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ABSTRACT In this work, we propose an unsupervised multiple parametric-margin support vector cluster-
ing (MPMSVC) for noisy clustering tasks. The main idea of MPMSVC is to find a parametric-margin center
hyperplane for each cluster in a manner that gathers the within-cluster instances around the corresponding
center hyperplane, and keeps the between-cluster instances far away. Specifically, our MPMSVC owns the
following attractive merits: i) The primal of MPMSVC is enhanced in the least squares sense, which enjoys
an effective learning procedure. ii) The utilization of the linear L1-norm loss makes MPMSVC be more
robust to noisy clustering tasks. iii) An efficient iterative algorithm is presented to optimize the non-smooth
problem in MPMSVC, which only involves a set of linear equations. Also, the convergence of the proposed
algorithm is guaranteed theoretically. iv) The nonlinear extension is further derived via kernel technique to
deal with more complex clustering tasks. Finally, the feasibility and effectiveness of MPMSVC is validated
by extensive experiments on both synthetic and real-world datasets.

INDEX TERMS Plane-based clustering, nonparallel support vector clustering, L1-norm, robustness.

I. INTRODUCTION
Clustering is one of mainstream topics in machine learning
community [1]–[4]. Compared with the supervised classifica-
tion, labels or outputs in clustering tasks are unknown. Thus,
the main goal of clustering is to divide similar instances into
the same cluster while dissimilar instances into the different
ones, such that the meaningful underlying structures in data
can be well exploited. During the last decade, the unsuper-
vised clustering has been applied widely to various practi-
cal application domains, such as computer vision [5], [6],
text mining [7], [8], smart grid [9], bioinformatics [10]
and so on.

There are many branches [4], [11] in the field of cluster-
ing. Among them, the certain-based clustering is the most
popular, which separates data into clusters according to cer-
tain cluster prototypes. Generally speaking, there are two
kinds of certain-based clustering: the point-based and the
plane-based. The point-based one assumes each cluster pro-
totype is a point. That is, it partitions instances into K
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clusters, in which each instance belongs to the cluster with
the nearest centroid or median. The representative methods
are kmeans [12], kmedian [13], fuzzy c-means [14]. On the
other hand, the plane-based clustering [11], [15] extends the
cluster center from point to hyperplane. It is well known that
the plane-based clustering is derived from the nonparallel
hyperplane learning paradigm [16]–[26], which targets for
seeking K optimal hyperplane prototypes to represent the
cluster centers via some certain criterion.

The first plane-based clustering, k-plane clustering
(kPC) [15], is originally proposed by Mangasarian. It aims
to find K hyperplanes via considering the discriminative
information from within-cluster. However, kPC only utilizes
one side information, similarity for within-cluster. Moti-
vated by GEPSVM [16], Shao et al. [27] introduce the
dissimilarity for between-cluster, and propose proximal plane
clustering (PPC). Both kPC and PPC optimize via solving
eigenvalue problems. Subsequently, in light of TWSVM [17],
Wang et al. [28] propose a novel unsupervised nonparallel
hyperplane twin support vector clustering (TWSVC) by con-
sidering both similarity and dissimilarity. The optimal cluster
plane-centers of TWSVC are obtained via solving SVM-type
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quadratic programming problems (QPPs). Compared with
kPC and PPC, TWSVC gains more solid theoretical results
and achieves better performance on benchmark datasets.

However, TWSVC still has some limitations. To improve
the model generalization, Bai et al. [29] put forward twin
bounded support vector clustering (TBSVC) by introduc-
ing an additional regularization term. Meanwhile, similar to
fuzzy c-means, Khemchandani et al. [30] present a fuzzy
version of TWSVC (FLSTWSVC) with the soft assignments
of clusters. Subsequently, to deal with noisy clustering cases,
Ye et al. [31] consider a robust loss for TWSVC, and pro-
pose robust twin support vector clustering (RTWSVC) and
its fast version (FRTWSVC). Beyond that, there are many
other nonparallel hyperplane clustering extensions, includ-
ing ramp-based TWSVC [32], least-square PTSVC [33],
RFDPC [34], and so on [35]–[37].

Whereas in fact, the recently proposed twin parametric-
margin support vector machine (TPMSVM) [23] is an excel-
lent nonparallel classifier. Compared with TWSVM [17],
TPMSVM can capture more complex heteroscedastic error
structures via parametric-margin hyperplanes. Thus, moti-
vated by the work on TPMSVM [23] and nonparallel
plane-based clustering paradigm [28], [34], in this paper,
we propose a novel unsupervised multiple parametric-margin
support vector clustering for noisy clustering tasks, termed as
MPMSVC. The main idea ofMPMSVC is to generateK non-
parallel parametric-margin cluster center hyperplanes, such
that each parametric-margin hyperplane should be not only
as close as possible to its current cluster instances but also far
away from the other clusters. Specifically, our MPMSVC has
the following attractive merits:
• By replacing the constraints in equalities with inequali-
ties in TPMSVM, the primal of MPMSVC is enhanced
in the least squares sense, which enjoys an effective
learning procedure. (Section III)

• To improve the robustness to noisy clustering tasks,
the L1-norm based loss is further considered for
MPMSVC. Moreover, an efficient iterative algorithm
is designed to optimize the non-smooth problem of
MPMSVC, whose convergence is guaranteed theoreti-
cally. (Section III)

• Formulation ofMPMSVC is extended to nonlinear cases
via kernel technique to deal with the more complex
clustering tasks. (Section IV)

• Extensive experimental results on both noisy synthetic
datasets and benchmark datasets confirm the effective-
ness of MPMSVC in terms of RI (Rand Index) and
learning time. (Section V)

The remainder of this paper is organized as follows.
Section II briefly introduces notations and related works.
Section III proposes the formulation of MPMSVC with
the geometrical interpretation, and the feasibility of learn-
ing algorithm is also theoretically analyzed. The nonlinear
extension is derived in Section IV. Experimental results are
described in Section V, and Section VI gives concluding
remarks and future works.

II. PRELIMINARIES
In this section, we briefly introduce the formulation of super-
vised TPMSVM [23], and clustering methods i.e., kPC [15],
PPC [27] and TWSVC [28].

A. NOTATIONS
In this paper, scalars are denoted by lower case italic let-
ters, vectors by lower case bold face letters, and matrices
by capital face letters. All vectors will be column unless
transformed to row vectors by a prime superscript (·)′. Vectors
of zeros and ones of arbitrary dimensions are represented
by 0 and e, respectively. Denote I as an identity matrix of
arbitrary dimensions.

Clustering is an unsupervised learning task. The learning
dataset is represented by X = (x1, x2, · · · , xm)′ with m
instances, where xi ∈ Rn. Use Ik to express the set of
indices for instances belonging to the kth cluster, where k ∈
{1, · · · ,K }. Denote xi∈Ik as the kth cluster’s instance with its
index i ∈ Ik , while xj∈Ik̄ as the rest cluster’s instance.

B. SUPERVISED TPMSVM
The TPMSVM [23] is originally proposed for binary
classification tasks. It aims to find two nonparallel
parametric-margin hyperplanes via the following optimiza-
tion problems

min
w1,b1

1
2
‖w1‖

2
+ c1

∑
i∈I1

ξ1i + c2
∑
j∈I2

η1j,

s.t. w′1xi + b1 ≥ 0− ξ1i, ξ1i ≥ 0,

w′1xj + b1 = η1j, (1)

and

min
w2,b2

1
2
‖w2‖

2
+ c1

∑
i∈I2

ξ2i − c2
∑
j∈I1

η2j,

s.t. w′2xi + b2 ≤ 0+ ξ1i, ξ2i ≥ 0,

w′2xj + b2 = η2j. (2)

If set ŵ2 = −w2 and b̂2 = −b2 in (2), we can unify the above
formulation of TPMSVM as

min
wk ,bk

1
2
‖wk‖2 + c1

∑
i∈Ik

ξki + c2
∑
j∈Ik̄

ηkj,

s.t. w′kxi + bk ≥ 0− ξki, ξki ≥ 0,

w′kxj + bk = ηkj, (3)

where k = 1, 2 are represented positive and negative class
respectively, and Ik̄ is the indices set of the rest class
instances. The solution of problem (3) can be obtained via
solving its dual problem

min
αk

1
2

∑
i∈Ik

∑
j∈Ik

α2ikx
′
ixj − c1

∑
i∈Ik

∑
j∈Ik̄

αikx′ixj,

s.t.
∑
i∈Ik

αik = c1,

0 ≤ αik ≤ c2. (4)
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Then,wk and bk in (3) can be calculated according to theKKT
conditions,

wk =
∑
i∈Ik

αikxi − c2
∑
j∈Ik̄

xj, (5)

bk = −
1
|ISV |

∑
i∈ISV

w′kxi, (6)

where ISV is indices of the support vector set.
Note that the TPMSVM can capture more complex het-

eroscedastic error structures via parametric-margin hyper-
planes compared with TWSVM [17]. However, similar to
TWSVM, the solution wk and bk of problem (3) needs solve
the QPP (4), which is intractable or even impossible for
large-scale learning tasks.

C. kPC
The kPC [15] is the first plane-based clustering. It aims to
seek K optimal cluster plane-centers

fk (x) := w′kx+ bk = 1, k = 1, · · · ,K . (7)

Specifically, kPC randomly initializes the cluster assignment
for instances, and then updates theK cluster plane-centers via
optimizing the following problems with k = 1, · · · ,K ,

min
wk ,bk

1
2

∑
i∈Ik

(w′kxi + bk )
2,

s.t. ‖wk‖2 = 1. (8)

Once obtained the plane-center (7), the cluster of each
instance is reassigned by

Cluster(x) = argmin
k
{|w′kx+ bk |, k = 1, · · · ,K } (9)

In brief, the cluster of instances are updated according
to (9) and the new cluster plane-centers are obtained by
solving (8), until some terminate conditions are satisfied.

D. TWSVC
The recently proposed TWSVC [28] is a powerful
plane-based clustering, which is an unsupervised extension
to TWSVM [17]. Specifically, it aims to seek K cluster
plane-centers (7) via optimizing the following problems
with k = 1, · · · ,K ,

min
wk ,bk

1
2

∑
i∈Ik

(w′kxi + bk )
2
+ c

∑
j∈Ik̄

ξjk ,

s.t. |w′kxj + bk | ≥ 1− ξjk , ξjk ≥ 0, (10)

where c > 0 is a penalty parameter, and ξk is a slack vector.
However, problem (10) is difficult to be optimized

due to the non-smooth absolute terms. Thus, by using
the sub-gradient of |w′kxj + bk | and the Taylor series
expansion, problem (10) can be successively optimized
by concave–convex procedure (CCCP) [38] with initials
w0
k and b

0
k as

min
wtk ,b

t
k

1
2

∑
i∈Ik

((wtk )
′xi + btk )

2
+ c

∑
j∈Ik̄

ξjk ,

s.t. Dt ((wtk )
′xj + btk ) ≥ 1− ξjk , ξjk ≥ 0, (11)

where Dt = diag(sign((wt−1k )′xj + bt−1k )).
Note that the solution of subproblem (11) is obtained

via solving its dual QPP, which is computational costly for
large-scale learning tasks. Moreover, kPC, PPC and TWSVC
all adopt the L2-norm least-square loss to measure the simi-
larity of within cluster, which is sensitive to outliers.

III. THE PROPOSED METHOD
In the following, we introduce our MPMSVC, a novel
unsupervised multiple parametric-margin support vector
clustering for noisy learning tasks. Firstly, formulate the
optimization problem of MPMSVC and give its geometrical
interpretation in subsection III-A. Afterwards, elaborate the
model optimization, and design an iteration algorithm for
the model solution in subsection III-B. The convergence of
algorithm is analyzed theoretically in subsection III-C.

A. MODEL FORMULATION
It has been seen that the quadratic L2-norm measurement in
kPC, PPC and TWSVC is sensitive to outliers. That is, their
performance will be degenerated in noisy situation. On the
other hand, the recently proposed twin parametric-margin
support vector machine (TPMSVM) [23] is an excellent
supervised nonparallel classifier. Compared with GEPSVM
[16] and TWSVM [17], TPMSVM can capture more com-
plex heteroscedastic error structures via parametric-margin
hyperplanes. Thus, motivated by the work on TPMSVM and
nonparallel plane-based clustering paradigm, we propose a
novel unsupervised multiple parametric-margin support vec-
tor clustering (MPMSVC) for noisy clustering tasks.

In what follows, we derive the optimization problems
of MPMSVC. With the initial cluster assignment of X ,
our MPMSVC iteratively updates the following K cluster
plane-centers and the corresponding clusters of instances,

fk (x) := w′kx+ bk = 1, k = 1, · · · ,K . (12)

Such that, for the k-th cluster, gather the within-cluster
instances xi∈Ik as close as possible to its corresponding
cluster plane-center fk (x) = 1, meanwhile keeping the
between-cluster instances xj∈Ik̄ far away from the k-th cluster
plane-center.

To derive the model of MPMSVC, firstly, we enhance
MPMSVC in least squares sense via replacing the equality
constraints with inequality in TPMSVM, which enjoys an
effective learning procedure. Besides, to reduce the impact
of outliers, L1-norm metric [31], [39]–[41] is further con-
sidered for MPMSVC, which can also improve the flexi-
bility of model. For this purpose, our MPMSVC considers
the following linear L1-norm loss function for each cluster
plane-center

Rk = c1
∑
i∈Ik

|f (xi)− 1| + c2
∑
j∈Ik̄

f (xj), (13)

where k = 1, · · · ,K , and c1, c2 > 0 are penalty parameters
for balancing the loss of within-cluster instances xi∈Ik and
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between-cluster instances xj∈Ik̄ . Furthermore, by introducing
the regularization term 1

2 (‖wk‖
2
+b2k ), yield the primal prob-

lem of MPMSVC

min
4k

1
2
(‖wk‖2 + b2k )+ c1

∑
i∈Ik

|ξki| + c2
∑
j∈Ik̄

ηkj,

s.t. w′kxi + bk − 1 = ξki,

w′kxj + bk = ηkj, (14)

where 4k = (wk , bk , ξ k , ηk ). To deliver the mechanism
of MPMSVC, we carry out the geometrical explanation for
problem (14):
• The first term of objective is used to control the model
complexity of the parametric-margin plane-center fk (x).
Optimizing it aims to avoid model overfitting.

• For the first constraint with the second term of objec-
tive, the linear L1-norm loss is adopted to implement
the empirical risk of within cluster instances xi∈Ik .
Minimizing it encourages each within-cluster instance
xi to gather within the parametric-margin plane-center
fk (x) = 1 as much as possible. Otherwise, a slack
variable ξki is introduced to measure this error.

• For the second constraint with the third term of objec-
tive, the linear loss is utilized to measure the empirical
risk of between-cluster instances xj∈Ik̄ . Optimizing this
term pushes the between cluster instances xj far away
from hyperplanes fk (x) = 1. Otherwise, a slack variable
ηkj is utilized to measure this error.

Once the solution of problem (14) for each cluster
in MPMSVC is obtained, the corresponding k-th cluster
plane-center fk (x) = w′kx + bk is updated, k = 1, · · · ,K .
Then, reassign the cluster of instances depending on which
cluster plane-center it is nearest to, i.e.,

cluster(x) = arg min
k={1,··· ,K }

|fk (x)− 1|. (15)

The whole routine is that, MPMSVC updates the cluster
plane-center (12) by solving problem (14), and the assign-
ments of instances by operation (15) alternately until some
terminate conditions are satisfied. In brief, we give the learn-
ing procedure of MPMSVC in Algorithm 1.

Algorithm 1 The Main Procedure of MPMSVC

Input: Data matrix X = {xi}mi=1, and parameters c1, c2.
1: Initialize the labels Y = {yi}mi=1 for X ..
2: while There is no more difference of Y between itera-

tions. do
3: Update the k-th cluster plane-center f (x) by solving

problem (14), where k = 1, · · · ,K .
4: Relabel instances to the nearest cluster plane-center

via operation (15).
5: end while

Output: The labels Y for X .

B. MODEL OPTIMIZATION
It is known that the most computational cost in Algorithm 1 is
solving problem (14) for updating each cluster plane-center.

However, the objective function in problem (14) involves
the non-smooth L1-norm term. As a result, it is a chal-
lenge to obtain its optimal solution directly by traditional
gradient-based optimization techniques. In what follows,
we will concern on how to optimize problem (14).

For simplicity, denote Ak = {xi}i∈Ik ∈ Rmk×n as instances
of the k-th cluster with mk size in j-th iteration, and Bk =
{xj}j∈Ik̄ ∈ Rmk̄×n as instances of the rest clusters with mk̄
size, k = 1, · · · ,K . Then, we can simply express problem
(14) in the following matrix form as

min
4k

1
2
(‖wk‖2 + b2k )+ c1‖ξ k‖1 + c2e

′

k̄ηk ,

s.t. (Akwk + bkek )− ek = ξ k ,

(Bkwk + bkek ) = ηk , (16)

where ‖ · ‖1 is the L1-norm, ek ∈ Rmk and ek̄ ∈ Rmk̄ are
vectors with all one elements.

Furthermore, denote utk = [wk ; bk ], Hk = [Ak , ek ], Gk =
[Bk , ek̄ ]. Then, substitute the constraint Gkuk = ηk into the
objective of problem (16) and obtain

min
4k

1
2
‖uk‖2 + c1‖ξ k‖1 + c2e

′

k̄Gkuk ,

s.t. Hkuk − ek = ξ k . (17)

According to mathematical knowledge, we can reformu-
late the nonsmooth term ‖ξ k‖1 as

‖ξ k‖1 =
1
2
ξ ′k


1
|ξk,1|

...
1
|ξk,mk |

 ξ k
=

1
2
ξ ′kdiag

(
1
|ξ k |

)
ξ k , (18)

where ξk,i is the i-th element of vector ξ k , the operation
diag(x) denotes the conversion of a vector x into a diagonal
matrix. Afterwards, problem (17) can be rewritten as

min
4k

1
2
‖uk‖2 +

c1
2
ξ ′kdiag

(
1
|ξ k |

)
ξ k + c2e

′

k̄Gkuk ,

s.t. Hkuk − ek = ξ k . (19)

However, optimizing problem (19) is difficult for tradi-
tional optimization algorithm due to the absolute value oper-
ation. In what follows, we will present an efficient iterative
algorithm. That is, it updates the solution uk iteratively via
solving a convex subproblem (20) until converges. Suppose
utk is the optimal solution achieved in the t-th iteration. Then,
the next iteration solution ut+1k can be solved by

min
4k

1
2
‖uk‖2 +

c1
2
ξ ′kD

t
ξ ξ k + c2e

′

k̄Gkuk ,

s.t. Hkuk − ek = ξ k , (20)

where Dtξ is computed according to the t-th solution utk as

Dtξ = diag
(

1
|ξ tk |

)
= diag

(
1

|Hkutk − ek |

)
(21)
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In what follows, we will derive the close-form solution of
problem (20) in each iteration by Proposition 1.
Proposition 1: Suppose that the solution utk of (20) at the

t-th iteration have been obtained. Dt is updated with respect
to utk according to (21). Then, the solution u

t+1
k of the (t+1)-

th iteration optimization problem (20) can be obtained in the
following close-form

ut+1k =
c1M t

kek − c2G
′
kek̄

I + c1M t
kHk

, (22)

whereM t
k = H ′kD

t
ξ .

Proof: Substitute the equality constraint and isolate ξ k
at the objective function of problem (20). Then, obtain the
following unconstrained optimization problem

min
uk

1
2
‖uk‖2 +

c1
2
(Hkuk − ek )′Dtξ (Hkuk − ek )

+ c2e′k̄Gkuk . (23)

Furthermore, denote J(uk ) as the objective function of
problem (23). Setting the gradient of J(uk ) with respect to
uk to zero, give

∇ukJ = uk + c1H ′kD
t
ξ (Hkuk − ek )+ c2G′kek̄ = 0. (24)

DenoteM t
k = H ′kD

t
ξ and arrange (24) as

(I + c1M t
kHk )uk − c1M t

kek + c2G
′
kek̄ = 0, (25)

⇒ (I + c1M t
kHk )uk = (c1M t

kek − c2G
′
kek̄ ), (26)

Then, archive the solution ut+1k of problem (20) as

ut+1k =
c1M t

kek − c2G
′
kek̄

I + c1M t
kHk

. (27)

Note that, according to (27), the solution ut+1k can be easily
obtained by solving an linear equation system.

In short, the solution of problem (17) can be solved by the
following Algorithm 2.

Algorithm 2 Procedure for Solving (17) in Linear
MPMSVC
Input: Data matrices Ak and Bk , and parameters c1, c2.
1: Initialize u0k and set iteration t = 0.
2: Augment data matrices Hk = [Ak , ek ] for within-

cluster instances, and Gk = [Bk , ek̄ ] for between-cluster
instances.

3: while not converge do
4: Set t = t + 1.
5: Compute ξ tk = Hkutk − ek according to utk , and the

diagonal matrix Dtξ with its i-th diagonal elements as
d tξi =

1
|ξ ti |

.

6: ComputeM t
k = H ′kD

t
ξ .

7: Update the solution ut+1k of problem (20) by solving
an linear equation system as

ut+1k =
c1M t

kek − c2G
′
kek̄

I + c1M t
kHk

. (28)

8: end while
Output: Solution u∗k for problem (17).

C. CONVERGENCE ANALYSIS
The iterative algorithm 2 firstly updates the diagonal matrix
Dtξ based on ut , and then updates ut+1 according to (27) via
solving an linear equation problem. That is, uk and Dtξ is
updated alternately until converge. In what follows, we will
concern on the convergence of Algorithm 2.
Lemma 1: For any nonzero vector ξ tk , ξ

t+1
k ∈ Rn, the fol-

lowing inequality is established:

‖ξ t+1k ‖1 −
‖ξ t+1k ‖

2
1

2‖ξ tk‖1
≤ ‖ξ tk‖1 −

‖ξ tk‖
2
1

2‖ξ tk‖1
(29)

Proof: For any nonnegative scalar a and b, have
inequality (

√
a−
√
b)2 ≥ 0. Then, derive

(
√
a−
√
b)2≥ 0

⇒ a− 2
√
ab+ b ≥ 0

⇒

√
b
2
≥
√
a−

a

2
√
b

(divide 2
√
ab)

⇒
√
b−

b

2
√
b
≥
√
a−

a

2
√
b

(split
√
b=

b
√
b
)

(30)

Substitute a = ‖ξ t+1k ‖
2
1 and b = ‖ξ

t
k‖

2
1 into (30), then achieve

(29).
Theorem 1: Algorithm 2 monotonically non-increases the

objective function of problem (17) in each iteration.
Proof: The main routine in Algorithm 2 is to iteratively

update the solution of problem (17) via solving problem (20).
Given the t-th solution uk , problem (20) can be rewritten as

ut+1k = argmin
uk

J(uk ) (31)

where the objective function J(uk ) is defined as

J(uk ) =
1
2
‖uk‖2 +

c1
2
(Hkuk − ek )′Dtξ

× (Hkuk − ek )+ c2e′k̄Gkuk . (32)

According to step 7 in Algorithm 2, ut+1k is the optimal
solution of problem (31) in the t + 1 iteration. Thus, we have

1
2
‖ut+1k ‖

2
+
c1
2
(Hkut+1k − ek )′Dtξ

× (Hkut+1k − ek )+ c2e′k̄Gku
t+1
k

≤
1
2
‖utk‖

2
+
c1
2
(Hkutk − ek )

′Dtξ

× (Hkutk − ek )+ c2e
′

k̄Gku
t
k (33)

Denote ξ tk = Hkutk − ek , then update Dtξ = diag
(

1
|ξ tk |

)
according to step 5 of Algorithm 2. The above equation (33)
can be simplified as

1
2
‖ut+1k ‖

2
+ c1

∑
i∈Ik

(
ξ t+1k,i

)2
2|ξ tk,i|

+ c2e′k̄Gku
t+1
k

≤
1
2
‖utk‖

2
+ c1

∑
i∈Ik

(
ξ tk,i

)2
2|ξ tk,i|

+ c2e′k̄Gku
t
k (34)
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On the other hand, from Lemma 1, we obtain

c1

(
‖ξ t+1k ‖1 −

‖ξ t+1k ‖
2
1

2‖ξ tk‖1

)
≤ c1

(
‖ξ tk‖1 −

‖ξ tk‖
2
1

2‖ξ tk‖1

)
. (35)

That is,

c1

‖ξ t+1k ‖1 −
∑
i∈Ik

(
ξ t+1k,i

)2
2|ξ tk,i|


≤ c1

‖ξ tk‖1 −∑
i∈Ik

(
ξ tk,i

)2
2|ξ tk,i|

 . (36)

Combining (31), (34) and (36), we get

J(ut+1k ) =
1
2
‖ut+1k ‖

2
+
c1
2
(Hkut+1k − ek )′Dt+1ξ

× (Hkut+1k − ek )+ c2e′k̄Gku
t+1
k

=
1
2
‖ut+1k ‖

2
+ c1‖ξ

t+1
k ‖1 + c2e

′

k̄Gku
t+1
k

≤
1
2
‖utk‖

2
+ c1‖ξ tk‖1 + c2e

′

k̄Gku
t
k

=
1
2
‖utk‖

2
+
c1
2
(Hkutk − ek )

′Dtξ

× (Hkutk − ek )+ c2e
′

k̄Gku
t
k

= J(utk ). (37)

Thus, the objective function J(uk ) of problem (17)
non-decreases via each iteration in Algorithm 2, which estab-
lishes the proof.
Note that, the objective function J(uk ) of problem (17) has

a lower bound zero. Hence, Theorem 1 indicates that uk will
converge to a local optimal solution of problem (17) by the
proposed Algorithm 2.

IV. NONLINEAR EXTENSION
In this section, we extend the above linear MPMSVC to
nonlinear case via kernel technique [28], [42]. Specifically,
the nonlinear MPMSVC aims to seek K kernel generated
cluster surface-centers

f φk (x) = K(x,X)wφk + bk = 1, k = 1, · · · ,K . (38)

where K(·, ·) is an appropriate kernel function, wφk ∈ Rm

and bk ∈ R. Then, in each cluster updating routine, our
nonlinear MPMSVC can be expressed in the following kernel
formulation as

min
4k

1
2
(‖wφk ‖

2
+ b2k )+

c1
2
‖ξ k‖1 + c2e

′

k̄ηk ,

s.t. (K(Ak ,X)w
φ
k + bkek )− ek = ξ k ,

(K(Bk ,X)w
φ
k + bkek̄ ) = ηk , (39)

where c1, c2 > 0 are penalty parameters, ξ k is a slack vector.
Denote vk = [wφk ; bk ], H

φ
k = [K(Ak ,X), ek ] and Gφk =

[K(Bk ,X), ek̄ ], then rewrite problem (39) as

min
4k
=

1
2
‖vk‖2 +

c1
2
‖ξ k‖1 + c2e

′

k̄ηk ,

s.t. Hφ
k vk − ek = ξ k ,

Gφk vk = ηk , (40)

Similar to linear case, we optimize problem (40) via solv-
ing series of convex unconstrained quadratic problem (41)
iteratively until converges. That is, the iteration solution ut+1k
is updated by

min
vk

1
2
‖vk‖2 +

c1
2
(Hφ

k vk − ek )
′Dtξ (H

φ
k vk − ek )

+ c2e′k̄G
φ
k vk , (41)

where Dtξ is a diagonal matrix with its i-th diagonal elements

as d tξi =
1
|ξ ti |

, where ξ ti = Hφ
k,iv

t
k − ek is the i-th element

of the slack vector ξ tk and Hφ
k,i is the i-th row of Hφ

k . Then,
we can derive the solution of problem (41) in each iteration
by Proposition 2 without proof.
Proposition 2: Suppose that the solution vtk of (41) at the

t-th iteration have been obtained. Dt is updated with respect
to vtk with its i-th diagonal elements as d

t
ξi
=

1
|ξ ti |

. Then,

the solution vt+1k of the (t + 1)-th iteration optimization
problem (41) can be obtained in the following close-form

vt+1k =
c1M t

kek − c2(G
φ
k )
′ek̄

I + c1M t
kH

φ
k

, (42)

whereM t
k = (Hφ

k )
′Dtξ .

In short, the problem (40) can be solved efficiently by the
following Algorithm 3.

Algorithm 3 Procedure for Solving (40) in Nonlinear
MPMSVC
Input: Data matrices Ak and Bk , and parameters c1, c2.
1: Initialize u0k and set iteration t = 0.
2: Augment data matricesHφ

k = [K(Ak ,X), ek ] for within-
cluster instances, and Gφk = [K(Bk ,X), ek̄ ] for between-
cluster instances.

3: while not converge do
4: Set t = t + 1.
5: Compute ξ tk = Hφ

k v
t
k − ek according to vtk , and the

diagonal matrix Dtξ with its i-th diagonal elements as
d tξi =

1
|ξ ti |

.

6: ComputeM t
k = (Hφ

k )
′Dtξ .

7: Update the solution vt+1k of problem (20) by solving
an linear equation system as

vt+1k =
c1M t

kek − c2(G
φ
k )
′ek̄

I + c1M t
kH

φ
k

. (43)

8: end while
Output: Solution v∗k for problem (40).

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTING
To evaluate the performance of MPMSVC, we carry out
extensive experiments on synthetic and benchmark datasets.
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TABLE 1. Learning results of each method on two synthetic datasets in terms of RI and Time.

TABLE 2. Statistics for benchmark datasets used in experiments.

In experiments, we focus on the comparison between
our MPMSVC and five state-of-the-art clustering methods,
including kPC [15], PPC [27], TBSVC [32], RTWSVC [31]
and FRTWSVC [31]. All methods are implemented by MAT-
LAB on a PC with an i7 Intel Core processor with 32-GB
RAM. The details are described as follows:
• The Rand Index (RI) [4] is utilized to measure their per-
formance, which is a measure of the similarity between
the ground-truth clusters Y and the predict clusters Ȳ .
The metric RI is defined as

RI =
m1

m1 + m2
× 100% =

m1

C2
m
× 100%, (44)

where m1 is the number pairs of agreements between
Y and Ȳ , m2 is the number pairs of disagreements
between them, m is the number of instances, and C2

m =

m1 + m2. Since the denominator is the total number
of pairs, RI represents the frequency of occurrence of
agreements over the total pairs. The range of RI is belong
to [0%, 100%].

• The cluster number K for all methods is set to the real
one. The nearest neighbor graph (NNG) [28] is used as

the initialization for these plane-clusteringmethods. The
RBF kernel K(x1, x2) = exp{−γ ‖x1−x2‖2} is used for
nonlinear case, where γ > 0 is the kernel parameter.

• Parameters in all methods are optimized via the grid
searching routine according to maximizing the perfor-
mance. The parameters in these methods and γ are
selected from {2i|i = −6,−5, · · · , 6}, while neighbor-
hood size in NNG is {1, 2, · · · , 5}.

• Similar to [29], [31], the stopping tolerances of TBSVC,
RTWSVC, FRTWSVC, and MPMSVC are set as
the successive iteration difference less than 0.001,
i.e., ‖ut+1 − ut‖ < 0.001. Moreover, the initial cluster
plane for these methods is set as the solution of kPC.

B. RESULTS ON SYNTHETIC DATASETS
In this subsection, we validate the performance of these clus-
tering methods on two noisy synthetic datasets: ‘‘Cross3D’’
dataset and ‘‘TwoSin’’ dataset.

The ‘‘Cross3D’’ dataset is consist of three underlying clus-
ters, where a line cross through a plane and an ellipsoid. Then,
instances are generated uniformly by these cluster distribu-
tions with Gaussian noisy. Moreover, three outliers are added
to make the learning task more challenge. The illustration of
‘‘Cross3D’’ dataset is shown in Fig.1(a). We perform these
clustering methods on ‘‘Cross3D’’ dataset with linear kernel.
The clustering results are shown in Fig.1. It can be seen
that kPC and TBSVC break down the line into different
clusters, while PPC cannot disclose the instances from plane
and ellipsoid clusters. Moreover, RTWSVC and FRTWSVC
can discover line and plane clusters, but lose in ellipsoid
cluster. Among these methods, our MPMSVC can discover
the underlying clusters, and handle such a cross-cluster
case well.

To further investigate the nonlinear performance of
our MPMSVC, we test these clustering methods on
the ‘‘TwoSin’’ dataset with RBF kernel. In particular,
the ‘‘TwoSin’’ dataset in Fig.2(a) is consist of two ‘‘Sin’’
shape clusters with Gaussian noisy, where two clusters cross
with each other. The learning results of each method in Fig.2
reveal that kPC just divides dataset into two linear sections,
while PPC cannot recognize the two clusters at all. TBSVM,
RTWSVC and FRTWSVC can discover parts of sine distri-
butions. Our MPMSVC is able to exposing the underlying
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FIGURE 1. The learning results of each clustering methods on ‘‘Cross3D" dataset with linear kernel.

two ‘‘Sin’’ distributions and distinguishing instances from
different clusters exactly except for some instances in overlap
intersections.

For better comparisons, we also give the RI and learn-
ing time of these methods on the above two synthetic
datasets in Table.1. The results show that the performance of
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FIGURE 2. The learning results of each clustering methods on ‘‘TwoSin" dataset with nonlinear kernel.

L2-norm loss based kPC, PPC and TBSVC deteriorates obvi-
ously compared with the L1-norm loss based RTWSVC,
FRTWSVC and MPMSVC. Moreover, our MPMSVC

outperforms other methods in terms of RI metric. As for
learning time, MPMSVC is a bit slower than FRTWSVC,
but faster than TBSVC and RTWSVC. The reason is that,
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TABLE 3. Performance of each clustering method with linear formulation on benchmark datasets.

our MPMSVC just needs solve a system of linear equations
compared with the QPPs for TBSVC and RTWSVC. The
above results confirm the effectiveness of MPMSVC.

C. RESULTS ON BENCHMARK DATASETS
In this subsection, we compare the proposed MPMSVC
with the other six state-of-art methods on eleven benchmark
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TABLE 4. Performance of each clustering method with nonlinear formulation on benchmark datasets.

datasets [33], [34], whose statistics are listed in Table 2.
All datasets are normalized before learning such that the
features are scaled in the interval [−1, 1]. In our experiments,

we set up in the following way. Firstly, we randomly choose
m ratio of instances, and then pollute their features with
Gaussian noise to generate outliers. Here, we consider two
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noisy clustering situations: the ratio m = 5% as the light
noisy case and m = 15% as the heavy noisy case. Finally,
we transform them into clustering tasks. Each experimental
setting is repeated 10 times. The learning results on eleven
benchmark datasets with both 5% and 15% noisy levels
are reported in Tables 3 for linear case and Table 4 for
nonlinear case, respectively. The best result is highlighted in
bold style.

The results reveal that, with the noisy level m increas-
ing, the performance for all methods deteriorate generally.
Moreover the performance of L2-based kPC, PPC and
TBSVC are dramatically worse than L1-based RTWSVC,
FRTWSVC andMPMSVC inmost cases. Take the linear case
for example, the L1-based (L2-based) methods obtain the best
on 9/11 (2/11) datasets for the slight 5%noisy level, and 11/11
(none) for the heavy 15% noisy level. Similar results can be
obtained for the nonlinear case. The reason behind is that the
quadratic L2 distance measurement is more sensitive to noisy
than the L1 one. On the other hand, our MPMSVC behaves
better performance w.r.t. RI in comparison to existing meth-
ods on most datasets, and is comparable with the best one on
the rests. This is justified by the fact that MPMSVC obtains
the best on 13/22 datasets for linear case and 14/22 datasets
for nonlinear case, respectively.

To provide more statistical evidence [43], [44], we employ
the Friedman’s test to check whether there are significant
differences between MPMSVC and other methods according
to the RI metric in Tables 3 and Table 4. It can be seen that our
MPMSVC is ranked first in both linear and nonlinear cases,
followed by FRTWSVC and RTWSVC successively. Now,
we calculate the X 2

F value for Friedman’s test as

X 2
F =

12N
k(k + 1)

[
k∑
i=1

r2i −
k(k + 1)2

4

]
(45)

where ri is the average rank on N datasets for i-th method.
For the linear case, we compute term

∑k
i=1 r

2
i in Table 3 as

k∑
i=1

r2i = 5.545452 + 4.863632 + 3.590902

+ 2.772722 + 2.772722 + 1.454542

≈ 84.7931 (46)

Then, substituting k = 7, N = 22 and (46) into (45), we have

X 2
F =

12
6(6+ 1)

[
84.7931−

7(7+ 1)2

4

]
≈ 70.9852 (47)

Based on the above Friedman statistic X 2
F = 70.9852,

we calculate the F-distribution statistic FF with (k − 1,
(k − 1)(N − 1)) = (5, 105) degrees of freedom as

FF =
(N − 1)× X 2

F

N − (k − 1)− X 2
F

=
21× 70.9852

22− 6− 70.9852
≈ 38.2110

(48)

In the similar way, we calculate the statistic for the nonlinear
case, which summarized in Table 5. The results reject the null

FIGURE 3. The learning times of each clustering methods on benchmark
datasets.

hypothesis for both linear and nonlinear cases, and reveal the
existence of significant differences among the performance
of methods.

Furthermore, we carry out the Holm’s test [43] as a
post-hoc test to validate whether there are the statistical dif-
ferences between our MPMSVC and the remaining methods.
Here, the significant level is set as 0.05. From Table 6, it can
be seen that MPMSVC is statistically superior to the com-
paredmethods with the RImetric on both linear and nonlinear
cases, expect for nonlinear RTWSVC.

Fig.3 recodes the average learning time of these methods
on the above benchmark datasets. The results illustrate that
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TABLE 5. Results of Friedman’s test on benchmark datasets.

TABLE 6. Results of the Holm’s test on benchmark datasets.

MPMSVC performs much faster than TBSVC and RTWSVC
and has comparable efficiencywith FRTWSVCatmost cases.
The reason behind is thatMPMSVC is equippedwith equality
constraints, leading to an efficient close-form solution in each
iteration. Overall, the above results confirm the feasibility of
MPMSVC.

VI. CONCLUSION
In this paper, we propose an unsupervised MPMSVCmethod
for noisy clustering tasks. Specifically, ourMPMSVCutilizes
the linear L1-norm loss to derive the optimization problems
to seek the K optimal nonparallel parametric-margin cluster
plane-centers in section III-A. The utilization of the L1-norm
metric makes MPMSVC more robust to outliers than the
L2-norm plane-based clustering. Further, in section III-B,
an iterative algorithm is presented to solve the non-smooth
problem ofMPMSVC. Also, the convergence of the proposed
algorithm is analyzed theoretically in section III-C. To deal
with more complex learning tasks, the nonlinear extension
of MPMSVC is carried out via kernel trick in section IV.
Extensive experimental results on noisy clustering datasets
demonstrate the effectiveness of the proposed MPMSVC.
Due to the proposed MPMSVC has one more parameters
than PPC and TWSVC, designing more efficient parameter
selection techniques will be one of our future works. Another
interesting work is to consider some imbalance strategies to
further improve the performance.
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