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ABSTRACT This paper describes a prototype of an intelligent Stress Monitoring Assistant (SMA), – the
next generation of stress detectors. The SMA is intended for the first responders and professionals coping
with exposure to extreme physical and psychological stressors, e.g. firefighters, combat military personnel,
explosive ordnance disposal operatives, law enforcement officers, emergency medical technicians, and
paramedics. Stress impacts human behavior and decision-making, which can be propagated between the
teammembers. The SMA is an integral part of the Decision Support System, it is a component of the decision
support perception-action cycle. We model this cycle as a cognitive dynamic system. The intelligent part of
the SMA is designed using a) a residual-temporal convolution network for learning data from sensors and
detection of stress features, and b) a reasoning mechanism based on a causal network for fusion at various
levels. The SMA prototype has been tested using a multi-factor physiological dataset WEarable Stress and
Affect Detection (WESAD). In both modes, the stress recognition and stress detection, the SMA achieves an
accuracy of 86% and 98% for the WESAD dataset, respectively. This performance is superior to the known
results in satisfying the requirements of reliable decision support.

INDEX TERMS Soft biometrics, stress monitoring, intelligent decision support, causal inference, machine
reasoning, affect recognition.

I. INTRODUCTION
Humans have three primary systems vital for survival: vision,
cognitive processing, and motor skill (V-C-M). Under stress,
all three can break down [1]. The goal of this paper is to create
a tool to support professionals who respond to emergencies,
e.g. firefighters, combat military personnel, explosive ord-
nance disposal operatives, law enforcement officers, emer-
gency medical technicians, and paramedics. These groups
are engaged in uniquely demanding and dangerous work
involving regular exposure to both physical and psycholog-
ical stressors.

Recent research roadmaps, e.g. [2] and reviews, e.g. [3],
highlight a great demand for wearable stress detectors for
these professionals. In response to this demand, we develop
and prototype an intelligent Stress Management Assistant
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(SMA). The SMA is a dynamic system that is cognitive
of emotional stress and is an integral part of the Decision
Support System (DSS). The DSS learns the stress level in
causal relations to human behavior and provides the required
support. The DSS is one of the critical components of a user
model to build an intelligent adaptive system.

Taxonomically, stress detection is a part of the affect recog-
nition problem [3], [4]. Affect addresses various emotional
states, e.g. sadness, happiness, unhappiness, etc. This prob-
lem is formalized using a pattern recognition theory and
techniques with priorities of facial expressions. Stress is a
particular andmost troubled affective state that can jeopardize
the subject’s survival.

Prediction of heat stress, in particular, is a priority for fire-
fighters and Explosive Ordnance Disposal operatives. In their
missions, wearing heavy protective clothing is mandatory as
there are dangers of heat stress in thermally harsh environ-
ments which can occur when the cooling required to maintain
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a steady thermal state is greater than the cooling capability of
the environment [5].

Stress compromises the cognitive performance of fire-
fighters [6]. During emergency scenarios, firefighters have
to quickly respond to numerous stimuli under pressure,
while the decisions made during these emergency situations
tend to be based on information that is ambiguous, incom-
plete or unusual, further complicating the decision-making
process [7]. Besides the physiological reactions, stress may
also cause cognitive responses such as attentional processes
which are an integral part of an adaption process for intelli-
gent systems.

The focus of our study is stress detection for the purpose
of assisting the first responders. This problem is signifi-
cantly different from detecting a relatively low daily life
stress. The specific occupational stresses are characterized as
follows:
Requirement I: A Wearable Sensor Network (WSN) is

preferable for stress detection and monitoring [8].
Requirement II: The standards for decision support for

stressful occupations are being developed, and may
become mandatory [2], [9]. In contrast, the stress
detectors for daily lives (e.g. ‘‘Stress tracker’’ color
bar on the Samsung Health app) are built on different
principles; they rather approximately ‘‘estimate’’ the
level of stress based on the heart rate measured by
placing a finger on the sensor (if available on the
phone) or via a Smartwatch.

Limitation: Face is a useful source of data for stress detec-
tion [10], [11]; however, it may be occluded by the
protective equipment. In contrast, in public-centric
applications, e.g. on iPhones, the face (mouth, pupil,
skin temperature distribution) is the main source of
information.

The remainder of this paper is organized as follows.
Abbreviations and problem formulation are provided in
Sections II and III. The contributions of this paper are
explained in Section IV. Section V provides a survey of the
most important related works, while the architecture of the
proposed assistant is described in Section VI. The experimen-
tal settings and results are described in Sections VII and VIII.
Conclusions and recommendations are given in Section IX.

II. ABBREVIATIONS
ACC – Accelerometer
BN – Bayesian Network
BVP – Blood Volume Pulse
CPT – Conditional Probability Table
DSS – Decision Support System
DL – Decision-level
ECG – Echocardiogram
EDA – Electrodermal activity
EEG – Electroencephalogram
EMG – Electromyogram
FL – Feature-level
ML – Machine Learning

Res-TCN – Residual-Temporal Convolution Network
RESP – Respiration
SL – Sensor-level
SMA – Stress Monitoring Assistant
TCN – Temporal Convolution Network
TEMP – Temperature
V-C-M – Vision, Cognition, and Motor skills
WSN – Wearable Sensor Network

III. PROBLEM FORMULATION AND APPROACH
The National Institute of Standards and Technology (NIST)
has defined a research roadmap on technology and real-
time analytics in fire fighting [2]. It identifies the key
conceptual gaps, technological gaps, and development
gaps.

A roadmap for first responders’ coping is provided by the
U.S. Homeland Security [9]. Challenges related to the stress
in combat are defined in [12], [13].

Our study identifies the following gaps in the existing
design and deployment of the SMA for first responders:

− Most WSNs provide the sensor data logging [14] and
monitoring [8],

− Only a few attempts to implement the elements of deci-
sion support such as the fusion of multi-sensor data for
generating a situational picture [15].

Thus, there is a dissonance in the development of the
technology for stress detectors, and the decision support for
stress coping; in our view, the stress detectors shall be able
to perform the risk assessment that shall be instrumental
for recovery from stress state, trust to the action of stressed
combatant, and mitigation of stress propagation in a team.

This paper addresses the above problems and makes a
further step in developing the SMA. We propose a system-
level design approach that combines sensing arrays, stress
detection, and decision support on a common platform. This
platform account for the primary survival faculties, i.e. vision,
cognition, and motor skills. This contribution distinguishes
our work from the known results that focus on stand-alone
solutions [14], [15].

A. STRESS MONITORING ASSISTANT
Fig. 1 explains a novel approach to the development of the
wearable SMA and DSS. The schematic sketch shows the
three information pathways that correspond to the primary
human survival systems: Vision (V), Cognition (C), and
Motor skill (M) [1].

The wearable sensing landscape is decomposed with
respect to the V-C-M content; the closest to the V-C-M are the
biometric projections [16]. The DSS function is formulated
in the terms of the V-C-M: under stress, a first responder
needs assistance in the vision domain (e.g. he/she cannot
see), motion domain (e.g. he/she cannot move), and cognitive
domain (e.g. he/she cannot make an adequate decision). This
stress state should be recognized by the team members in
order to prevent stress propagation and, consequently, the fail-
ure of the mission.
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FIGURE 1. Summarizing the challenges for the first responders, and the
solutions that this research offers.

B. STRESS MONITORING MODEL
Design requirements to stress monitoring can be met using
the principles of a cognitive dynamic system. This system is
based on Haykin’s model [17]:
Perception-action cycle implies that there are perceptor and

actuator;
Memory for the purpose to learn from the environment and

store knowledge;
Attention – ability to prioritize the allocation of available

resources; and
Intelligence– a function that enables the control and decision-

making mechanism to help identify intelligent choices.
In this model (Fig. 1), the problem of stress monitor-

ing should be understood as follows. Stressful events cause
dynamic changes in the human body, human behavior, and
cognition, in other words, the V-C-M survival dimensions.
The subject’s stress perceptors perceive the environment by
processing the input stimuli called stressors that threaten
the homeostasis (the ability to maintain a relatively stable
internal state of the subject). A stress response is the body’s
reaction to regain homeostasis using the perception-action
cycle. The V-C-M changes can be observed bymonitoring the
body response signals, caused involuntarily by the autonomic
nervous system. These changes can bemeasured by the SMA.
An intelligent SMA shall not only process these measure-
ments, but also assess the risk of stress, and then pass the
assessment to the DSS that generates a recommendation to
the subject to support his/her decisions regarding the stressful
events.

C. APPROACH
The goal of this study is to develop and prototype an intel-
ligent SMA for the first responders. The SMA is seen as a
wearable system that satisfies a number of specific require-
ments, in particular:

Ad Hoc: The SMA must be integrated into first responder
networks, e.g. [2], [9].

Compatibility: The SMA must be compatible with the first
responder decision support tools; the risk of stress
should be taken into account in the decision-making
and decision support process.

Intelligence: The SMA must be an integral part of the cog-
nitive processes of a first responder; the SMA shall
be able to learn the subject’s personal physiological
and behavioral data, and then conduct the respective
reasoning.

In our approach, the SMA is a component of decision
support built on the principle of stress perception-action cycle
known as a General Adaptation Syndrome (GAS) [18]. This
model provides the necessary conditions for the incorporation
of computational intelligence in the form of Machine Learn-
ing (ML) and machine reasoning. Note that in this paper,
we used a controlled dataset for experimentation. Should the
data change, for example, real-life scenario data becomes
available, the learning and reasoning mechanism will make
it possible to adjust to the new data.

IV. CONTRIBUTION
While our work complies with the general stress detector
development doctrine [12], it addresses a particular niche,
the first responders’ support. There are necessary and suf-
ficient conditions to satisfy the specific requirements and
limitations of this application.

The key contribution of this paper to satisfy the necessary
conditions are as follows:

1) The SMA for first responders’ support is based on
the cognitive dynamic models in the V-C-M survival
dimensions.

2) The SMA design is approached using this new concept.
Our work also partially covers sufficient conditions as

follows:
1) The SMA design uses the advances in machine learn-

ing, in particular, the Residual-Temporal Convolution
Network (Res-TCN).

2) The SMA intelligence is realized by probabilistic rea-
soning; it also performs a fusion of the stress-related
features. The reasoning mechanism is implemented on
a causal network via a forward inference for fusion, and
via a backward one for diagnosis.

V. RELATED WORK AND RESEARCH GAPS
The key paradigm of stress as a psychological phenomenon
is well understood but far from practical use. This is because
stress is unique for each individual. Contemporary technolo-
gies for stress detection can cope, however, with multiple
factors and their causal relationships that trigger the stress.
These factors are determined by the physiological, emotional,
behavior, and social profiles of an individual, as explained in
a brief review below.
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FIGURE 2. Wearable sensor taxonomy for the first responders with
respect to the carrier of information and sensor deployment.

A. MULTI-FACTOR STRESS SOURCES
According to the classical model [19], ‘‘stress results
from the appraisal that environmental or internal demands
exceed or tax the coping resources of the individual’’. Medi-
cal and psychiatry studies consider stress in relation to mul-
tiple physiological factors such as age and gender, as well
as social factors, e.g. life conditions, foot, training, and
education.

B. TAXONOMICAL PROJECTIONS OF WEARABLE
SENSOR NETWORKS
The sensing landscape should satisfy the fundamental
requirements of the V-C-M survival [1], that is, pre-
dict or timely detect the breaking down of at least one of
the survival systems. The V-C-M are also considered to be
biometrics; a comprehensive taxonomy of wearable sensors
for biometric purposes is provided in [16]. Based on this
taxonomy, we formulated the SMA projections for the first
responders as follows (Fig. 2):

− a carrier of information that sensors read,
− a body part appropriate for acquiring the corresponding

source of information,
− how the sensor can be mounted.

This sensing landscape is dependent on the efficiency of the
inferred technology. For example, sweat, saliva, and tears
are bio-fluids that contain multiple physiologically relevant
chemical constituents. They can be detected using electro-
chemical sensors or/and electronic lenses, and require the
appropriate inferring and reasoning approaches.

This taxonomical view allows for a new formulation of
stress detection and recognition problem in terms of the SMA
cognition, reliability of detection, as well as the credibility of
the information. In particular, the following questions are of
importance:

− How reliable are the physiological factors provided by
the internal sensors, for example, electrochemical tat-
too [20] for stress detection?

− Where they should be placed to achieve maximum
credibility of information?

− Does electronic contact lenses, e.g. [21], provide
essential information for stress detection?

C. INTELLIGENT GARMENT
Intelligent garment (or smart clothing) is a form of a WSN.
The key components of the intelligent garment include: sen-
sors that monitor physiological and environmental signals;
actuators that control the clothing movements and display
some visual effects; a microcontroller that processes the mea-
sured data; a communication system; and an energy sup-
plying unit. In [22], an intelligent garment was adopted for
firefighters protection with several extensions toward intelli-
gent functions such as detecting the relationship between the
wearer’s health state (fatigue, stress) and the physiological
measures. In [23], stress detection for military combatants
was conducted using the wearable sensorized garments and
gloves. The most informative data sources happen to be the
ECG, heart rate, and respiration rate. A similar work on stress
monitoring using a wearable patch with integrated sensors
such as skin temperature, skin conductance, and pulse-wave
was reported in [24].

D. SENSOR PLACEMENT AND COMMUNICATION
The sensor can be placed in a WSN in four ways:

− In-body; sensors are placed inside the body;
− On-body; sensors are placed on the skin surface;
− Off-body; sensors are placed between a few centimeters

and up to a few meters away from the body; and
− Mixed.

Note that choosing the communication means for the SMA
significantly impacts the overall design process. For com-
munication, short-range radio frequency solutions based on
widespread commercial standards such as Bluetooth are typ-
ically used. These solutions have limitations such as energy
consumption, interferences, and vulnerability to attacks.
An alternative is intra-body communication, a technique that
uses the human body as a transmission channel for electrical
signals to interconnect devices in the WSN. These devices
can be both on-body and implanted (in-body), and commu-
nicate with each other and with a central device through the
low-power and low-data-rate body channels [25], [26]. The
ultrasonic band is one of the possible approaches to intra-
body communication. For example, in [27], a wearable sensor
network uses ultrasonic communication for minimal message
exchange, asynchronous updates, and distributed (without
centralized control) resource allocation algorithms.

E. REASONING MECHANISM
One of the first works on machine reasoning for stress detec-
tion and propagation in combat soldiers is a master thesis by
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FIGURE 3. Multi-echelon causal model of a combat unit. Stress S is a
moderating factor between the leadership effectiveness L and the
performance of their unit P biased by the risk and trust factors such as
mission control, soldier endurance and selection, weather, terrain,
sustainability, and planning.

US Army Captain Therrien [28]. It studies the stress states
of combat soldiers and their performance under the impact of
various factors using the reasoning mechanism of Bayesian
networks. The stress states were considered in causal rela-
tionswith the leadership effectiveness, risks of human factors
(e.g. exertion, endurance), conditions (e.g. training, sleeping,
fitness), environment (e.g. terrain, weather), etc. Fig. 3 pro-
vides more detail of this work that considered stress assess-
ment of combat soldier as a monitoring and learning process.

F. COMBAT AND OPERATIONAL STRESS CONTROL
In military operations [12], two kinds of stress are distin-
guished: combat stress (the experience of lethal force or its
aftermath) and operational stress (the experience or conse-
quences of military operations other than combat). Combat
and Operational Stress Control (COSC) model suggests four
stress levels [12]: the Green zone (or Ready), the Yellow zone
(or Reacting), theOrange zone (or Injured), and the Red zone
(diagnosable mental disorders). Automated support is needed
at each of the stress levels. Our study addresses rather the
Yellow and Orange stress zones.
Example 1: Accordingly to the COSC, each member of a

military unit should become comfortable and confident in the
use of the following procedures needed to calm down, set
feelings aside, and restore mental focus: 1) deep breathing,
and 2) grounding (refocus your thinking). Both procedures
should be included in the DSS protocol and partially moni-
tored, e.g. deep breathing shall be monitored using the respi-
ration sensor.
Example 2: The following behavior warning signs

(Orange zone) can be detected automatically. For a period
of time, the individual:

− seems unable to stop laughing, crying, or screaming;
− could not move parts of his or her body; freezes or

appears to be moving very slowly;
− stutters, repeats words or phrases, or has a shaky or

squeaky voice.
− exhibits physical reactions, such as sweating, shaking,

or heart pounding.
Example 3: Combat and Operational Stress First Aid con-

sists of several actions which should be supported by auto-
mated tools:
− Check (identify the need for stress first aid),
− Coordinate (inform others who need to know),
− Cover (get individual to safety as soon as possible),
− Calm (reduce heart rate and emotional intensity),
− Connect (promote peer support, prevent stressed indi-

viduals from isolating themselves),
− Competence (restore mental and physical capabilities),
− Confidence (restore self-confidence, self-esteem, and

hope).

G. RESEARCH GAPS
Stress detection, as a part of the first responder decision-
making support, must be coherent with the overall system
requirements and limitations. These includes WSN, com-
munication paradigms, and intelligence of decision support.
While the first two components have been addressed exten-
sively, the current gap is in the area of intelligent decision
support. In our study, we address this gap by applying deep
ML to detect individual stress factors in the perception-action
cycle. The recent advances in ML made it possible to address
the psychological factors and projection of the problem, i.e.
the facts indicate that stress and its physiological manifesta-
tion are unique for each individual. The SMA learning of the
unique stress features for a given individual (first responder),
i.e. SMA ‘‘personalization’’ enabled by deep ML, is the core
of our design approach.

Accepting that the SMA is a personalized tool, our work
aims at bridging the following research gaps: how to apply
ML and machine reasoning with respect to the stress states,
and how to solve the related problems of fusion and porting
into the overall DSS protocols.

VI. SMA ARCHITECTURE
The key architectural components of the proposed SMA pro-
totype are:

1) AWSN for extracting physiological data of the subject.
2) Res-TCN, – aResidual-Temporal ConvolutionNetwork

for learning the subject’s data from wearable sensors.
Each sensory data is used to train a separate Res-TCN;

Stress phenomenon︸ ︷︷ ︸
Psychology

⇒

 Machine
Learning and
Reasoning

⇐ Stress factors︸ ︷︷ ︸
Physiology
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TABLE 1. Sources of physiological data for stress recognition and detection.

3) A Fusion Profiler that chooses a preferable fusion
procedure;

4) A reasoning mechanism for making decisions regard-
ing the stress based on the Res-TCN reports. A causal
network is used for this purpose.

These components are incorporated in the perception-
action cycle defined in Fig. 1.

A. WEARABLE SENSOR NETWORK
The goal of a WSN is the inference from a body physio-
logical data and transmit them for processing. According to
taxonomy Fig. 2, the WSN must satisfy a wide spectrum of
requirements such as sensor type, placement, and distribution
on the body. Table 1 provides a detailed specification of the
WSN data fed into the Res-TCN input (columns ‘Channel’
and ‘Input’).

B. RESIDUAL TCN
In our approach to building the individual-centric SMA,
we deploy ML to learn the stress indicators from

physiological data of first responders during both the rest
and action time, and thus, classify the emotion. We deploy
machine reasoning to amalgamate the ML process by provid-
ing the fusion of the trained models.

In this paper, the Res-TCN is chosen as the classifier of
the data represented by the time series. TCNs has shown opti-
mal performance for time series based data including human
action recognition [29] and action segmentation [30]–[32].
In the proposed SMA, wemodified the Res-TCN architecture
(Fig. 4). Given the physiological factor from a sensor as a time
series, the Res-TCN aims at extracting stress features using
four residual blocks (Fig. 4(a)). Each residual block contains
the following attributes:

1) 1D convolution extracts features from time-series data,
in order to learn how the data changes over time.

2) Causal profiler limits the convolution process to use
only the current and past data. By excluding future data,
the resulting prediction is better aligned with the real-
life scenarios where the future data is unavailable.
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FIGURE 4. The Res-TCN for physiological data processing: (a) Architecture and (b) Specification.

3) Dilated convolution performs the down-sampling
instead of pooling layers, allowing for an exponential
receptive field. A larger receptive field allows for the
detection of longer sequenced patterns.

4) Residual connection is a connection between the two
layers used to bypass or skip the multiple layers
between the two layers. This form of identity mapping
allows the gradients to propagate back through the
network without going through activation functions,
thus prompting faster convergence.

Fig. 4(b) provides the following design details and
specifications. Each block in the network contains three
residual sub-block. Each residual sub-block contains three
layers: batch normalization, rectified linear unit, and convo-
lution. The parameters for the convolution layer is defined as
Res-U(F,K , S,D), where F is the number of filters, K is
the filter size, S is the stride value, and D is the dilation rate:
Block-1 consists of three residual blocks:

Res-U(8, 6, 1, 1), Res-U(8, 6, 1, 2), and
Res-U(8, 6, 1, 4). For example, the first residual block
is defined as Res-U(7, 6, 1, 1), representing 8 6 × 6
filters with a stride of 1 and a dilation rate of 1. For
each proceeding sub-block, the number of filters, filter
size, and stride remains the same while the dilation rate

is doubled. This results in 8 feature vectors containing
coarse details of the signal.

Block-2 consists of three residual sub-blocks:
Res-U(16, 6, 2, 1), Res-U(16, 6, 1, 2), and
Res-U(16, 6, 1, 4). Different from Block-1, the num-
ber of filters is doubled (from 8 to 16). In addition,
the stride for the first sub-block is also doubled.
This results in 16 feature vectors containing moderate
details of the signal.

Block-3 consists of three residual sub-blocks:
Res-U(32, 6, 2, 1), Res-U(32, 6, 1, 2), and
Res-U(32, 6, 1, 4). Similar to block-2, the number of
filters is again doubled (from 16 to 32). This results
in 32 feature vectors containing finer details of the
signal.

Block-4 consists of three residual sub-blocks:
Res-U(64, 6, 2, 1), Res-U(64, 6, 1, 2), and
Res-U(64, 6, 1, 4). Similar to block-3, the number of
filters is again doubled (from 32 to 64). This results
in 64 feature vectors containing yet finer signal details.

Figure 5 illustrates emotion classification using the inde-
pendent sensory signals from the chest (a) and wrist (b)
sensors. Each sensory signal is passed into its individual
Res-TCN, resulting in an emotion prediction.
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FIGURE 5. Emotion classification using independent: (a) chest sensory
signals: ACC, ECG, EDA, EMG, RESP, and TEMP. (b) wrist sensory signals:
ACC, BVP, EDA, and TEMP.

For time-series data, the best hand-crafted features for clas-
sification are generally the mean, peaks, and moments at the
selected time interval; however, given the Res-TCN, the fea-
tures extracted is obtained through supervised machine-
learning. The feature output of the Res-TCN is 1×64 feature
vector. This vector represents the most important aspects of
the signal and how it changes through time in a compressed
form. Analysis of this feature vector can be done to perform
emotion classification.

C. FUSION
In a multi-sensory system, the ultimate objective is usually
to consolidate the data gathered from multiple sources [33],
[34]. Sensors may provide inaccurate, incomplete, and con-
flicting data. However, the right approach to data fusion
can increase system robustness and fault tolerance, as well
as reduce the system’s sensitivity to sample-specific, poor
quality, or erroneous input. Moreover, when sensors are not
deployed in an optimal fashion, unwanted uncertainty occurs
on the input of the classifier or detector, thus reducing the
classification accuracy. Intelligent classification support, e.g.
residual TCNs alleviate these problems.

The following fusion methods are used in the SMA proto-
typing (Fig. 6):
Sensor Level (SL) fusion that combines physiological data

from multiple sensors prior to feature extraction.
Feature Level (FL) fusion that combines the features

extracted from each signal.
Decision Level (DL) fusion that combines the decisions of

separate residual TCNs.
The left plane (a) on Fig. 6 shows the SL fusion of the

wrist sensory data. The signals from the few sensors are con-
catenated before passing through a TCN. The central plane
(b) illustrates the FL fusion for the wrist sensors. The signal
from each of the wrist sensors is passed into the respective
TCN. Each TCN produces a 1-D logit vector which can be
concatenated with other TCN’s outputs in order to create

a feature vector to be passed on to a multilayer-perceptron.
The perceptron performs the final emotion prediction based
on the amalgamated feature vector. The right plane (c) of
Fig. 6 illustrates the process of DL fusion. Each classifier
prediction is fused together to obtain a more confident predic-
tion. The logic function of such fusion can be AND (all pre-
dictions must point to the class of interest), OR (at least one
decision must point to the class of interest), or other logic.

In this paper, we have chosen a machine reasoning
approach to fusion. The model of such fusion is a causal net-
work. The designed causal network is shown in Fig. 7. Note
that the designed causal network in this paper is only a base-
line. It can be modified and/or improved to include additional
information such as demographics, education, experience,
etc. This information can be incorporated as parent nodes
that can influence the performance of the different signals.
The ‘‘Valid’’ node in this network represents the probabil-
ity of the classifier in predicting a positive (valid) or neg-
ative (invalid) emotion. The parent nodes to the ‘‘Valid’’
node represent the different modalities that affect the stress
recognition or stress detection performance. The ‘‘Match’’
node determines whether the positive or negative prediction
matches the ground truth label accordingly to the‘‘Type’’ of
modality.

Given the causal network and the corresponding Condi-
tional Probability Tables (CPTs), a probabilistic reasoning
model called a Bayesian network (BN) is built. Posterior
probabilities can be calculated by applying Bayesian infer-
ence using the BN, prior probabilities, and the current obser-
vation [35]. This is the mechanism we use in this work for
ensemble fusion of multiple modalities.

VII. EXPERIMENT SETTINGS AND PROTOTYPING
In this experiment, we used the dataset for WEarable Stress
and Affect Detection (WESAD) [3]. Other recent datasets of
stress includes the MSP-Podcast [36], Multimodal Dataset
of Stressed Emotion (MuSE) [37], and Interactive Emotional
Dyadic Motion Capture (IEMOCAP) [38]. WESAD dataset
was chosen as it is the only dataset that provides physiological
signals. Other datasets provide visual and/or audio data which
is not of key interest in this paper. Although the MuSE
dataset monitors heart rate, it was ultimately not chosen for
evaluation because they do not provide other physiological
signals like ECG.

A. DATASET
WESAD dataset contains ECG data from 17 participants [3].
A RespiBAN Professional sensor was used to collect signals
at a sampling rate of 700 Hz. Each signal is labeled with four
different affective states: neutral, stressed, amused, and med-
itated. Four different test scenarios were created. During the
first 20 minutes, neutral data were collected; the participants
were asked to do normal activities such as reading a magazine
and sitting/standing at a table. In the amusement scenario,
the participants watched 11 funny video clips for a total length
of 392 seconds. Next, the participants went through public
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FIGURE 6. The SMA fusion: (a) SL fusion on wrist sensors; (b) FL fusion on wrist channel; (c) DL fusion on wrist channel.

FIGURE 7. Causal network of an ensemble of modalities for stress
classification and detection.

speaking and arithmetic tasks for a total of 10 minutes as part
of the stress scenario. Finally, they went through a guided
meditation session of 7minutes in duration. Upon completion
of each trial, the ground truth labels for the affect states were
collected using the Positive and Negative Affect Schedule
(PANAS) scheme [39].

B. PRE-PROCESSING AND SEGMENTATION
Segmentation and normalization of data streams acquired
from sensors are basic operations of pre-processing. In this
paper, segmentation of the sensor signals was done using a
modified sliding window technique. The technique involves
two sliding windows,

1) a sliding window to compute the average value, and
2) a sliding window to retrieve the time slice of interest.
We used a 0.25-second window for averaging and experi-

ment with various duration for time slice and time increment.
Since each of the signals is collected at different frequen-

cies, we have chosen to normalize the sampling rate using
the lowest frequency (4Hz for TEMP and EDA signal of the
wrist sensor). Based on the 4Hz normalization, the window
for averaging values is 0.25 seconds. The conversion process
is defined as follows:

s(x) =
1
fs

x+fs∑
i=x

signal(i) (1)

where fs is the sampling frequency of the sensor, signal
is the original signal of the sensor, and s(x) is the desired

averaged value for index x of the signal values within the
following interval: [x; x + fs].

Fig. 9 illustrates the modified sliding window technique
used in this paper. The original signal is first normalized
based on a fs/4 second window which averages all val-
ues within the window. After normalization, another sliding
window of 60 seconds is used to extract the time slice of
interest. This 60-second window extracts a time slice every
0.25 seconds to be used as the input to the TCN.

Figure 8 shows the result of the re-sampled signals for a
single time slice. Because each data point is 0.25 seconds
apart, a time slice represents 240 data points for a 60-second
window (60× 4).

C. IMPLEMENTATION AND TRAINING
We implemented all the models using Keras and Tensorflow.
The Res-TCN model to classify emotions is trained using the
Adam optimizer for 100 epoch, with a base learning rate lr =
0.001. The Adam optimizer default parameters β1 = 0.9,
β2 = 0.999, and ε = e−8 were set to train the network for
the various validation methods. The training was done on a
NVIDIA V100 16 GB.

Similar to the original work of the WESAD dataset [3],
we adopted a leave-one-subject-out-cross-validation
(LOOSCV) for performance evaluation. For the WESAD
dataset, which contains 15 subjects, the LOOSCV per-
forms 15-fold cross-validation. Each fold is separated into
a 14:1 split, 14 subjects used for training and the remaining
subject for validation. This process is repeated for each sub-
ject, and the performance is evaluated based on the arithmetic
mean of the 15 folds.

Another form of validation we performed was suggested
in [40]. It uses 10 rounds of random sampling. In this vali-
dation procedure, 90% of the data is randomly sampled to be
used as training and the remaining 10% is used for testing.
This process is repeated for 10 rounds with the results being
averaged.

D. PERFORMANCE MEASURES
In the WESAD dataset, some classes, e.g. normal emotional
state, have a large quantity of data; these are the major-
ity classes. Minority classes contain instances that can be
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FIGURE 8. (a) Example of chest sensor data from ACC, ACG, EDA, EMG, RESP, and TEMP. Data is shown for the first 300 instances sampled at 700hz.
(b) Example of extracted time slice based on sliding window from ACC, ACG, EDA, EMG, RESP, and TEMP. A 240-frame time slice is shown for the chest
signals.

FIGURE 9. Illustration of the sliding window technique for extracting
features; it uses a fs/4 window for averaging, 60 seconds for the time
slice, and 0.25-second for time increment.

observed less often, e.g. stress states. The rare patterns are
difficult to separate from the most frequent ones. These fac-
tors normally cause a biased performance of all common
classifiers such as support vector machines, decision trees,
and neural networks, due to having little quantity of data
instances, resulting in an effect that causes minority classes
to be ignored in the overall classification process.

The WESAD dataset is an example of an imbalanced
set [3]. However, in our application, the minority class is the
only class of interest, and the performances of the classifier
should be evaluated mostly using this premise.

A major issue in the classification is to determine the most
suitable performance metrics to be used. In the case of bal-
anced data, the traditional metric include various derivatives
that use the following indicators:
TP – True Positives (correct predictions of emotion),
FN – False Negatives (incorrect predictions of emotion),
TN – True Negatives (correct rejections of emotion), and
FP – False Positives (incorrect predictions of emotion).
These numbers form a 2× 2 confusion matrix:

Confusion matrix =

(
TP FP
FN TN

)
Various measures may be built to summarize its content [41].
The most common are the accuracy, recall, precision, false
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TABLE 2. The SMA performance evaluation in the emotion classification mode (Normal vs. Stress vs. Amusement) and stress detection mode (No stress
vs. Stress).

positive rate (FPR), receiver operating characteristics, and
balanced F1-score. We used some of them, i.e. the accuracy
measure, F1-score, and FPR:

Accuracy =
TP+TN

TP+FN+TN+FP
(2)

F1-Score = 2×
Precision× Recall

Precision+ Recall
(3)

FPR =
FP

FP+TN
(4)

where Recall (also known as sensitivity) represents the
system’s ability to detect a specific emotion, Recall =
TP/(TP+ FN ); Precision measure (also called positive
predictive value) the system’s ability of being correct on a
predicted emotion: Precision = TP/(FP+ TP).
Accuracy reflects the number of correctly classified pat-

terns among the samples, and, thus, it is a probability of
success in recognizing the right class of an instance. However,
in the case of highly imbalanced datasets, the accuracy mea-
sure (2) is misleading. A classifier that is very effective in
predicting the majority class, but misses most of the minority
classes, may easily have very high accuracy [42].

The F1-score is a weighted average (harmonic mean) of
precision and recall rates, representing the system’s bal-
anced ability to detect a specific emotion correctly, where
an F1-score reaches its best value at 1 (perfect precision and
recall) and theworst one at 0 [41], [43]. TheF1-scoremeasure
provides a way of combining the recall and the precision in
order to get a single measure that captures both properties.

VIII. EXPERIMENTAL RESULTS
As described in the previous section, the SMA was trained
and prepared for deployment using the real-world signals
from the WESAD dataset collected from a wearable sensor
network. Depending on the type of modalities and fusion
technique, the model can take from 136.06 seconds (for
signals such as ECG) to 152.78 seconds (accelerometer data)
for training a 100 epoch model on a NVIDIA V100 graphic
card. In comparison, an inference will take 0.84 seconds

(for signals such as ECG) to 0.89 seconds (accelerometer
data) for 2122 samples. That is in general it would take around
0.04 milliseconds for 1 sample. In this section, we report
the performance of the proposed SMA. The goals of our
experiment are as follows:

1) Estimate the SMA performance in stress classification
mode, that is, ‘in Normal state’ vs. ‘Stress state’ vs.
‘Amusement state’.

2) Estimate the SMA performance in stress detection
mode, i.e. detection stress state vs. otherwise states.

3) Compare an achieved performance with the one
reported for the known stress classifiers.

We also address questions related to the biases in the train-
ing sets, optimization of the WSN, and machine reasoning
mechanism.

A. EMOTION CLASSIFICATION MODE OF THE SMA
We will distinguish two outcomes of the stress analysis:
1) recognize a stress state among other emotional states
(emotion classification mode), and 2) detect the stress state
(stress detection mode). Both modes are useful for the first
responder who uses a WSN, and a personal SMA in training,
examination, and operation.

Table 2 reports the results of the SMA performance in the
following measures: Accuracy (2), F1-Score (3), and False-
Positive Rate (4). The first column represents three groups
of modalities: sensors deployed on the 1)‘Chest’, 2) ‘Wrist’,
and 3) a total sensor network ‘Chest +Wrist’. Each of these
groups is represented by one of the two fusion strategies:
‘SL Fusion’ and ‘FL Fusion’. The rest of the columns repre-
sent two performance measures. The results of experiments
presented in Table 2 are valuable from various perspectives
such as the deployment of the WSN, fusion strategy, and
optimization.

1) DEPLOYMENT OF WEARABLE SENSOR NETWORK
AWSN must satisfy the deployment requirements in various
actions and situations encountered by the first responder.

25324 VOLUME 9, 2021



K. Lai et al.: Intelligent Stress Monitoring Assistant for First Responders

Example 4: It follows from Table 2 that:
− For the wrist sensor deployment is preferable, the maxi-

mum overall ‘Accuracy’ = 83.69± 10.85% is achieved
using the FL fusion.

− The worst accuracy is 83.69 − 10.85 ≈ 72% which is
unacceptable for decision-making support.

− Taking into account the imbalance of data, the accuracy
can further degrade to: ‘F1-Score’ = 81.61± 12.31%.

2) FUSION STRATEGY
Choosing a fusion method is of critical importance because
many factors must be taken into account. Those include
the balance of the fused components (e.g. signals, features,
decisions) with respect to their contribution (e.g. compara-
ble weight, information content, reliability of sources, and
credibility of information), as well as sensitivity to potential
attacks. Despite the rich theoretical and practical experience,
there are no common rules, – each case is unique from a
fusion perspective. This is the reason that we examined the
two fusionmethods for themodality groups in our experiment
as reported in Table 2.
Example 5: Given the WSN,
− Consider the ‘Chest’ sensor group. Fusion at sensor level

‘SL fusion’ is preferable by the measures of efficiency
(except the attack risk), e.g. overall accuracy ‘Accuracy’
= 88.28± 6.06%.

− Consider the ‘Chest + Wrist’ group. The accuracy can
reach 76.73 − 11.53 ≈ 65% which is unacceptable for
reliable decision-making.

Example 6: Consider the ‘Chest +Wrest’ sensor group.
− Accuracy of the feature-level fusion ‘FL fusion’ is

86.50− 7.94 ≈ 78%.
− The other measures show much lower performance, and

thus, the study for this sensor group proceeds to the
stress detection mode only.

Example 7: Consider the ‘Chest’ sensor group. The RESP,
TEMP, and ECG are the most informative factors.

B. BIASES
The SMA development and design face multiple biases
such as:
− Training set bias, e.g. the same subject is used for both

training and validation;
− Performance bias, e.g. there is a difference between the

overall accuracy measure and F1 score measure.
− Subject-related bias; this is the reason that our approach

focuses on the individual-centric SMA. If the subject’s
identity is known, a subject-biased network is much
better in identifying his/her emotions compared to a
more generalized model.

There are other kinds of biases that are out of the scope
of this paper, in particular, the AI bias, i.e. reasoning,
judgment, or decision-making provided by intelligent sys-
tems; and the bias of synthetic dataset, i.e. there are biases
in training using authentic, synthetic, and semi-synthetic data
(benchmarks).

TABLE 3. Emotion classification performance: Normal vs. Stress vs.
Amusement.

All of these biases impact the performance of the SMA.
For example, the training set bias is introduced through the
random sampling process. Since this process does not dis-
tinguish between the subjects, this process is very likely to
sample similar data of the same subject that will be used for
both training and validation. This process makes the classifier
to focus on the unique patterns of individuals rather than
a generalized model for various emotions. Table 3 shows
the state-of-art performance which involves the use of the
validation procedure suggested in [40]. It can be seen that our
method has similar performance to the self-supervised CNN
method proposed in [40]. It should be noted that this form
of validation produces a much higher performance compared
to Experiment 1, due to the existence of bias in the training
dataset.

C. STRESS DETECTION MODE OF THE SMA
In contrast to the scenarios in which stress must be recog-
nized among other emotional states such as Neutral, Stressed,
Amused, andMeditated, the related problemmay be resolved
for another scenario. For the first responders, the task is
formulated as a stress detection problem. The decision rule
(function) in such case is as follows:

Decision
Rule

≡

{
1, decide H1 (Stress detected)
0, decide H0 (otherwise)

This partitions the data space into two regions (instead of
many), where H0 and H1 are null and alternative hypotheses,
respectively. Several important observations can be carried
out of the comparative analysis of the results.
Observation 1: All performance measurements are better

for the case of detection. For example, in Table 2 (left plane),
the accuracy ‘Acc.’ is reported as 76.73% for ‘SL fusion’ and
86.50% for ‘FL fusion’. In the case of stress detection (Table 2
(right plane)), the accuracy ‘Acc.’ for the same fusion modes
is 92.51% and 97.75%, respectively.
Observation 2: The experimental results indicate the

following priority:

Ranging factors in stress detection mode︷ ︸︸ ︷
1

RESP;
2

ECG;
3

ACC;
4

EDA;
5

TEMP;
6

EMG;
1

RESP;
2

TEMP;
3

ECG;
4

ACC;
5

EDA;
6

EMG;︸ ︷︷ ︸
Ranging factors in stress classification mode
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FIGURE 10. Examples of the SMA protocols for firefighter combat: high risk status (left), low risk status (central), and very high risk (right).

The RESP and EMG are the most and least informative factor
in both modes, respectively. The role of factor TEMP is
decreased in stress detection mode (it number 5 instead of
number 2).

Table 4 compares the results.

TABLE 4. Stress detection performance: No Stress vs. Stress.

Observation 3: The accuracy of 97.75% is achieved in
the detection mode of the SMA, against 92% reported in
work [3].

D. EXAMPLES OF PROTOCOLS
The stress state of the first responders is continuously mon-
itoring by the SMA and reporting using protocol format.
The protocol is available to the subject via, in particular,
a wearable display, and is transmitted to an operations center.
Examples of the protocols are given in Fig. 10:

Firefighter # 1 (Left Plane): A high risk of stress is reported
by the SMA. It is caused by suffering a severe blast
injury due to an explosion (as detected by the ACC)
with high probability.

Firefighter # 2 (Central Plane): A low risk of stress
is reported by the SMA. It is caused by climbing a
multi-story building during training (as detected by the
ACC).

Firefighter # 3 (Right Plane): A very high risk of stress is
reported by the SMA. It is caused by suffering a low-
degree burn injury; the elevated environment tempera-
ture has damaged both the EDA and EMG sensors.

E. DIAGNOSTIC MODE
One of the distinguishing features of the proposed SMA
architecture is the possibility to use the causal network in
two modes: feed-forward reasoning for the fusion of the Res-
TCN outcomes, and backward reasoning for inference and
diagnosis.

From a system view, the causal network (Fig. 7) is an
embodiment of decision-level fusion. While each ‘‘sensor’’
node represents the output of a trained machine-learning
model, ‘‘Valid’’ node ‘fuses’’ the results from all sensors.
‘‘Type’’ node provides the evidence or condition to be used
for performance calculation, i.e. the accuracy of decision-
level fusion represented by ‘‘Match’’ node.

Consider the SMA performance given that the only RESP
channel is used. The highest accuracy achieved using this
channel is 84.84% after probabilistic inference. The original
accuracy of 82.85% from the Res-TCN is boosted via the use
of a BN for fusion.

Fig. 11 represents an example of an inference test applied
to the original causal network shown in Fig. 7. The prob-
abilities shown in Fig. 11 are the marginalized conditional
probabilities given the evidence (Type = RESP). The CPTs
for each node in the BN are calculated based on the output
distribution of the stress detection ML model.

The six ‘‘sensor’’ nodes (D, A, T, G, C, R) are the indi-
vidual nodes describing the distribution of the predicted
emotion classes. For example, node A (accelerometer) con-
tains the probability distribution as follows: Amuse = 15.27,
Stress = 26.3, and Base = 58.63. These probabilities repre-
sent the total positive predictions (True Positives+ False Pos-
itives) of the Res-TCN. This indicates that given 100 samples,
15 are classified as Amusement, 26 as Stress, and 59 as Base-
line. As seen, the estimated distributions provide only positive
predictions, it does not indicate the difference between true
positives and false positives.

The aforementioned nodes’ predictions are fused together
to provide a better estimate of the emotion class. The child
node ‘‘Valid’’ represents the combined decision of the six
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FIGURE 11. Example of inference test. Using the RESP sensor only for decision produces an accuracy of 84.84% which is higher than the original 82.85%
when using data from multiple sensors.

parent nodes. For example, if nodes D, A, and T ‘‘pre-
dict’’ the Amusement, nodes M and C ‘‘predict’’ Stress,
and node R ‘‘predicts’’ baseline, node ‘‘Valid’’ will yield
Amusement = 3/6, Stress = 2/6, and Baseline = 1/6.
The sensor nodes as well as the ‘‘Valid’’ node describe the

predicted distribution, while the ‘‘Type’’ node describes the
ground-truth distribution. The predicted distribution is the
probability distribution estimated by the Res-TCN, while
the ground-truth distribution is the one provided by the
dataset. Since the predicted distribution does not differenti-
ate between true and false positives, the ‘‘Match’’ node is
necessary in order to extract the correct predictions (true pos-
itives). This process is performed by measuring the similarity
between the ground-truth and predicted distributions. A pos-
itive match happens once both distributions predict the same
class (true positives or true negatives), whereas a negative
match occurs when both distributions predict different classes
(false positives or false negatives).

Provided the evidence (Type = RESP), the BN estimates
the similarity between the ground-truth distribution of the
RESP sensor and the predicted distribution (after fusion).
In this scenario, we get a matching similarity of 84.84%
between the ground-truth and predicted distribution. This
value represents the accuracy of decision-level fusion and
is greater than the original 82.85%. This suggests that the
distribution from the other sensors provide useful information
resulting in a 2% increase in performance.

IX. CONCLUSION, RECOMMENDATIONS,
AND FUTURE WORK
The following key conclusions provide insights for develop-
ers of stress detectors for first responders:

1) The stress detector shall be personalized to the wearer
to reflect the uniqueness of the individual and his/her
reaction to stress. On the other hand, this detector is an
integral part of the decision support process.

2) Residual TCN is the preferred ML approach used for
learning the individual’s response to stress, captured by
the time series data from the WSN.

3) The proposed architecture and prototype bridge the
research and development gaps in the current techno-
logical means to support the work of first responders.
In general, this work contributes to the fundamentals of
an intelligent SMA design.

In the intelligent SMA and DSS design (Fig. 1), the V-C-M
survival content is present in the perception-action cycle:

− The SMA is an integral part of the intelligent decision
support process, a perception-action cycle;

− The DSS supports the first responder in all V-C-M sur-
vival dimensions;

− The SMA and the WSN capture the V-C-M survival
spectrum, in order to achieve the required performance,
and

− The SMA is an individual-centric system that contin-
uously learns from the vitals of the first responder in
order to make a reliable stress recognition (detection),
monitoring, and corresponding decision support.

There are a few recommendations for future work that
are derived from our experience in developing the intelligent
SMA:

− The problem of stress detection should be considered
in a broader context of the first responder support.
Our work is only the first step which covers an intro-
duction to a systematic approach. The NIST roadmap
for firefighters [2], a roadmap for Homeland Security
first responder coping [9], a guide for combat and
operational stress control [12], and a guide to military
medicine [13] define the research and development
horizon for autonomous decision support to human oper-
ators, regarding decisions in both actions and in prevent-
ing injuries.
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− Our experimental study is limited by the WESAD
dataset. Large benchmark databases are currently
unavailable, thus prompting for development ofmachine
generated or synthetic data. For example, a generation of
synthetic ECG was proposed in [45], and the EMG has
been simulated in [46].
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