 for the variance-based criterion
(80%, 85%, and 90% respectively). It is necessary to high-
light that since we do not have a predetermined number of
clusters (K), we propose to iterate this value from 2 to 30 to
find out for which value of K the best clustering quality values
are achieved. The results are summarized in Section VL.

C. PHASE 3: VISUALIZATION

Visualization of the clustering results is not directly feasible
because of the high-dimensionality of the jobs features used.
Thus, we propose a methodology to visualize these results
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in a more appropriate way based on clustering only the most
influential features, as Figure 6 shows. Therefore, we firstly
obtain the three more influential features in clustering and,
after that, we represent the clustering using only these three
features.

The procedure is as follows. First, we obtain the centroids
per cluster. Each centroid can be seen as a vector with as many
components as computing nodes (n) multiplied by the number
of features (m). Table 7 shows an example with two centroids
for two clusters (0 and 1, in the first column).

Second, we calculate a vector with as many components
as the number of features used for the clustering (m), whose
component values are the mean of the feature values per node
(mean of n values). After that, we calculate the Euclidean
distance between the mean features of each vector. Later, we
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FIGURE 6. Selecting features for visualization.

obtain the mean feature distances ranking in descending order
to select the three top features. Table 8 shows an example with
two clusters (i.e., two centroids) for all the features involved
in the clustering at Phase 2.

Once we have identified the three top most influential
features, these three features data were extracted separately
from the original data set used in clustering to represent the
clustering results in a 2D and 3D plot. Each feature matrix
was 9,006 (job) x 195 (nodes), making the dimensionality
of the three features data combined very high to be plotted.
To have a more manageable volume of data for plotting,
we have applied a 1-principal component using the PCA
technique to each of the three feature data. After that, the three
features PCA results were concatenated together with the
cluster labels indexed by job identifier in only one dataframe.
Table 9 shows an example of the jobs, where the three top
ranked features PCA results are “quantile_q_0.7", “‘median”
and ““first_location_of _maximum’ with their cluster labels.
Finally, the first two features in the dataframe were used to
plot the jobs clusters in a 2D plot, and the three features were
used to plot the jobs clusters in a 3D plot.
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VI. EXPERIMENTAL RESULTS
We have used the data gathered from the CESGA HPC sys-

tem (Section IV) to apply the methodology described in the
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TABLE 7. K-means centroids for the optimal number of clustering (2 clusters).

c7339_system__first_location_of_minimum ¢7343_system__first_location_of_minimum c6935_idle__quantile__g_0.7 c6940_idle__median|:
1] 0.007707528 0.004937132 0.227811218 0.202096027
1 0.416177977 0.045402307 24.99583244 57.33320713

TABLE 8. K-means centroids for the optimal number of clustering (2 clusters) sorted after calculating the Euclidean distance.

quantile__gq_0.7 median first_location_of_maximum first_location_of_minimum
0 0.272566967 0.257634946 0.01504391 0.006514291
1 19.57893374 19.42098414 0.191517589 0.087713726
Distance 19.30636677 19.1633492 0.176473679 0.081199435

TABLE 9. The PCA results of the top three features with cluster labels.

Job Id quantile__q_0.7 median first_location_of maximum cluster
3026217 -0.565776 -0.53378 3.921070 0
3033515 -0.557738 -0.52384 5.431736 0
3033516 -0.513506 -0.48461 3.455862 0
2894104 -0.727134 -0.691719 -1.506159 1
2904125 -0.756660 -0.719323 -0.994272 0
2894785 -0.756660 -0.719323 -0.692337 0
1
0.9
0.8
8'2 0.6084 06096 .., 05436 05624 05730 05724 05698 05638 05823 (5496
0.5
0.4
0.3
0.2
0.1
0
CPU1_Te CPU2_Te PW_consu System_T
idle system wait shortterm  memory
mp mp mption emp
Clusters 2 2 2 2 2 2 2 2 2 2 2
M Score 0.6084323 0.6095802 0.529416 0.5436478 0.5623909 0.5729838 0.5724339 0.5697928 0.5637875 0.5822699 0.5495932

FIGURE 8. Silhouette score of clustering each jobs KPI extracted features individually.

previous section. Therefore, we have performed two exper-
iments: on the one hand (experiment 1), clustering the
jobs using a literature-based feature selection and, on the
other hand (experiment 2),
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clustering the jobs using

a variance-based feature selection. After that, we apply our
methodology for visualization to depict the obtained results.

In experiment 1, we filtered the features of all the KPIs
according to the information in Table 5, and then we
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FIGURE 9. 2D and 3D clustering plot using the top three features of the CPU SYSTEM KPI.

TABLE 10. K-means results for the (80%, 85%, 90%) threshold features.

Variance threshold
to select the most Optimal K Silhouette score
relevant features
80% Threshold 2 0.6156
85% Threshold 2 0.7382
90% Threshold 2 0.5553

performed as many K-means clustering as KPIs (eleven)
separately. Thus, for instance, we clustered all the jobs in the
data set using as criteria the set of features in Table 5 for the
KPI IDLE, then we clustered all the jobs in the data set using
as criteria the set of features in Table 5 for the KPI SYSTEM,
and so on, for each one of the KPIs in Table 2. Since we do
not know in advance the most appropriate number of clusters,
we perform iterations from 2 to 30 to check the most suitable
number of clusters (K) per KPI according to the Silhouette
score.

The obtained results are summarized in Figure 8§ that shows
the optimal number of clusters (K) and the quality score
obtained per each one of the eleven KPIs. As a conclu-
sion, we can state that the KPI SYSTEM (aggregation.cpu-
average.percent.system) gives the best clustering result,
followed by the KPI IDLE (aggregation.cpu-average.
percent.idle) that obtains a very similar Silhouette score.
Figure 7 shows the KPI SYSTEM Silhouette scores for
each (K), which reveals the 2 clusters are the optimal number
of clusters with Silhouette score of 0.6096.

In order to visualize these results, we applied our
approach (Section V.C) to plot the clusters obtained by
applying the top KPI clustering result (CPU SYSTEM,
aggregation.cpu-average.percent.system) and its subset of
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FIGURE 10. The Silhouette score for the 85% threshold features.

features: a 9,006 x 13,065 matrix. Since the optimal num-
ber of clusters for this KPI CPU SYSTEM was 2, then
the K-means centroids obtained can be represented as a
2 x 13,065 matrix. Afterwards, we grouped the centroids
and calculated the mean value and the distance of each
feature to identify the three most relevant features, in our
case “index _mass_quantile_ q_0.9”, “quantile__q_0.9”
and “quantile__q_0.8".

Finally, each of these three features was dimensionally
reduced to a 1-principal Component using PCA. Figure 9. (A)
shows the 2D plot using the top two most significant features
for the KPI CPU SYSTEM (“index _mass_quantile__q_0.9”
and “quantile__q_0.9”"), whereas Figure 9.(B) shows the 3D
plot using the top three most significant features (adding
“quantile__q_0.8"). The jobs in cluster O show higher
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TABLE 11. Comparison of quality results to our previous approach in [7].

Experiment one clustering results Clustering results in [7]
KPIs K Silhouette Score K Silhouette Score
IDLE 2 0.608 9 0.251
SYSTEM 2 0.609 4 0.212
WAIT 2 0.529 5 0.254
RX 2 0.543 8 0.390
TX 2 0.562 8 0.370
CPU1 2 0.572 4 0.280
CPU2 2 0.572 4 0.310
PW 2 0.569 4 0.290
SYSTEM_TEMP 2 0.563 4 0.340
SHORTTERM 2 0.582 6 0.088
MEMORY 2 0.549 5 0.130
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FIGURE 11. 2D and 3D clustering plot using the top three features in Experiment 2.

cohesion than jobs in cluster 1 in both plots. Additionally,
jobs in cluster O have lower values for the selected features
than jobs in cluster 1. We can infer, from this behavior, that
jobs in cluster 0 were executed more efficiently in the nodes
of the HPC system, with less IO wait time, whereas jobs in
cluster 1 group the jobs with the opposite tendency: more 10
wait time and less efficient computation.

In experiment 2, we filtered the features of all the KPIs
according to the information in Table 6 and using the three
selected thresholds (80%, 85%, 90%). Then we performed
a K-means clustering using jointly the data of the 11 KPIs,
i.e. only one clustering procedure. Since we do not know in
advance the most appropriate number of clusters, we per-
formed iterations from 2 to 30 to check the most suitable
number of clusters (K) per KPI according to the Silhouette
score.

According to the obtained results, summarized in Table 10,
the best Silhouette score was obtained for the 85% threshold
with two optimal clusters, as shown in Figure 10. Thus,
the next step is to plot the clusters for the 85% threshold,
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selecting the most relevant features of the 7 features that are
involved in the clustering (see Table 6).

In this case, we have a 9,006 x 2,145 matrix that stores
the information about the jobs. Since the optimal number
of clusters is 2, then the K-means centroids obtained can be
represented as a 2 x 2,145 matrix. After this, we selected the
top three most relevant features involved in the clustering:
“quantile__q_0.7", “median”, “first_location_maximum”.
Later, the dimensionality of this data was reduced using
PCA to obtain 1-principal component in order to have all
the information to plot the clustering. Continuously, each of
the three features components was concatenated together and
used to plot the clusters in 2D and 3D.

Figure 11.(A) shows the 2D plot using the top two most
significant features (quantile__q_0.7" and “median”’), and
Figure 11.(B) shows the 3D plot using the top three most
significant features (adding “quantile__q_0.7""). We can con-
clude that jobs in cluster 0 have lower CPU idle time than jobs
in cluster 1, which entails that the nodes workloads were cor-
rectly balanced during the jobs execution time. Besides, jobs
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TABLE 12. Tsfresh extracted features definitions.
Feature Definitions of time series(x) extracted features
1 length Number of samples of time series(x)
2 abs_energy Interpreting the time series as the velocity of a particle with unit mass 2
3 mean Arithmetic mean of time series(x)
4 | median The middle of the sorted time series(x) values.
5 count_above mean Returns the number of values in x that are higher than the mean of x
6 count_below mean Returns the number of values in x that are lower than the mean of x
7 absolute sum _of changes Returns the sum over the absolute value of consecutive changes in the series x.
8 | mean_abs_change Arithmetic mean of absolute differences between subsequent time series(x) values
9 mean_second derivative central Returns the mean value of a central approximation of the second derivative.
10 | maximum Sample maximum of time series(x)
11 | minimum Sample minimum of time series(x)
12 | skewness Sample skewness calculated with adjusted Fisher-Pearson standardized moment coefficient
13 | Kurtosis Fourth central moment of time series (x) divided by the square of its variance
14 | first location of maximum Returns the first location of the maximum value of x. The position is calculated to the length of x.
15 | first location of minimum Returns the first location of the minimal value of x. The position is calculated to the length of x.
16 | binned entropy This feature calculator bins the values of the time series sample into m equidistant bins.
17 | variance Expectation of the squared deviation of time series from its mean without bias correction
18 | longest strike above mean Returns the length of the longest consecutive subsequence in x that is bigger than the mean of x.
19 | longest strike below mean Returns the length of the longest consecutive subsequence in x that is smaller than the mean of x.
20 | mean change Returns the mean over the differences between subsequent time series(x) values
21 | sample entropy sample entropy of time series(x)
22 | standard deviation Standard deviation of time series(x).
23 SR OO Returns the percentage of values that are present in the time series more than once.
values to all values
24 percenFage_of_reoccumqg_ Returns the percentage of non-unique data points.
datapoints to all datapoints
Returns the spectral mean of the absolute Fourier transform spectrum.
25 | ff_aggregated Returns the spectral variance of the absolute Fgurier transform spectrum.
— Returns the spectral skew of the absolute Fourier transform spectrum.
Returns the spectral kurtosis of the absolute Fourier transform spectrum.
26 | friedrich cocfficients Coefficients of polynomial h(x), which has been fitted to the deterministic dynamics of Langevin
- model
27 | spkt welch density coeff Returns the estimates the cross power spectral density of the time series x at different frequencies.
28 | index mass_quantile the relative index i where q% of the mass of the time series x lie left of i.
. This feature calculator fits the unconditional maximum likelihood of an autoregressive AR(k)
29 | ar_coefficient
- process
30 e T Th(? Augmented Dickey-Fuller test checks the hypothesis that a unit root is present in a time
series(x) sample
31 | time reversal asymmetry statistic | The theoretical symmetry of physical laws under the transformation of time reversal
32 | c3 Time series(x) non-linearity measure using a lag operator
33 | quantile Calculates the q quantile of x. This is the value of x greater than q of the ordered values from x.
34 | autocorrelation Calculates the autocorrelation of the time series with its lagged version
35 | number peaks Calculates the number of peaks of at least support n in the time series.
. Calculate a linear least-squares regression for the values of the time series versus the sequence from
36 | linear trend . . .
- 0 to length of the time series minus one

on cluster 1 show an unusual behavior with higher ‘“median”
and “quantile__q_0.7" values. This might be a consequence
of having higher IO tasks (network traffic rates), which has
a negative correlation with CPU usage values. Analyzing
also the 3D plot, we can infer that jobs in cluster 1 required
the maximum memory usage at approximately the same
time, whereas jobs in cluster O required from the maximum
memory usage at different times during the global execution
period.

VII. DISCUSSION

As previously mentioned, we used the Silhouette score to
evaluate the quality of the clustering in both approaches:
when we applied the literature-based feature selection (one
clustering per KPI) and when we applied the variance-based
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feature selection (one clustering using all the KPIs). In the
first case, we obtained the quality results shown in Figure 8§,
where all the Silhouette scores are quite similar for all the
KPIs. However, the IDLE KPI and the SYSTEM KPI provide
better quality results with 2 clusters.

We also compared these results to the ones we have
obtained in our previous analysis [7], where PCA was used to
face the data dimensionality problem. Table 11 summarizes
the results of both approaches. According to this comparison,
we can state that the methodology introduced in this paper
provides better quality results.

In the second case, combining all the KPI data, the quality
results are summarized in Table 10. We concluded that the
85% threshold is the most adequate to select the most rele-
vant features. Finally, when comparing the two approaches:
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TABLE 13. KPIs scaled features variances.

# Features system | wait idle CpU1 | CPU2 | PW :Z;::m rx tx shortterm | memory
1 | length 0.0309 | 0.0309 | 0.0304 | 0.0330 | 0.0330 | 0.0330 | 0.0330 | 0.0334 | 0.0334 | 0.0335 0.0334
2 | abs_energy 0.0119 | 0.0006 | 0.0152 | 0.0233 | 0.0276 | 0.0229 | 0.0175 | 0.0012 | 0.0027 | 0.0267 0.0081
3 | mean 0.0346 | 0.0026 | 0.1222 | 0.0227 | 0.0231 | 0.0680 | 0.0244 | 0.0122 | 0.0215 | 0.0243 0.0865
4 | median 0.0370 | 0.0027 | 0.1279 | 0.0235 | 0.0242 | 0.0702 | 0.0237 | 0.0122 | 0.0215 | 0.0306 0.0835
5 | count above mean 0.0318 | 0.0162 | 0.0120 | 0.0132 | 0.0160 | 0.0130 | 0.0136 | 0.0333 | 0.0307 | 0.0149 0.0113
6 | count below mean 0.0160 | 0.0237 | 0.0158 | 0.0171 | 0.0153 | 0.0136 | 0.0159 | 0.0317 | 0.0328 | 0.0211 0.0131
7 | absolute_sum_of changes 0.0224 | 0.0005 | 0.0116 | 0.0164 | 0.0209 | 0.0250 | 0.0290 | 0.0018 | 0.0011 | 0.0127 0.0007
8 | mean_abs change 0.0183 | 0.0019 | 0.0057 | 0.0115 | 0.0138 | 0.0167 | 0.0249 | 0.0006 | 0.0002 | 0.0009 0.0005
9 ‘;er?“/’a—fiice‘izgr—ml 0.0006 | 0.0014 | 0.0087 | 0.0009 | 0.0006 | 0.0018 | 0.0010 | 0.0004 | 0.0011 | 0.0069 0.0006
10 | maximum 0.0246 | 0.0084 | 0.0961 | 0.0192 | 0.0202 | 0.0481 | 0.0177 | 0.0122 | 0.0215 | 0.0125 0.0903
11 | minimum 0.0610 | 0.0012 | 0.1068 | 0.0392 | 0.0297 | 0.0726 | 0.0234 | 0.0122 | 0.0215 | 0.0958 0.0857
12 | skewness 0.0071 | 0.0229 | 0.0346 | 0.0119 | 0.0104 | 0.0062 | 0.0015 | 0.0184 | 0.0009 | 0.0199 0.0025
13 | Kurtosis 0.0038 | 0.0573 | 0.0692 | 0.0072 | 0.0058 | 0.0022 | 0.0011 | 0.0250 | 0.0006 | 0.0340 0.0025
14 | first_location_of maximum | 0.1259 | 0.0591 | 0.0618 | 0.0763 | 0.0788 | 0.0450 | 0.0747 | 0.0328 | 0.0328 | 0.0949 0.1681
15 | first_location of minimum | 0.1315 | 0.0126 | 0.0983 | 0.0434 | 0.0439 | 0.0250 | 0.0420 | 0.0000 | 0.0000 | 0.0392 0.0524
16 | binned_entropy 0.0681 | 0.0240 | 0.0301 | 0.0497 | 0.0461 | 0.0486 | 0.0232 | 0.0740 | 0.0201 | 0.0408 0.0833
17 | variance 0.0063 | 0.0008 | 0.0128 | 0.0043 | 0.0045 | 0.0089 | 0.0047 | 0.0007 | 0.0004 | 0.0007 0.0011
18 | longest strike_above mean | 0.0030 | 0.0032 | 0.0019 | 0.0025 | 0.0048 | 0.0026 | 0.0042 | 0.0333 | 0.0307 | 0.0034 0.0167
19 | longest strike_below mean | 0.0024 | 0.0032 | 0.0131 | 0.0060 | 0.0047 | 0.0038 | 0.0121 | 0.0317 | 0.0328 | 0.0044 0.0090
20 | mean_change 0.0017 | 0.0008 | 0.0078 | 0.0029 | 0.0027 | 0.0053 | 0.0019 | 0.0006 | 0.0002 | 0.0056 0.0005
21 | sample_entropy 0.0676 | 0.0271 | 0.0609 | 0.0279 | 0.0250 | 0.0484 | 0.0252 | 0.0264 | 0.0091 | 0.0835 0.0631
22 | standard_deviation 0.0123 | 0.0013 | 0.0216 | 0.0134 | 0.0135 | 0.0183 | 0.0099 | 0.0020 | 0.0012 | 0.0033 0.0041
23 SZ{zzgtifegﬁf—V’;iZ“mng— 0.0818 | 0.0452 | 0.1675 | 0.0076 | 0.0118 | 0.0074 | 0.0061 | 0.0520 | 0.0520 | 0.0256 0.1234
24 fg;i:g‘oﬁfs—jf)—jﬁizzgﬁn i | 00563 | 0.0501 | 0.0664 | 0.0389 | 0.0424 | 0.0377 | 0.0389 | 0.0520 | 0.0520 | 0.0393 0.1008
fft_aggregated_centroid 0.0403 | 0.0450 | 0.0426 | 0.0278 | 0.0320 | 0.0373 | 0.0265 | 0.0081 | 0.0087 | 0.0300 0.0112
fft_aggregated_kurtosis 0.0072 | 0.0586 | 0.0075 | 0.0062 | 0.0073 | 0.0230 | 0.0215 | 0.0060 | 0.0044 | 0.0063 0.0024
» fft_aggregated skew 0.0160 | 0.0653 | 0.0247 | 0.0118 | 0.0134 | 0.0305 | 0.0412 | 0.0120 | 0.0273 | 0.0179 0.0050
fft_aggregated_variance 0.0185 | 0.0135 | 0.0130 | 0.0133 | 0.0145 | 0.0215 | 0.0149 | 0.0068 | 0.0061 | 0.0125 0.0058
friedrich_coefficients 0 0.0010 | 0.0042 | 0.0014 | 0.0127 | 0.0081 | 0.0045 | 0.0003 | 0.0003 | 0.0004 | 0.0018 0.0001
friedrich_coefficients_1 0.0005 | 0.0021 | 0.0019 | 0.0110 | 0.0077 | 0.0045 | 0.0009 | 0.0009 | 0.0002 | 0.0014 0.0002
2 friedrich_coefficients 2 0.0005 | 0.0021 | 0.0019 | 0.0102 | 0.0076 | 0.0044 | 0.0012 | 0.0012 | 0.0003 | 0.0014 0.0002
friedrich_coefficients 3 0.0006 | 0.0020 | 0.0019 | 0.0100 | 0.0078 | 0.0044 | 0.0006 | 0.0006 | 0.0003 | 0.0014 0.0003
spkt_welch_density coeff 2 | 0.0008 | 0.0003 | 0.0015 | 0.0022 | 0.0013 | 0.0016 | 0.0022 | 0.0005 | 0.0002 | 0.0017 0.0016
27 | spkt_welch_density coeff 5 | 0.0034 | 0.0004 | 0.0037 | 0.0028 | 0.0024 | 0.0031 | 0.0035 | 0.0002 | 0.0002 | 0.0043 0.0024
spkt_welch_density coeff 8 | 0.0027 | 0.0003 | 0.0005 | 0.0011 | 0.0015 | 0.0022 | 0.0010 | 0.0003 | 0.0002 | 0.0006 0.0005
index_mass_quantile_10p 0.0053 | 0.0041 | 0.0211 | 0.0061 | 0.0062 | 0.0089 | 0.0103 | 0.0043 | 0.0105 | 0.0030 0.0095
index_mass_quantile_20p 0.0059 | 0.0106 | 0.0276 | 0.0044 | 0.0044 | 0.0045 | 0.0055 | 0.0054 | 0.0131 | 0.0047 0.0032
index_mass_quantile_30p 0.0068 | 0.0210 | 0.0345 | 0.0034 | 0.0034 | 0.0043 | 0.0063 | 0.0062 | 0.0144 | 0.0065 0.0037
index_mass_quantile_40p 0.0058 | 0.0351 | 0.0461 | 0.0032 | 0.0032 | 0.0030 | 0.0062 | 0.0070 | 0.0155 | 0.0067 0.0038
28 | index_mass_quantile_SOp 0.0068 | 0.0521 | 0.0618 | 0.0034 | 0.0033 | 0.0029 | 0.0065 | 0.0080 | 0.0168 | 0.0088 0.0034
index_mass_quantile_60p 0.0074 | 0.0690 | 0.0802 | 0.0032 | 0.0029 | 0.0034 | 0.0048 | 0.0088 | 0.0172 | 0.0115 0.0029
index_mass_quantile_70p 0.0084 | 0.0873 | 0.1003 | 0.0045 | 0.0029 | 0.0026 | 0.0087 | 0.0100 | 0.0176 | 0.0118 0.0024
index_mass_quantile_80p 0.0080 | 0.1024 | 0.1213 | 0.0044 | 0.0038 | 0.0028 | 0.0080 | 0.0122 | 0.0185 | 0.0119 0.0019
index_mass_quantile_90p 0.0062 | 0.1042 | 0.1415 | 0.0052 | 0.0056 | 0.0039 | 0.0103 | 0.0070 | 0.0131 | 0.0107 0.0010
ar_coefficient_0 0.0054 | 0.0023 | 0.0094 | 0.0004 | 0.0002 | 0.0007 | 0.0013 | 0.0002 | 0.0002 | 0.0002 0.0002
29 | ar_coefficient 1 0.0041 | 0.0007 | 0.0002 | 0.0144 | 0.0076 | 0.0097 | 0.0046 | 0.0005 | 0.0002 | 0.0133 0.0003
ar_coefficient 2 0.0046 | 0.0002 | 0.0002 | 0.0020 | 0.0020 | 0.0021 | 0.0044 | 0.0006 | 0.0003 | 0.0003 0.0003
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TABLE 13. (Continued.) KPIs scaled features variances.

ar_coefficient 3 0.0005 | 0.0002 | 0.0002 | 0.0044 | 0.0005 | 0.0028 | 0.0020 | 0.0003 | 0.0007 | 0.0002 0.0002
ar_coefficient 4 0.0005 | 0.0002 | 0.0002 | 0.0027 | 0.0002 | 0.0028 | 0.0009 | 0.0003 | 0.0005 | 0.0002 0.0003
e 0.0018 | 0.0002 | 0.0002 | 0.0028 | 0.0047 | 0.0041 | 0.0003 | 0.0011 | 0.0009 | 0.0049 0.0002
_fuller_teststat
30 i?f&ii;evtﬁ?key 0.0591 | 0.0192 | 0.0457 | 0.0379 | 0.0347 | 0.0179 | 0.0223 | 0.0518 | 0.0296 | 0.0384 0.1659
e (1 G 0.0773 | 0.0714 | 0.0727 | 0.0652 | 0.0684 | 0.0395 | 0.0714 | 0.0733 | 0.0730 | 0.0529 0.0650
fuller usedlag
B e = ] 0.0013 | 0.0009 | 0.0014 | 0.0012 | 0.0012 | 0.0051 | 0.0016 | 0.0003 | 0.0003 | 0.0017 0.0004
_statistic_lag 1
31 ii;‘:gsrgﬁzaglj‘symme“y 0.0015 | 0.0006 | 0.0017 | 0.0012 | 0.0013 | 0.0039 | 0.0020 | 0.0003 | 0.0003 | 0.0009 0.0005
IS FEEIEEN, g moicliny 0.0019 | 0.0005 | 0.0024 | 0.0010 | 0.0012 | 0.0032 | 0.0019 | 0.0003 | 0.0003 | 0.0005 0.0006
_statistic_lag 3
31 0.0084 | 0.0024 | 0.1067 | 0.0107 | 0.0112 | 0.0656 | 0.0227 | 0.0035 | 0.0035 | 0.0013 0.0338
32 c32 0.0085 | 0.0024 | 0.1066 | 0.0107 | 0.0113 | 0.0658 | 0.0227 | 0.0035 | 0.0035 | 0.0013 0.0338
33 0.0084 | 0.0024 | 0.1065 | 0.0107 | 0.0113 | 0.0659 | 0.0227 | 0.0035 | 0.0035 | 0.0013 0.0338
quantilel 0.0253 | 0.0025 | 0.1210 | 0.0268 | 0.0265 | 0.0702 | 0.0232 | 0.0122 | 0.0215 | 0.0351 0.0857
quantile2 0.0293 | 0.0027 | 0.1217 | 0.0250 | 0.0248 | 0.0666 | 0.0233 | 0.0122 | 0.0215 | 0.0334 0.0856
quantile3 0.0313 | 0.0027 | 0.1230 | 0.0246 | 0.0252 | 0.0681 | 0.0234 | 0.0122 | 0.0215 | 0.0326 0.0829
quantile4 0.0340 | 0.0027 | 0.1247 | 0.0240 | 0.0246 | 0.0685 | 0.0236 | 0.0122 | 0.0215 | 0.0317 0.0832
33 | quantiles 0.0370 | 0.0027 | 0.1279 | 0.0235 | 0.0242 | 0.0702 | 0.0237 | 0.0122 | 0.0215 | 0.0306 0.0835
quantile6 0.0353 | 0.0027 | 0.1292 | 0.0239 | 0.0238 | 0.0732 | 0.0270 | 0.0122 | 0.0215 | 0.0143 0.0838
quantile? 0.0359 | 0.0027 | 0.1317 | 0.0234 | 0.0234 | 0.0672 | 0.0271 | 0.0122 | 0.0215 | 0.0136 0.0842
quantile8 0.0381 | 0.0027 | 0.1333 | 0.0231 | 0.0237 | 0.0605 | 0.0271 | 0.0122 | 0.0215 | 0.0136 0.0848
quantile9 0.0410 | 0.0028 | 0.1371 | 0.0227 | 0.0234 | 0.0677 | 0.0240 | 0.0122 | 0.0215 | 0.0135 0.0855
autocorrelation] 0.0490 | 0.0237 | 0.0371 | 0.0326 | 0.0317 | 0.0356 | 0.0332 | 0.0295 | 0.0027 | 0.0291 0.0220
autocorrelation2 0.0397 | 0.0108 | 0.0195 | 0.0263 | 0.0302 | 0.0170 | 0.0309 | 0.0477 | 0.0066 | 0.0228 0.0250
autocorrelation3 0.0374 | 0.0074 | 0.0194 | 0.0281 | 0.0293 | 0.0167 | 0.0297 | 0.0533 | 0.0092 | 0.0200 0.0391
autocorrelationd 0.0314 | 0.0043 | 0.0175 | 0.0225 | 0.0273 | 0.0101 | 0.0243 | 0.0553 | 0.0116 | 0.0195 0.0326
3 [ autocorrelations 0.0260 | 0.0069 | 0.0206 | 0.0200 | 0.0280 | 0.0103 | 0.0234 | 0.0571 | 0.0147 | 0.0195 0.0475
autocorrelation6 0.0245 | 0.0126 | 0.0158 | 0.0233 | 0.0253 | 0.0110 | 0.0248 | 0.0589 | 0.0180 | 0.0173 0.0443
autocorrelation? 0.0213 | 0.0055 | 0.0136 | 0.0238 | 0.0262 | 0.0102 | 0.0196 | 0.0606 | 0.0215 | 0.0158 0.0408
autocorrelation8 0.0215 | 0.0050 | 0.0152 | 0.0238 | 0.0172 | 0.0092 | 0.0195 | 0.0626 | 0.0252 | 0.0157 0.0416
number_peaks10 0.0547 | 0.0492 | 0.0544 | 0.0534 | 0.0594 | 0.0385 | 0.0228 | 0.0000 | 0.0000 | 0.0827 0.0129
number_peaks100 0.0304 | 0.0283 | 0.0521 | 0.0173 | 0.0198 | 0.0135 | 0.0168 | 0.0000 | 0.0000 | 0.0704 0.0163
number_peaksl5 0.0414 | 0.0261 | 0.0277 | 0.0522 | 0.0626 | 0.0341 | 0.0149 | 0.0000 | 0.0000 | 0.0838 0.0146
number_peaks20 0.0277 | 0.0295 | 0.0293 | 0.0480 | 0.0445 | 0.0323 | 0.0105 | 0.0000 | 0.0000 | 0.0890 0.0136
35 | number peaks30 0.0446 | 0.0548 | 0.0296 | 0.0356 | 0.0414 | 0.0232 | 0.0174 | 0.0000 | 0.0000 | 0.0811 0.0163
number_peaks35 0.0498 | 0.0557 | 0.0584 | 0.0340 | 0.0348 | 0.0232 | 0.0173 | 0.0000 | 0.0000 | 0.0797 0.0129
number_peaks40 0.0551 | 0.0563 | 0.0566 | 0.0292 | 0.0326 | 0.0210 | 0.0188 | 0.0000 | 0.0000 | 0.0881 0.0114
number_peakss 0.0517 | 0.0337 | 0.0313 | 0.0548 | 0.0645 | 0.0443 | 0.0255 | 0.0000 | 0.0000 | 0.0940 0.0129
number_peaksS0 0.0371 | 0.0432 | 0.0374 | 0.0238 | 0.0296 | 0.0225 | 0.0192 | 0.0000 | 0.0000 | 0.0772 0.0097
linear trend intercept 0.0224 | 0.0017 | 0.0670 | 0.0227 | 0.0231 | 0.0531 | 0.0242 | 0.0122 | 0.0215 | 0.0085 0.0818
linear_trend pvalue 0.0786 | 0.0530 | 0.0378 | 0.0512 | 0.0502 | 0.0921 | 0.0535 | 0.0006 | 0.0004 | 0.0568 0.0046
36 | linear trend rvalue 0.0144 | 0.0048 | 0.0109 | 0.0215 | 0.0227 | 0.0127 | 0.0295 | 0.0363 | 0.0105 | 0.0110 0.0763
linear trend_slope 0.0025 | 0.0007 | 0.0030 | 0.0022 | 0.0024 | 0.0042 | 0.0017 | 0.0006 | 0.0002 | 0.0033 0.0005
linear trend_stderr 0.0032 | 0.0009 | 0.0111 | 0.0050 | 0.0048 | 0.0106 | 0.0063 | 0.0005 | 0.0013 | 0.0107 0.0043
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literature-based and variance-based selection, we can state
that the best results are obtained if we considered the infor-
mation given by all the 11 KPIs together for the clustering,
instead of performing independent clustering per KPI.

The proposed feature-based clustering model can also be
used to build a job anomaly prediction model. This, for
sure, will be a useful tool for HPC DevOps engineers and
technicians to early identify jobs/nodes whose behavior is not
as expected. The application would trigger an alert if the KPIs
of a job are performing similarly to the ones in the cluster
of jobs with anomalies. Additionally, this tool would give to
HPC DevOps engineers and technicians relevant information
about the detected anomalies. Thus, which KPIs are the ones
showing an unexpected behavior. This would contribute to
identify the root of the problem in a timely manner and solve
the issue as soon as possible. Consequently, this clustering
model information would have a positive impact on minimiz-
ing the infrastructure cost.

VIil. CONCLUSION

This paper introduces a methodology to cluster and visualize
HPC jobs based on their performance KPIs. Our approach
systematically identifies different job types (clusters) and
supports their suitable visualization. Both clustering and visu-
alization would help to manage and early detect performance
problems in the nodes of the HPC system. We proposed
two different approaches to deal with the high dimension-
ality problem inherent in these systems: a really high num-
ber of KPIs (44,280 in CESGA), a huge number of nodes
(195 in CESGA), and a high sensing frequency in the HPC
monitoring system (from 60 to 120 seconds). We focused
our analysis on the following categories KPIs, CPU usage,
Memory usage, IPMI, System Load, and Network (interface)
traffic, which gave us an overwhelming amount of data:
35,761,290 samples on average per KPI and per job.

In order to reduce the high dimensionality of the data,
we propose a methodology that faces the analysis of the
collected time series in terms of its features, usually related
to statistical behavior or global parameters (trend, seasonality,
skewness, periodicity, etc.). The underlying idea is selecting
only those features that are relevant for the jobs clustering,
assuming that these features are usually correlated and redun-
dant. We proposed to deal with this problem in a twofold
approach: on the one hand, selecting the features based on
the information gathered from the specialized literature and,
on the other hand, selecting the features based on a threshold
for their variance (the higher its variance, the more relevant).
After performing our analysis, we concluded that the best
approach is the second one using a threshold of 85% for
the variance-based feature selection and combining the infor-
mation provided by the 11 KPIs under study to perform the
clustering. This approach gives the best clustering cohesion
and separation. Thus, the results show that the dimensionality
reduction techniques used in this study and our previous
PCA-based study [7] enable a suitable way to cluster the
jobs and show the convenience of using the KPIs related to
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the CPU usage (IDLE, SYSTEM) as the most suitable for
clustering the HPC jobs.

Complementary to this clustering methodology, we have
also defined a visualization procedure for the obtained clus-
ters. First, we rank the features selected for the clustering
according to their variance, with the aim of selecting the two
and three top ones. After that, these two and three top features
can easily visualize the obtained clusters in a 2D and 3D plot
respectively.

We are currently planning to add more features and clus-
tering algorithms to our current methodology, with the aim
of improving the clustering results of HPC jobs and taking
into consideration the computational power needed to execute
such analysis. In addition, we will focus on the behaviors of
the nodes in executing different jobs types, which will help
us in building a forecasting model for node behavior.

APPENDIX
See Tables 12 and 13.
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