
Received January 18, 2021, accepted January 26, 2021, date of publication February 4, 2021, date of current version February 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3057044

Holistic Web Application Security Visualization
for Multi-Project and Multi-Phase Dynamic
Application Security Test Results
FERDA ÖZDEMIR SÖNMEZ 1, (Member, IEEE), AND BANU GÜNEL KILIÇ 2, (Member, IEEE)
1Institute for Security Science and Technology, Imperial College, South Kensington Campus London, London SW7 2AZ, U.K.
2Informatics Institute Middle East Technical University, Üniversiteler Mahallesi, 06800 Ankara, Turkey

Corresponding author: Ferda Özdemir Sönmez (f.ozdemir-sonmez@imperial.ac.uk)

ABSTRACT As the number of web applications and the corresponding number and sophistication of the
threats increases, creating new tools that are efficient and accessible becomes essential. Although there is
much research concentrating on network security visualizations, there are only a few studies considering the
web application vulnerabilities’ possible visualization options. Consequently, to fill this gap, this research
centers around a novel perception configuration to improve web application vulnerability monitoring. This
study forms a generic data structure based on data sources that might be readily associated and commonly
available for the majority of the web applications. The primary contribution of this study is a new dashboard
tool for visualizing dynamic application security test results. Another contribution is the metrics/measures
that the tool presents. The paper also describes a validation study in which participants answered quiz
questions upon using the tool prototype. For the case study, sample data has been generated using the OWASP
ZAP scanner tool and a prototype has been implemented to be used for validation purposes. This study allows
the investigation of fifty metrics/measures for the multi-project/phase environment that enhances its benefits
if the user aims to monitor a series of analyses’ results and the changes between them for more than one web
project.

INDEX TERMS Computer security, information security, visualization, software engineering, web and
internet services, dynamic application security testing, DAST, black-box test.

I. INTRODUCTION
The number of web-based applications is increasing each
year. Although, there are no statistics on the number of
existing web applications in the world, the number of domain
names was around 367 million as of the first quarter of 2020.
From one point of view, each of these domains might be
considered as a web application, either static or dynamic.

Risk control and risk assessment are constant challenges
for the software project management domain. Demir [1] sur-
veyed on project management challenges with 78 partici-
pants. The results showed that approximately one in every
four projects had problems in the security and risk con-
trol area. Web-based application architecture has been main-
stream inmedium and large size enterprises since many of the
enterprise web applications are integrated within each other
and with other enterprise systems. However, web applications
are prone to continuous updates due to continuous changes

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

in the requirements and added functionalities. The adoption
of web applications is increasing, yet these applications are
commonly developed in an ad-hoc manner, without properly
understanding the reliability and security requirements [2].

Security vulnerabilities are weaknesses which can be
exploited by a threat factor, such as an attacker. The reason
for focusing onweb applications in this study is the increasing
number of vulnerabilities and attacks, and the small number
of visualization studies on this subject. Fig. 1 shows the trend
of the Open Web Application Security Project (OWASP) top
ten vulnerabilities between 2016 and 2019 [3].

Fortunately, security analyses and protection techniques
are also improving. Doing only manual analyses and tradi-
tional tests are not sufficient. Thus, over the years, many
automated analysis tools have been developed for efficient
security checks. Some of these tools make white-box analy-
ses, which are called static code analyzers. Static code analyz-
ers use application code, resource, and configuration files as
the analysis source. They are more suitable to be used during
the development phase when the application has not yet been

25858 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-0908-2554
https://orcid.org/0000-0003-4917-192X


F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

FIGURE 1. The state of web application vulnerabilities between 2016 and
2019 [3]1.

deployed to a server. Static code analyzers aim to find code
smells, bugs, and vulnerabilities for continuous code quality
without the necessity of code execution. Examples of this
group of vulnerability analysis tools are SonarQube [4] Para-
soft [4], CodeSonar [4], Veracode Static Analysis [4], Fortify
Static Code Analyser [4], Checkmarx [4], and AppScan [4].
In order to make automated static code analysis, the ana-
lyzer tool (SAST) which suits the development language and
development framework has to be selected. Thus, to make a
white-box test, the technology used in the development of the
web application should be considered. Since, the number of
development languages, platforms, and technologies is high,
being dependent on the web application technologies and
languages is a limitation for a security analyst.

The second group of vulnerability analysis tools focuses
on black-box tests/analyses, and they do not depend on the
selected technologies. They use standard HTTP requests to
make controls and attacks on the web applications. They are
more suitable to be used after the deployment of the applica-
tion either to the test servers or to the production environment.
These tools are commonly referred to as Dynamic Applica-
tion Security Testing (DAST) tools. The tools in this group
are also useful during the whole lifetime of the application
and may help while making security-related design decisions
after the first deployment.

In the security visualization domain, security-related data,
which are log files, network traffic data, operating system
data, data from security protection systems, such as firewalls,
IDS systems, or vulnerability scanners, are visualized to pro-
vide more efficient and effective ways of security analyses.
The focus of this study is to visualize the outputs of the second
group of automated security analysis tools, i.e., DAST tools,
which are typically the scan results, and the identified alerts.

Both SAST and DAST tools have their specific benefits
for specific phases in the software lifecycle. Focusing on the
DAST in this work should not imply anything related to the
effectiveness of these two groups of tools. DAST tools have
been selected, since more issues on the reporting features of
these tools have been observed than SAST tools.

Web application security black-box test tools are called
vulnerability scanner tools, in general. The types of vulner-
ability scanner tools vary. Port scanner tools, web server
scanner tools, and web application scanner tools are the most

1This figure includes only nine vulnerabilities instead of ten, because only
nine vulnerabilities overlapped in the OWASP top ten lists between 2016 and
2019.

well-known types. The scans may be host-based or network-
based. There are both commercial and open-source alterna-
tives. Notable vulnerability scanners tools include Acunetix
[5], Netsparker [6], Retina [7], Whitehat Sentinel [7], Burp
Suite [8], Grendel Scan [7], Grabber [7], Nikto [7], and Zed
Attack Proxy [9] (ZAP).

Bingham et al. [10] focused on the usability problems
of black-box vulnerability scanner tools and attempted to
identify the common pitfalls of user-interface designs, user
notifications, and software configuration, based on two differ-
ent tools. There are also a few general-purpose guidelines for
usable security, such as [11] and [12] in the literature. Apart
from earlier proposals and findings, the problems detected
by the authors are as follows. Although these vulnerability
scanner tools have reporting systems, these reporting systems
are not adequate and mature to monitor the vulnerability
status of software projects properly. When there is more than
one web project to be monitored, then usability problems
increase. More information related to the existing reporting
and visualization capabilities of the vulnerability scanner
tools is provided in the next section.

The primary contribution of this paper is a new dash-
board tool for visualizing vulnerability scan results coming
from black-box vulnerability scan tools. To achieve this,
data attributes of these tools have been examined and a data
structure has been formed including the attributes commonly
found in the vulnerability scan results. A secondary contri-
bution of this work is the list of metrics/measures that the
tool presents (Table 1 to Table 8). The paper also describes a
validation study in which the participants answer a user quiz
on using the tool prototype. The work presented in this paper
was carried out as part of the corresponding author’s PhD
study [13].

The proposed solution allows for dynamically inspect-
ing and comparing the characteristics of vulnerabilities on
multiple software projects or different versions of the same
software project which are analyzed at different times. It aims
to allow having a quick understanding of vulnerability levels,
types, the association of these vulnerabilities to the standards,
and the efforts and trends in security-related development,
and security-related bug fixes for software projects.

The rest of the paper is organized as follows. The related
work is described in Section II, followed by the pro-
cess description in Section III. Detailed explanation of the
holistic web application security vulnerabilities visualiza-
tion approach and the metrics are provided in Section IV.
In Section V, the case study that was developed using the
proposed model including the validation efforts is demon-
strated. The paper continues with the discussion of theo-
retical and managerial implications and research directions
in Sections VI and VII. Concluding remarks are given in
Section VIII.

II. RELATED WORK
Özdemir Sönmez and Günel made a detailed gap analy-
sis for the security visualization domain [14]. This survey
study included a detailed investigation of around 80 security

VOLUME 9, 2021 25859



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

TABLE 1. Available metrics from well-known web application vulnerability scanner tools.

visualization studies that were selected among about one
thousand earlier studies from the Web of Science database.
This extended review did not have a focus on a specific
use-case or on a specific data source. On the other hand,
it aimed to provide a clear summary of the security visu-
alization domain for new beginners and for scientists who

seek gaps in the field. It contains classifications based on
use-cases, data sources, interactivity properties, and display
type selections. This survey study shows that although other
security sources, such as network traffic data, have been
given more importance, web application vulnerabilities still
need more attention. This gap analysis resulted in the iden-

25860 VOLUME 9, 2021



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

TABLE 2. Base measures/metrics based on vulnerability scanner tools.

TABLE 3. Metrics-Measures/new developments-bug fix maintenance effect.

tification of several security visualization research topics.
Visualization of web application vulnerabilities was one of
them, which is the main motivation behind this work. The
current study aims to provide ways to visualize web appli-

cation security vulnerabilities from DAST tools. For this
purpose, another literature review has been made, focus-
ing on web application security vulnerabilities this time.
Web application vulnerability scanner devices have also been

VOLUME 9, 2021 25861



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

TABLE 4. Metrics/Measures based on effects of previous measurements and time.

TABLE 5. Metrics-Measures based on the effect of application properties.

TABLE 6. Metrics based on classification effect.

TABLE 7. Metrics based on the standards’ lists effect.

examined for their visualization capabilities. The details of
existing web application security related visualization studies
based on the review and examination results are provided
below.

Dang and Dang [15] proposed a web application secu-
rity vulnerabilities design with the aim of improving the
reporting interfaces of vulnerability scanners. Their design
was prepared to be utilized by security evaluators of web

25862 VOLUME 9, 2021



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

TABLE 8. Metrics based on the protection systems’ effect

applications. Dang and Dang’s study aggregates data from
multiple scanners and provides statistical information for
each web page URL, based on the alerts gathered from these
scanner tools.

Since the Dang and Dang’s study forms the single example
on visualizing the black-box vulnerability scan results of web
applications, the following visualization studies were also
included in this section to provide a better understanding of
web application software security visualization concept:
• Security visualization studies, which aim visualization of

static code analysis tools’ (white-box analysis) vulnerability
results for software (not necessarily web) applications,
• Security visualization studies, which do not use vul-

nerability data, but use other related security data, such as
application security logs,
• Security visualization studies, which do not use security

data, but provide helper information to be used during the
tasks of web application security analyzers.

Cesar is a prototype proposed by Assai et al. [16] that
aims to promote the usability of static code analysis tools
by increasing the collaboration among software developers.
Static code analysis tools are not specific for web applica-
tions, but all kinds of software. The authors of Cesar claim
that contemporary static code analysis tools do not provide
enough collaboration and this results in the software devel-
opers’ unwillingness to use them. In our opinion, collab-
oration is not a feature that should be primarily expected
from a vulnerability scanner tool. Definitely, any property
which would enhance collaboration would be valuable for
any tool. However, when we look at the software develop-
ment domain, we see that there are already many tools that
provide collaboration, such as task management tools (e.g.
JIRA). Best practice development environments integrate the
vulnerability scanners to be a part of a more collaborative
tool to support the continuous development and integration
processes. In this way, the outputs of vulnerability scanners
can be shared among all the project team members continu-
ously. Cesar visualizes the static code analysis results using
the treemap technique. It also provides a way to jump to the
application code from the detected vulnerability.

Other security visualization studies that deal with software
related vulnerabilities are Goodall et al. [17] which visualizes
software code vulnerability, and Harrison et al. [18] which
visualizes the scanner results on NV, Nessus Vulnerability
Visualization for the Web.

Security logs are important security data source alter-
natives for security visualization of web applications.

Alsaleh et al. [19] proposed a study that visualizes the secu-
rity logs of PHP based web applications. This application
aims to help security analysts during their examination of
security logs. Attacks made to web applications and web-
based attack scenarios are other visualization subjects related
to web applications. In another work, Dang and Dang [20]
proposed a system that visualizes web attack scenarios. This
system depends on exploiting the links of web application
pages and aims to understand intrusion detections. HVIZ [21]
is a system that does not directly aimweb application security,
but it visualizes web browser activities. This design might be
used for evidence gathering when an incident occurs.

Some visualization studies do not only use the security-
related data, such as security logs, vulnerability scan results,
or client access logs, but also provide some secondary infor-
mation that eases the tasks of security analysts. For example,
Dang andDang [15] used website hierarchical structure along
with website vulnerability scan results. The department data
and user data areas were used as a part of Netvis [22] security
visualization tool. These secondary data can be very helpful
when used properly with the security data.

As mentioned in the previous section, there are known
usability issues for developers using static code analysis tools
[23]. This study aims to improve the reporting features of
black-box web application vulnerability scanners, which are
also not very convenient in terms of usability, for various
reasons [10]. The number of abstraction levels is low for these
tools. There is a need for more fine-grained abstraction. The
difficulty of exporting scan results, the lack of definitions for
vulnerability types and the lack of boundaries between dif-
ferent classes are other commonly reported usability issues.
Some of these difficulties may be caused due to the difficulty
of transferring information from the security domain to the
software development domain.

The reporting systems of black-box vulnerability scanner
tools, commonly serve the detailed scan results data and
aggregated data based on alert types. They do not offer any
other calculation or metrics, and they do not offer a way
to make a transition between the aggregated data and the
detailed data.

Considering that the focus of this paper is related to the
presentation of data rather than scan data generation, a group
of popular DAST tools has been examined in detail, to
understand mainly their presentation features. DAST tools
have a distributed range of features. Some of the tools allow
you to choose groups of vulnerabilities to scan, such as in
Acunetix [5], or they allow limiting the scanned domain

VOLUME 9, 2021 25863



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

URLs by the use of some techniques, such as Regex mecha-
nism as in Netsparker [6]. They provide ways to make several
planned scans by allowing multiple scans queues, such as
in Burp Suite [8], or scheduling scans for the future as in
Acunetix [5]. In general, commercial DAST tools are more
professional with a higher number of metrics and reports.
Open source and free tools are simpler, mainly serving the
scan data and the alerts. Some of the commercial tools also
have community versions with fewer features.

The metrics/measures commonly presented by these tools
are scan duration, number of requests, average response time,
the number of locations, latest alerts, list of discovered hosts,
list of vulnerabilities, including URL, type and parameters,
details of the selected vulnerability, including the vulnerabil-
ity description, attack details, and HTTP request detail (see
Table 1). Standard metrics are the number of vulnerabilities
by severity (such as high, medium, low, or informational)
and the number of vulnerabilities by alert/vulnerability type
as in Acunetix [5], which is one of the more advanced tools
of this type. Netsparker [6] presents scan results/ scan logs,
URL, scan duration, attack type, number of total requests,
number of requests per second (speed), and average speed,
number of failed requests, total time elapsed, head requests,
alerts found and vulnerability description. Some tools such as
Burp Suite [8] and Zed Attack Proxy (ZAP) [24] have simpler
presentation styles with less number of metrics and measures.
Burp Suite shows host, method, URL, params, status, length,
MIME, title, IP, cookies, details of HTTP requests. In the
alerts list (issue activity), status, issue type, URL, (host and
path), and issue time are presented. ZAP [24] has similar
output fields. These tools with simpler presentation designs
also involve alert/vulnerability descriptions either short as in
ZAP [24] or long as in Burp Suite [8].

Whereas the most of the data is presented through the
tool screen views, few of the more advanced tools provide
one or more type of reports, such as executive summary
report as in Acunetix [5], developer, auditor, and administra-
tor reports including OWASP top ten report, PCI compliance
report, and knowledgebase report as in Netsparker [6].

Most of the web application scanner tools provide raw
alert and scan data. A minimal number of metrics/measures
related to the comparison of subsequent scans are included in
the provided reports and screen views. Among the examined
tools, it is seen that few tools allow manually marking the
detected issues as ‘‘resolved’’. This helps to track the status
of security-related updates using the vulnerability scanner
interfaces to some extent. Automatic comparison of multiple
scans together with the integration of application and project
data may provide better monitoring of security updates while
examining current security issues for the web projects.

Although coloring and small icons for different levels of
vulnerabilities are generally used both at vulnerability screen
views and in the generated reports, nearly no other visual ele-
ment exists at the output of the web application vulnerability
scanners. Only a few of the tools allow filtering of the output
data, as in the drill-down feature of the Acunetix [5], which

allows filtering based on severity, target, business criticality,
status, and CVSS values.

The low number of studies focusing on web application
vulnerability visualization, the usability problems of vul-
nerability scanner tools, and their immature presentation
styles provide challenges to the researchers. These challenges
include definition or identification of new metrics and pro-
viding new visualization designs that will enable monitoring
of these newly identified metrics, changes between multiple
security checks, and effects of new developments and bug
fixes.

Dang and Dang’s study which is a single example of visu-
alization focusing on DAST results mainly presents statisti-
cal metrics. It provides the total numbers of vulnerabilities
each scanner found and further divide these numbers into
groups by common severity levels of vulnerabilities. It uses
web application pages’ structure during this presentation.
Although this approach provides a very top-level view of the
vulnerabilities, it lacks details. Besides, this view does not
show repeated alerts, fixed alerts between phases, and it does
not relate the alert data to the standards. Software project
managers’ responsibilities include reviewing the current sta-
tus and progress against intermediate and final development
targets and identifying the obstacles. Managers should also
monitor whether the security implementations meet the stan-
dards and technical requirements. Including repeated alerts,
and fixed alerts between the periods may be valuable for the
managers besides security analysts, and would end up with a
new visualization perspective for the same type of data.

Existing web application vulnerability visualization tools
do not have a holistic approach that combines vulnerability
scanner results with the environment properties and time-
line of security-related activities. They also lack clear metric
definitions and the number of metrics they present is very
low in general, resulting in incomplete picture of the security
status of web applications. Security Information and Event
Management (SIEM) tools, on the other hand, provide a more
holistic approach, with a large number of metrics for the
enterprises. However, rather than focusing onweb application
security, they aim to serve other purposes, such as reporting
andmanaging security alerts in real time based on the analysis
of data obtained from the entire IT infrastructure.

Against this background, the purpose of this study is to
propose an alternative visualization tool which visualizes
the data attributes commonly available for web applications,
combine these data attributes with common outputs of web
application vulnerability scan results, namely, scanner results
and alerts, and to find out measures and metrics based on
the proposed data structure. For this purpose, in parallel
to designing the metrics and visualizations, existing SIEM
systems are also examined in detail to discover their potential
benefits for the monitoring of DAST results.

III. PROCESS DESCRIPTION
The top-level processes included a literature review of
the academic studies. This was followed by a detailed

25864 VOLUME 9, 2021



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

examination of the existing vulnerability scanner tools, which
resulted in understanding the capacities and problems of these
tools in depth. As an initial step, a data structure was framed
as the outcome of analyzing typical results of vulnerability
scanners and selected secondary data sources.

An essential part of this study is defining quantitative met-
rics. Following the data source structure formation, a large
set of metrics/measures were identified using the proposed
data structure. Encapsulating a large set of metrics is not very
common in security visualization solutions. Similarly, explic-
itly marking each metric in security visualization solutions
is also not accomplished yet. Although statistical results are
distinctly highlighted in the security visualization solutions,
other metrics are left to the users’ understanding.

Prototyping is the most widely taken approach in the secu-
rity visualization domain to illustrate the novel visualization
designs. For this purpose, to illustrate the proposed approach,
a visualization prototype tool was developed in dashboard
form, called Holistic Web Application Security Vulnerability
Visualization (HWAS-V). The dashboard-style was selected
due to its ability to encapsulate a large number of metrics
in one design and using a limited space easily. During the
preparation of the dashboard, several combinations of the
metrics were built experimentally, and among them, the most
appropriate combinations were selected to form a legitimate
dashboard design.More information is provided related to the
design decisions and rationalities in the following sections.

As part of the design description, the details of the metric
definition process and output metrics are described in the
next section. The primary and secondary data sources are
also explained in this section. Later, the offered metrics are
depicted in a classified manner. Next, the visualization pro-
cess is revealed in detail. Although a detailed examination of
existing web application vulnerability scanner tools was con-
ducted in the previous section, evaluation of SIEM systems
is also included to position and differentiate the proposed
system among the SIEM systems. A short summary of the
evaluation results of the SIEM systems for their potential
benefits to web application visualization is provided as part
of the tool description in the next section.

A case study was designed to demonstrate the usage and
benefits of the HWAS-V prototype. For this purpose, case-
study vulnerability data was formed by conducting subse-
quent vulnerability scan analysis for three different domains.
This data was used during the visualization of the provided
metrics.

The authors had sought appropriate ways to validate the
provided system containing proposed metrics and visualiza-
tions. Unfortunately, a suitable criteria to validate the security
metrics were not encountered in the literature. The closest
match was the software metrics validation criteria, which
were obtained by examining a spectrum of philosophies in
the study by Meneely et al. [25]. The criteria provided by
Meneely et al. are valuable, consisting of every aspect of
validating a metric, however, it is based on a list of all 47 val-
idation criteria including ‘‘Empirical validity’’, ‘‘Monotonic-

ity’’, ‘‘Instrument validity’’, ‘‘Representation condition’’,
‘‘Actionability’’ and numerous others. Making that kind of
evaluation for a single new metric or a few new metrics may
be feasible, but not so for this study having about 50 metrics.
Another issue is although these evaluation criteria were very
suitable for the software domain, not all the evaluation criteria
are equally suited to the security metrics. Some of the evalua-
tion criteria are very philosophical indeed, very complicated
for the technical evaluators.

For the listed reasons, rather than validating the metrics
and visualizations one by one, the authors decided to enable
validation of the whole system based on selected criteria that
suit the aims of this study. For this purpose, in the last part
of this study, a validation survey was administered. During
this validation survey, the survey attendants were given the
data and the visualization prototype, and then theywere asked
questions. This validation study included 15 quiz questions
which should be answered using the HWAS-V prototype.
The quiz questions were created to allow the users to use
every part of the HWAS-V tool while trying not to exag-
gerate the number of questions. After this quiz, a set of
four questions were asked the participants to measure the
practicality, efficiency, decision-informing, and difference-
detection attributes of the proposed system. These attributes
of HWAS-V were questioned using a five-point Likert scale
mechanism, from 1 to 5 meaning ‘Not Helpful’, ‘Slightly
Helpful’, ‘Helpful’, and ‘Very Helpful’.

IV. HOLISTIC WEB APPLICATION SECURITY
VULNERABILITY VISUALIZATION, HWAS-V
In general, the users of web application vulnerability scanners
are expected to have technical competency having positions,
such as security analysts, and system admins. To provide
a system that gives a broader perspective of security sta-
tuses, a new approach is introduced in this study. In this
approach, the project-level details, such as earlier security
analysis results, application-level details, such as the size
of the application, the number of modules, the number of
external libraries, and the standards related information are
integrated with the vulnerability scan results. The proposed
security visualization solution is expected to be valuable for
various roles including a software project manager and a
security analyst. The efficient usage scenarios of this solution
for six roles are demonstrated in Section VI.

A. METRIC DEFINITION PROCESS
Vulnerability scanners may have a variety of different
focuses; still they have similar working mechanisms. These
tools make scans based on defined rules, ‘‘scanner rule’’.
During the scans, they generate the ‘‘scan data’’ which
include requests and responses and the resulting ‘‘alert’’s.
It is difficult to form a generic data structure which supports
all web application scanners, because each scanner would
have its own attributes and data types. Thus, during the
design of the data structure, the selection of mandatory data
attributes was made by using a minimum set that commonly

VOLUME 9, 2021 25865



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

exists in the web application vulnerability scanner results.
There are also some optional data attributes. These attributes
take part in relating the minimum data set to some other
data. For example, CWE_id in alerts and scan_rules relate
alerts and scan rules to some existing standards information.
The prototype is designed so that, if there is no associ-
ation information for the selected automated vulnerability
scanner tool, this does not affect the overall visualization
system. If there is a known relationship, this relationship is
used by the visualization system to providesome additional
metrics.

The scan rules defined in a scan tool is the primary
data source used for visualization purposes in this study.
These rule definitions may include a ‘‘rule name’’, and a
‘‘rule id’’. There may be some additional categorical mea-
sures, such as ‘‘version’’ information. Optionally, there may
be information, which relates ‘‘rule’’ to the security stan-
dards. Although this type of data does not change frequently,
it provides information related to the coverage efficiency
(scope) of the vulnerability scans, and be used to relate
scan outputs to the common standards, such as Open Web
Application Security Project (OWASP), Common Weakness
Enumeration (CWE), and the Web Application Security
Consortium (WASC).

At the beginning of a vulnerability scanning activity, a base
URL is needed. Once the base URL is identified, automated
scanner tools check for all available pages in that domain,
thus, form a list of all available pages for that web appli-
cation. Forming such a list is called spidering or crawling
in the web terminology. The result of spidering is called
‘‘scan results’’ in this study. These results include information
related to scanning of the base URL and related pages which
are found during the crawling. The scan results may include
information such as ‘‘scan id’’, ‘‘process result’’, ‘‘request
timestamp’’, ‘‘method’’, ‘‘URL’’, ‘‘response code’’, ‘‘rea-
son’’, ‘‘RTT’’, ‘‘request header size’’, request body size’’,
‘‘response header size’’, ‘‘response body size’’, ‘‘highest
alert’’, and ‘‘tags’’. Tags are optional, and they may not be
available for all scanner types, but similar to the relationship
to standards, existence of this information may provide some
additional metrics. The second primary data source of this
study is the ‘‘scan results’’.

Once aURL is pointed out to the vulnerability scanner tool,
and all the pages are crawled, the tool filters the pages that do
not belong to the target domain. Later, it checks the results
of applying the scanner rule for each page. The checking
mechanism may depend on passive controls or active attacks.
In the end, it provides a list of alerts associated with a list of
instances where each instance corresponds to a URL. These
results include the ‘‘alert name’’s, ‘‘URL’’’s of the related
pages. Alert names may be equal or similar to the correspond-
ing ‘‘scan rule name.’’ Unfortunately, there is no standard
for naming the scan rules and the corresponding alerts for
vulnerability scanner tools. Mapping of scan rules to alerts
can be made for once by the tool users to be benefited during

the subsequent scans. The alerts list is the third primary data
source of this study.

To form themeasures/metrics list, earlier academic or com-
mercial published material that points to the web applica-
tion security metrics were examined. Later, this initial set
of metrics were extended by including the measures and
metrics selected from the ones that can be generated using
the proposed data structure.

Thus, a few of the proposed metrics were mainly designed,
because they were convenient to measure using the avail-
able data. Considering the aim is not to find a solution for
all types of problems of security analysts, but to improve
the ways of examining the web application vulnerability
data, this was an adequate approach. Knowing this, and the
examinations’ results, which indicate the low number of
measures/metrics and lacking abstractions in multiple levels,
the proposed metrics and measures were most appropriate
for the security analysts and other potential users provid-
ing various abstractions of vulnerability data in different
levels.

Before the definition of the proposed measures and met-
rics, it is necessary to explain the terms, ‘‘project/domain’’
and ‘‘phase’’ used in this study. ‘‘Project/domain’’ corre-
sponds to either a web application that is in the development
stage and subject to the security tests (i.e., a project), or an
already deployed application which is the subject of a secu-
rity analysis/test task (i.e., a domain). Since such secu-
rity analyses/tests are repeated actions, a ‘‘phase’’ defini-
tion was required to measure the effects of repeated vul-
nerability scanner results and the changes made after each
security analysis. Hence, whenever a new automated test is
recorded for a project/domain, a new phase starts. These
phases do not necessarily correspond to the phases in a project
life cycle. This phase concept is necessary to enable mea-
sures related to changes due to vulnerability fixes and bug
fixes or new developments in a defined phase in the proposed
framework.

Fig. 2 shows a series of vulnerability scan results achieved
for two independent projects. In all lifetime of the project
1, the vulnerability scanner was executed five times. For
project 2, the vulnerability scanner was executed only in the
maintenance phase, four different times.

During the metric design phase, application properties,
such as application size, the number of modules, and the
number of external libraries are used in conjunction with
vulnerability scan results. If the development continues for
the application, then this information will change from phase
to phase. Data coming from security protection systems are
another type of secondary measures used in the proposed
framework. These measures are combined with security
standards-related information to form a holistic data struc-
ture which enables monitoring security statuses of the web
applications for multi-project, multi-phase platform com-
bined with an association to the standards and other infor-
mation related to the project structure and the environment.
In summary, measures related to the application properties,

25866 VOLUME 9, 2021



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

text/analysis phases, security protection systems, and stan-
dards are included as secondary data sources in this study.
The implementation related details for this tool is presented
in the Appendix Section. Appendix A includes a conceptual
system model that might be used to collect the data for the
proposed data structure. Appendix B shows the proposed data
structure. Using data from multiple sources simultaneously
has normalization problems inherently. In this study, there are
time-independent data, such as standards data, and remedia-
tion data, and time-dependent data, such as vulnerability scan
results, application data, and project data. Having the phases
becomes advantageous when solving the normalization prob-
lems.When time-dependent data from different sources, such
as the project management tool or the vulnerability analy-
sis tool, are pulled, accessing a normalized data would be
possible if the corresponding phase’s start and end dates are
adhered to in bothmanual and automatic data loading options.

When there are no phases, i.e., predefined start and
end dates for each vulnerability scan period, capturing the
changes in the application modules, the number of vulner-
abilities and the project tasks would occur at different fre-
quencies and different calendar dates. However, when there
are predefined phase start and end dates, the user of the
systemwould be forced to make specific checks for the stored
attributes (such as the application sizes, number of security-
related tasks, and vulnerability scans for these predefined
intervals) at specific times. Therefore, even if the lengths of
the periods and the frequencies of security checks may differ
for a project, the system would provide comparable values
using all the measured attributes for each phase in itself.
This reliance on phases should be used for both manual data
entrance/upload and automatic queries from the integrated
tools.

For a project, time dependent and time independent data
co-occur. For example, there may be tasks and changes in
the application state, which are time dependent. On the other
hand, the vulnerability data is like snapshot data. In order
to handle such time dependency, snapshot data should be
marked with the same time intervals as the time dependent
data, so that they can be served in the same dashboard to have
a holistic view of the security statuses.

The proposed measures/metrics are the results of pri-
mary vulnerability scan results and related factors, such
as the information related to new developments, bug fixes,
maintenance effect, time effect, classifications, application
properties, protection systems, and the standards. The met-
ric/measures are presented using this classification for better
understandability.

Although a generic data structure is proposed in this paper,
the examinations of other security test tools (presented in
the related work section) showed that we do not leave out
any important attributes which are specifically used to char-
acterize some security issues. Even if the tool interface and
available reports may differ, the DAST tools work in the same
manner, in general, through HTTP calls, and thus provide
similar outputs.

B. WEB APPLICATION VISUALIZATION
MEASURES/METRICS BASED ON COMMON
VULNERABILITY SCAN OUTPUTS AND RELATED DATA
Measure and metric are two terms, which are sometimes
used interchangeably in some contexts. The main difference
between them is that the measure is the direct result of a
measurement activity; metric, on the other hand, is the result
of a calculation made using one or more measures. In this
study, these terms are used in complience with the provided
definitions. The measures and metrics that are available using
the previously described data structure are explained in detail
in this section.

1) BASE MEASURES/METRICS BASED ON VULNERABILITY
SCANNER TOOLS
The measures in this group are originated from the web
application security vulnerability scanner tools. In this study,
these measures are called base measures, because they are
based on measurements from the primary data source. In the
subsequent sections, this base list is enlarged by the potential
effects of secondary data sources. The measures alert set,
set of URLs scanned through vulnerability scanner, set of
URLs processed, set of URLs associated with an alert, round
trip time (RTT) for an HTTP request and response for each
alert check provided by the scanner tools are among the
base list. The metrics the number of vulnerabilities/alerts,
the number of URLs scanned, the number of URLs processed,
the number of URLs with an alert, the number of repeated
alerts based on alert data, the number of fixed alerts based on
alert data, change in vulnerability level per page, the number
of non-processed pages, the number of non-alerted pages,
percentage of processed pages, percent-age of alerted pages,
total RTT, and average RTT are the results of using simple
arithmetical or set operations on the measures listed in this
group. The associations of the metrics/measures in this group
to the dashboard parts are shown in Table 2.

These measures/metrics serve various purposes including
providing raw alert/scan information through sets, demon-
stration of the level of application/project security, the level
of scan coverage success through basic arithmetic operations,
providing the level of success of vulnerability/alert fixing
efforts, such as the number of repeated alerts, the number
of fixed alerts, and the change in the level of vulnerability
levels through set operations, and presenting the scan duration
related information which may be used for the planning of
subsequent scans and to have an understanding of the perfor-
mance of the applications/projects.

2) METRICS DUE TO THE EFFECTS OF NEW
DEVELOPMENTS / BUG FIXING MAINTENANCE
During the lifecycle of a web application, both new develop-
ments and bug fixes might exist in time. In order to monitor
the effects of these tasks, these efforts might be associated
with the previous findings of the vulnerability scans. Once

VOLUME 9, 2021 25867



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

these associations are made, it is possible to include the
following measures and metrics to the proposed system.

The measures due to the set of alerts/vulnerabilities fixed,
bug fixing related tasks, the set of alerts/vulnerabilities fixed
due to new developments, and the total time to fix vulnera-
bilities between the scans can be measured through the use
of task management systems properly. Arithmetic operations
calculate the metrics, the number of related bugs fixed in a
period and the number of security-related new developments.
These metrics are used in conjunction with the metrics pre-
sented in the base measures/metrics section.

Themetrics andmeasures proposed in this part would form
an internally developed remediation latency database for the
known type of alerts for that specific type of application
in the long term and may be used for planning purposes.
The associations of the metrics/measures in this group to the
dashboard parts are shown in Table 3.

3) METRICS/MEASURES BASED ON THE EFFECTS OF
PREVIOUS MEASUREMENTS AND TIME
When time passes, the system/software would eventually
undergo some changes. The effects of new developments and
bug fixes were already mentioned in the previous section.
In this part, the internal and external measurements, namely
the remediation latency indicator values collected by IT com-
panies in time for common alert types are included in the pro-
posed metric/measure list. Remediation latency is an indica-
tor that wouldmeasure the security update performance of the
developer organization. IT companies periodically announce
such information related to common security issues. Integrat-
ing such information with the vulnerability scanner results
would be beneficial for multiple purposes such as planning of
new developments/bug fixes and monitoring of the progress
of the ongoing projects. Average remediation latency for
a vulnerability is either a measure gathered from vendor
report or a measure that is ascertained during the tasks
described in Section B.2. The list of metrics/measures in this
group is shown in Table 4.

4) METRICS/MEASURES BASED ON THE EFFECT OF
APPLICATION PROPERTIES
The size of the application, the use of internal or external
libraries, and integrations made with third-party tools would
affect the security status of the web application. Themeasures
andmetrics related to this information are also integratedwith
vulnerability scanner results to provide a more holistic view
of the web application security.

The measures related to the application properties used
in this study are the elements which indicate application
size in various ways, such as the number of lines of code
(LOC), modules, and web pages at time t, and the elements
which show information related to the application deploy-
ment structure, base URL and the geographic deployment
location. The latter parameters are used for monitoring the
application status in a map. The metrics designed by the
authors using these measures are the number of alerts for

base URL, the percentage of scanned pages to total pages,
the number of vulnerabilities per LOC, vulnerabilities per
module, and vulnerabilities per web page. Alerts for the base
URL is calculated through the use of string operations on
the scan results. These are the alerts related to the base URL
regardless of the extension of the URL with the alert. The
percentage of the scanned pages is the fraction of the scanned
pages over the total number of web pages provided in the
application properties multiplied by 100. The associations of
the metrics/measures in this group to the dashboard parts are
shown in Table 5.

5) METRICS BASED ON THE CLASSIFICATION EFFECT
The majority of vulnerability scanner tools provide informa-
tion that would help categorization of the alerts/vulnerabilities.
The most common categorization criterion is the sever-
ity/importance level, such as high, medium, and low.
There may be other categorization items, such as the exis-
tence of sensitive information risk (‘‘sensitive information
risk exists’’, ‘‘sensitive information risk does not exist’’),
the effect to the business (‘‘high business impact’’, ‘‘low
business impact’’), and the origin of the vulnerability (‘‘a vul-
nerable component exists’’, ‘‘a vulnerable component does
not exist; vulnerability is due to other issues’’). Making these
categorizations is commonly the responsibility of the scanner
developers, due to the fact that they are the people who know
the inner mechanisms and targets of the attacks/scans.

Besides the developer efforts, the standards information
may also be benefited from while providing these offered
vulnerability classifications. Although the scope of this work
does not include making these classifications of the vulner-
abilities/alerts, corresponding measures/metrics are included
in this section, as shown in Table 6.

The number of vulnerabilities/alerts related to immediate
sensitive information lost forms a group of vulnerabilities
that are directly related to the loss of any sensitive informa-
tion. Not all vulnerabilities result in information loss, so the
vulnerabilities in this group should be directly associated
with information loss. Similarly, the number of vulnerabil-
ities/alerts related to high business impact would change
from business to business and may be difficult to detect. The
vulnerabilities of this group need not be related to information
loss. For example, a DDOS attack that has a business impact,
but no information loss would be in this category. The number
of vulnerabilities/alerts related to vulnerable components can
be identified during an examination of the application struc-
ture and its possible relations to the alerts. Some alerts may
not be directly related to the application structure, but may be
due to external effects. Such vulnerabilities are not counted
in this group. The associations of the metrics/measures in this
section to the dashboard parts are shown in Table 6.

6) METRICS BASED ON STANDARDS’ LISTS EFFECT
The majority of the alerts have associations to available secu-
rity standards, such as OWASP, WASC, and CWE. These
association values may be used to calculate new metrics as

25868 VOLUME 9, 2021



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

part of the web application security monitoring dashboard.
Vulnerabilities/alerts covered from the OWASP, WASC, and
CWE standards are found out using published associations of
scan rules to the OWASP, WASC, and CWE standards. The
associations of the metrics/measures in this group to the dash-
board parts are shown in Table 7. The measures/metrics listed
in Table 7 form two groups. The first group demonstrates the
number of vulnerabilities for each selected standard, the sec-
ond group demonstrates the coverage of those standards
through the scan rules. Although some of the existing SIEM
like security systems provide associations to one or multiple
security standards, they do not provide information regarding
the level of coverage of scan rules based on these stan-
dards. In general, scan rules implemented in the vulnerability
scanners need not cover all parts of these standards. There
are even some scanners that deal with one or two types of
vulnerabilities, such as SQLInjection. Thus, without knowing
the coverage level, knowing the number of vulnerabilities
associated with the standards may not be likewise beneficial.

7) METRICS BASED ON PROTECTION SYSTEMS’ EFFECT
In an environment where continuous monitoring of the web
application security exists, it is commonplace that theremight
be other security protection systems. The measured number
of vulnerabilities prevented/blocked by external security pro-
tection systems and the ratio of scanned vulnerabilities to
detected ones are also included in the proposed web appli-
cation security monitoring system. The number of vulnera-
bilities prevented/blocked by external protection systems is a
numerical value that can be gathered from systems, such as
firewalls, antivirus and antispam software, and IDS. The ratio
of scanned vulnerabilities to the detected ones is the fraction
of vulnerabilities prevented/blocked by external protection
systems to the total number of vulnerabilities detected by
scanner systems multiplied by 100. The associations of the
metrics/measures in this group to the dashboard parts are
shown in Table 8.

C. VISUALIZATION OF METRICS
The motivation for visualizing the proposed metrics resulted
in a dashboard design that integrates automated vulnerability
scanner results with other related data sources providing
a summary of the vulnerabilities and their relations to the
application, the system, and the environment. In this way,
the design presents security-related highlights and eases the
monitoring and tracking of security statuses of one or more
projects in multiple phases. The outstanding features of the
proposed system are supposed to be its practicality, its effi-
ciency in analyzing the data, and its decision informing
and difference detection capabilities. The existence of these
expected features was tested explicitly during the validation
part of this study.

The visualization of the metrics depends on several
hierarchical decisions. Before going into the details, the ratio-
nalities of these decisions are provided as follows. The top-
level decision was using a dashboard-type display. This was a

rational decision due to the large number of metrics. The sec-
ond level decision was made when arranging the metrics into
multiple dashboard views. This was again logical due to the
number of metrics. As a part of this decision, the groupings
of the metrics were made so that the final set of designs
go from general to detailed and also present the needs of
different roles in the most optimal way possible. Sample
usage scenarios for different roles are visually described in
the following sections. Although the responsibilities of roles
and their tasks may vary from organization to organization,
these sample scenarios show that each selected role can
benefit from the proposed system by minimum interaction
with the dashboards. These groupings provide visibility of the
system status while matching the system with the real world.
Decisions on a lower level are related to the general appear-
ance of the dashboard views. These views have a standard
and consistent structure [26], using plain titles, and subtitles,
repeating font styles, and similar color schemes providing an
appealing interface for the users. As a rule, the creation of
an appealing visualization should never be the main goal for
the designers. However, creating aesthetically good-looking
designs affects the usability of the tools positively. Having an
aesthetic and minimalist design is also one of the Nielsen’s
[26] ten usability heuristics rules.

Decisions on the lower level are related to lower-level chart
selections. These charts are mainly selected among various
types of simple 2-D charts. Using simple 2-D charts, such
as bar charts and pie charts, makes it easier to comprehend
and monitor multiple measures/metrics simultaneously. 2-D
charts result in less false readings and enable better compar-
ison of items. The overlapping of data points in 3-D charts
commonly results in misunderstanding of patterns. As the
number ofmeasures/metrics increases, their interpretation via
3-D charts or other complex charts would become even more
difficult.

The rationality of the selection of each specific chart relies
on general visualization rules based on the data type and the
use-case. For the comparisons of percentages or proportions,
such as the percentage of pages processed or the pages suc-
cessfully respondent, the pie chart is used. If the number
of items to be compared does not allow the use of a pie
chart, the sizes of markers are used to point out significant
information, such as the URL pages with a higher number
of alerts. A map is used to show location information. A bar
chart is commonly used to show the frequency of simple and
aggregated values. Treemap diagrams are used to visualize
hierarchical structures. To avoid overwhelming the design
with too many bar charts marker charts are used a few times.
To prevent eye strain and confusion when markers are used
in the same dashboard, different marker shapes are selected
for multiple charts. In all parts of this design, color is used to
differentiate categorical groups. In terms of color coherency,
although all charts consist of somewhat related data, repeti-
tion of the same data occurs only in two dashboards to show
application size information where the same colors are used
in both charts.

VOLUME 9, 2021 25869



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

Tableau desktop software [27] was used for the creation
of the dashboard-based visualization prototype, due to its
convenience and capability to create complicated dashboards.
Tableau provides flexibility in the views by allowing drag
and drops and resizing mechanisms. Having explicit filters
in every dashboard, and due to Tableau’s inherent filtering
mechanism, which is activated during the navigation over the
data automatically, allows the user control and freedom [26].

Looking at the conceptual part of the design, as explained
along with the tool description, in this concept, the ‘‘project’’
refers to the actual web application which is either in develop-
ment or production state. Sometimes the keyword ‘‘domain’’
is also used to refer to the ‘‘project’’ throughout the text. The
phase refers to a duration that ends with a tool-based security
analysis for a web project. Thus, the duration of the phases
will be very variable. If frequent automated security analyses
are done for a domain, then there will bemore phases. If a new
analysis is made and recorded, then a phase is finished. Thus,
the analysis end time defines the phase end time, and phase
start time is identified by the previous phase’s end time or the
project start time. As a result, the design enables analyzing
repeated alerts, effects of bug fixes, new developments, and
environmental changes between the phases. The ‘‘scanner’’
refers to a vulnerability scanner that provides data close to
the proposed model specification, meaning ‘‘providing a list
of scan data and alert data associated with URLs and alert
types’’.

The aim of visualization design is to enable visualizing
the automated vulnerability scan results as is. Thus, the vul-
nerability scan results are planned to be visualized without
any cleansing or modification operation, for quick response,
(see Fig. 3 (a)). The only data preparation step prior to the
visualization and after data collection is due to the automatic
generation of Id values. During the data preparation phase,
in order to merge multiple data sources and differentiate sub-
sequent executions of the automated scans some numerical Id
values are generated. For example, ‘‘phase id’’ is generated to
identify each execution of vulnerability scans and determine
the duration passed between each automated test/analysis
period. ‘‘Project id’’ is generated to be used in the creation of
sets for the dynamic calculation of sets among projects and
phases. Otherwise, dynamical text processing capabilities of
the tool are utilized to make conversions, such as splitting
united data, such as URL strings including the method (e.g.
Get, Post) or elimination of parameter information from the
URLs to determine the unique number of alerted pages.

Although the static data which was specifically collected
for the use-case based on technical documents is used tomake
associations of other data parts to the ‘‘Standards’’ table,
dynamic classifications are also made using set operations
of the tool over the data. The reasons for using set theory
were the necessity of grouping the alert data based on mul-
tiple fields and the necessity of using set operations such
as union, intersection, and set minus. For example, to find
‘‘repeated alerts’’, and ‘‘new alerts’’ in different phases, set
intersections and set minus operations are used over URL

datasets, respectively. These set definitions are depended on
predefined project-id and phase-ids. When the numbers of
projects or phases (repeated vulnerability scans) exceed the
predefined maximum values, then these rotating Id’s should
be reset by the system, as shown in Fig. 3 (b).

New numerical values for some categorical values are
created through calculated fields, such as the ‘‘numerical
alert level’’ which is created from the categorical alert level
attribute. Aggregation is often used for many purposes, such
as aggregation of data based on scan rules, projects, and
project phases. Besides aggregated data, the proposed visual-
ization system also includes detailed data, such as page-level
alert information.

Due to the high number of proposedmeasures/metrics, sev-
eral dashboards are created which focus on different aspects
of the data. These dashboards are aggregated in a ‘‘story’’
which is a feature of the tool that allows easy navigation
among multiple dashboards. Some of the visualizations may
be the results of some straightforward arithmetic calculations
on a single data source. Results that are single numeric val-
ues are often visualized using ‘‘Formatted Text’’’s. Results
which include a series of numeric values are visualized using
charts, such as ‘‘Bar Chart’’, and ‘‘Pie Chart’’. Some other
visualizations require joining or blending data from multiple
data sources and may use other 2-D display types. Tables are
used to show some detailed data, such as URL based detailed
information. Bubble charts are used to show some grouping
effects, such as grouping based on standards. The dashboards
prepared as prototypes are presented through a case study.

Encapsulating a large set of metrics in a dashboard design
requires using the space effectively. Frequently, a small por-
tion of the view area has to be used to present metric values
having wide ranges. From time to time, the results shown
in a chart may have very close values, causing overlapping
of the data points. On several charts, logarithmic scales are
preferred to normal scales on data distribution on the axes
to overcome these difficulties. A novel visualization property
in the proposed dashboard design is the explicit association
of the proposed metrics to the charts. Showing tooltips for
charts automatically or on-demand is a feature of the design
tool. These tooltips are used to show additional information,
such as detail data, values of related attributes, etc. for all
charts (see Fig. 3 (c)). Besides this additional information,
this space is used to show the association of the display
part to the named metric in a formatted and colored manner
to improve the usability. This property will make it easier
to understand and interpret the values for the users when
navigating through the detailed dashboard designs. The use of
additional textual explanations is not very common, but exists
in the security visualization domain. For example, including
human readable explanations of the patterns was included by
Tri and Dang [28] to improve the understandability of the
models.

The resulting visualization system consists of multiple
dashboards that are fragmented based on the logical group-
ing of metrics and ordered based on some logical flow of

25870 VOLUME 9, 2021



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

FIGURE 2. Multi-project multi-phase vulnerability scan results.

information. In Tableau, this demonstration form is called a
‘‘story’’. The story allows navigation among multiple dash-
boards easily and allows an explicit description of each dash-
board. The aggregation of these definitions indeed forms
the story itself. Serving the metrics in a grouped manner
based on several titles would help to have more information
and to make a transition between aggregated data and the
detailed data without getting lost in details, and reveals the
relation of vulnerability data with other data parts in a clear
manner. Using the tool, the users can examine the status of
the security vulnerabilities and relationship of vulnerability
data with other data sources in a systematic manner.

A few of the proposed metrics were excluded from the
dashboard prototype based on multiple reasons. The first rea-
son was the lack of corresponding data for the case study. For
example, collecting average remediation latencies of known
vulnerabilities was out of the scope of this study. Thus, not
having the corresponding data, no visualization was included
related to remediation latencies in the prototype. Another
reason was the limited space available in the proposed
dashboard. Although some charts and tables included such
detailed information, some of the measures/metrics which
include sets of URLs were not visualized in the prototype
on purpose. Such detailed information may be served on-
demand using other ways, such as tooltips connected to blank
sheets which do not take much space in a real product.

D. EXAMINATION OF SIEM SYSTEMS FOR SIMILARITIES
AND DIFFERENCES TO HWAS-V
To further investigate the similarities and differences between
the SIEM systems and the proposed tool, six SIEM sys-
tems, Manage Engine Event Log Analyzer [29], Splunk [30],

Rapid7 InsightIDR [31], Solar Winds Log and Event Man-
ager [32], Micro Focus ArcSight [33], AlienVault [34], which
are located in four quadrants of the Gartner [35] analysis were
installed on a test machine as an extension to this study. SIEM
tools are more successful in working with continuous real-
time data. The data structure proposed in this study is not for
continuous data, but data is collected intermittently based on
the project schedules including the maintenance phases.

The results indicate that SIEM tools do not have a spe-
cific focus on the web application vulnerability scan results.
Although a few of them can integrate with some vulnerability
scanners (mostly network vulnerability scanners), they do
not provide a built-in data structure that will fit most of
the web application scanner results. Prebuilt metrics specific
to web application vulnerability scan results are very low
compared to HWAS-V or do not exist at all. A few of the
SIEM systems allow importing custom data, whichmay allow
the creation of part of the visualizations presented in this
study. However, SIEM tools do not have data joining, data
blending, and set operation features comparable to HWAS-
V, which relies on the Tableau business intelligence tool. The
detailed information regarding evaluating results for custom
visualization generation capabilities of SIEM systems and
available metrics related to web application security domain
can be found in Özdemir Sönmez and Günel’s work [36].

V. CASE STUDY AND HWAS-V
This part includes information related to the case-study data,
case-study prototype, and the description of the evaluation
study. The evaluation study consisted of using the prototype,
answering the quiz questions and evaluation of answers after-
wards. Data formation was the initial task of the case study.

VOLUME 9, 2021 25871



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

FIGURE 3. (a) Visualization mechanism top level components (b) Automatically generated IDs rotating to cover multi-project, multi-phase data c) Explicit
metric descriptions on the tooltips.

OWASP Zed Attack Proxy (ZAP) (OWASP, n.d.) automatic
web application vulnerability scanner tool was used to gener-
ate the vulnerability scanner data for this case study. OWASP
ZAP was selected, because it is a free tool and it has an
easy to use interface. Compared to other commercial and
non-commercial alternatives, it is widely used and positioned
well in the spectrum of application security testing tools (#6
among 30 tools [37]). OWASP ZAP tool is a proxy applica-
tion that combines a number of features including spider tool,
active scan, passive scan, port scan, rest API, and the report-
ing functions. For each scan type, rules are defined by the
community users (contributors), and independent evaluators
evaluate these scan rules, prior to integration with the tool.

OWASP ZAP has various modes, standard mode, safe
mode, protectedmode, and attackmode. In this study, ‘‘attack
mode’’ was selected, because this mode provides a higher
level of information related to the targeted domains. Once a
URL is pointed out; first, the tool crawls all the URLs in that
domain. Afterwards, it filters the URLs which do not belong

to the target domain. Later, it makes attacks to the selected
pages. Lastly, it provides a list of alerts associated with a list
of instances where each instance corresponds to a URL.

OWASP ZAP attack tool was utilized on three independent
domains several times to provide data related to the scanning
results and the alerts. Later, this initial data was anonymized
to some extent and combined with some data related to
other aspects of the proposed visualization system to form
a mockup dataset for demonstration purposes. The result-
ing mockup dataset includes all the data attributes shown
in Fig. 3 (a) for three independent domains for two analysis
phases.

A comparison having two groups of users such that one
group uses OWASP ZAP raw output instead of HWAS-V and
the other uses HWAS-V was not carried out. The efforts of
the group having raw data would not be a quiz, it would turn
into a data analysis study that would take hours, maybe days.
Actually, deciding the time that should be given to the group
which would be using raw data would be problematic. If a

25872 VOLUME 9, 2021



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

FIGURE 4. General information dashboard.

FIGURE 5. Vulnerability scan results dashboard.

very long time is given and a thorough investigation of the
raw data is expected, the participants would not be willing
to do that, and in the end, the majority would have opted
out or left answers blank. Thus, the validation would yield
incorrect results. If they are given a short time, this would still
not be a fair comparison, because without having the HWAS-
V tool, it is not possible to answer quiz questions which
are related to multiple projects and phases in a short time,
which would again result in blank responses. This would also

require involvement of the authors to the process to explain
the relations and order of raw data to the users.

The responses, which are given to each scan effort, the
distribution of successfully scanned and unscanned pages,
the scan durations for each scan, detailed scan results, scan
results by domains, and phases are shown in these views.

Fig. 4 to Fig. 11 illustrate different parts of the pro-
posed dashboard-based tool prototype. Fig. 4 shows the
first dashboard design which provides a top-level view of

VOLUME 9, 2021 25873



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

FIGURE 6. URL based scan details dashboard.

FIGURE 7. Alerts dashboard.

these three web applications’ security statuses. The loca-
tions where the web pages are installed are shown on a
map. This location information is useful for security analysts
who monitor security statuses distributed in large regions.

Showing the location information would point out host-
ing place-based problems for multiple web projects dis-
tributed on multiple hosts. In this view, besides location, IP,
and base URL, information related to web application size,

25874 VOLUME 9, 2021



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

FIGURE 8. Alerts and data from security protection systems.

FIGURE 9. New developments, bug fixes, repeated alerts, fixed alerts.

and the earlier testing efforts are shown in a Gantt chart.
Whereas in Fig. 5, the basic information related to the scan
results is shown, Fig. 6 provides URL based detailed scan
information. The responses, which are given to each scan
effort, the distribution of successfully scanned and unscanned
pages, the scan durations for each scan, detailed scan results,

scan results by domains, and phases are shown in these
views.

A few of the charts are repeated among multiple dash-
boards due to relevancy, for example, application size related
information is also included in Fig. 7, alerts dashboard. In this
view, it is possible to see the number of alerts for each project,

VOLUME 9, 2021 25875



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

FIGURE 10. Standards and Scan Rules.

FIGURE 11. Standards and Alerts.

the distinct number of alerted URL’s. Numerical information
based on the number of modules, the number of external
libraries, and the number of lines of code are available in this
dashboard view.

In Fig. 8, alerts information is joined with the data coming
from other existing security systems. In the environment
where the web application is installed, there would be other
protection systems, such as firewall, anti-spam, and anti-virus

25876 VOLUME 9, 2021



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

systems. In this view, the percentile of detected alerts by
the vulnerability scanner tool and other security systems is
also provided to increase understanding of the effects of vul-
nerability scans and security protection systems. The alerts
classified by scan rules are also included in this view. The
reason for presenting this information together is due to the
fact that, some of the scan rules may be associated with
protection systems due to their direct relation to the threats.
For example, some threats are naturally better covered by
firewalls, whereas some others by anti-virus systems.

When the sets of alerts from one phase are compared with
sets of alerts from other phases through set operators, it is pos-
sible to find out sets of repeated alerts from the previous phase
and fixed alerts from earlier phases for each project/domain.
This will provide meaningful information related to the over-
all security status and efforts given for the web application
concerning security. To empower the dashboard, the number
of security-related new developments and bug fixes were
also included in this view as shown in Fig. 9. In the data
structure, all new developments and bug fixes are associated
with a URL page. When the new development or bug fix
is not directly related to a URL page, then the base URL
can be used to obey the provided data structure. Typically,
as mentioned before, web application vulnerability scanners’
working mechanisms obey the black-box testing principals.
Providing the secondary information selected for this study
as part of the data structure would require internal knowl-
edge for the application and project development process.
If the mentioned secondary information, which would exist
in a white-box testing environment, such as the information
related to the application size, modules and project develop-
ment process, then corresponding metrics will be available
for the users. If such data is not available, HWAS-Vwill work
with visualizing fewer metrics (the metrics related to non-
existent data will always be blank), but overall data structure
and screens will not be affected..

Fig. 10 shows the associations of scan rules to OWASP
top ten 2004, OWASP top ten 2007, WASC 24(+2), and the
CWE standards. In order to associate the scan rules to the
case study data, web resources were used. These associations
were stored as part of the data structure. The associations
prepared for the case study do not cover all alert types and
scan rules. Fig. 11 shows the distribution of the alerts to
the OWASP, CWE, andWASC standards. Compatibility with
the standards is valuable for most of the projects due to
regulations or other obligations. Knowing the alerts related
to the well-known vulnerabilities and working on them using
recommended best practices would eventually end up with
better security for web applications.

Using the case study data and outputs, a validation study
was conducted. The participants of this validation study were
recruited using authors’ social and professional contacts. The
characteristics of the participants are shown in Table 9. The
aim of the study was described briefly to each participant
while sharing a paper copy of the quiz and the survey to
enable them to quickly determine if they are able or willing

TABLE 9. Expert evaluation participant characteristics.

to assist the study. Later, electronic versions of the quiz and
survey were shared to collect actual data. As described in the
process description part, the validation study includes a quiz
that should be answered using the HWAS-V. After this quiz,
a short survey was conducted to query the practicality, effi-
ciency, decision informing, and difference detection attributes
of the proposed system. The quiz questions and the number
of correct and incorrect answers are presented in Table 10.
Numerical evaluation results achieved related to HWAS-V
features are provided in Table 11.

One-tailed t-test was used to test the significance of the sur-
vey outputs. The hypothesis was ‘‘The applicants found that
the proposed tool was more than ‘‘Helpful’’ (numeric value
=3 in Likert scale)’’ for the chosen measurements, namely
practicality, efficiency, decision informing, and difference
detection. The p results were 0.16, 0.78, 0.01, and 0.01 for
practicality, efficiency, decision informing, and difference
detection properties, respectively. Considering a critical value
of 0.05, the evaluation results show that there is enough
evidence to infer that "Decision Informing" and "Difference
Detection" properties of the proposed design is significantly
greater than ‘‘Helpful’’ according to the users. However, the t-
test fails to reject the null hypothesis that the mean is 3 for
‘‘Practicality’’, and ‘‘Efficiency’’. Their means were over the
‘‘Slightly Helpful’’ region. According to the authors, the par-

VOLUME 9, 2021 25877



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

TABLE 10. Evaluation questions and results.

TABLE 11. Summary of feature T-test results.

ticipants were quite successful in answering a relatively com-
plicated set of questions with numerous comparisons and a
high level of decision information in a reasonable time.

VI. USAGE SCENARIOUS FOR DIFFERENT ROLES
In this section, the demonstration of the usage of the tools for
six different roles is made through flowcharts in Fig. 12 and
Fig. 13. The selected roles include executives, developers,
project managers, network/system administrators, security

auditors, and security analysts. All of these roles have their
own level of interest in the vulnerability data and their own
tasks and duties. The designed system allows conducting
these tasks in the most efficient manner. The majority of
these roles can achieve their specific purposes by using at
most two tabs from the visualization system. The project
manager and executive have to deal with three different dash-
boards. This shows that although the number of graphics
and metrics is very high, the overall design results in the

25878 VOLUME 9, 2021



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

FIGURE 12. Workflow for different user prototypes- Part1.

efficient processing of vulnerability data. In fact, although
the provided vulnerability data is very detailed and more
connected with other project information, web application
vulnerability related tasks became very straightforward for all
roles due to grouping, separation, and ordering of the metrics
and corresponding visualizations.

• Executive: ‘‘General Information’’ dashboard
• Developer: ‘‘URL based Scan Details’’ dashboard
• Project Manager: ‘‘Alerts’’ dashboard, ‘‘New develop-
ments, bug fixes, repeated alerts, fixed alerts’’ dashboard

• Network/System Admin: ‘‘Alert by Alert Types’’ dash-
board, ‘‘Data from Security Systems’’ dashboard

• Security Auditor: ‘‘Standards and Scan Rules’’ dash-
board, ‘‘Standards and Alerts’’ dashboard

• Security Analyst: ‘‘Vulnerability Scan Results’’

VII. DISCUSSION
This study examined common outputs of web application
security vulnerability scanner tools and provided a data
structure that is further used during the definition of a
set of metrics and measures. New metrics were defined

VOLUME 9, 2021 25879



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

FIGURE 13. Workflow for different user prototypes—Part 2.

by combining the initial set of standard web applica-
tion security metrics with possible effects of secondary
data sources which may be originated from the develop-
ment efforts, web application properties, or the dynamics
of the system environment. A case study was presented

showing the visualizations based on data generated using
OWASP Zed Attack Proxy (ZAP) tool together with some
user-generated sample data as an improvement to the
existing web application security vulnerability reporting
systems.

25880 VOLUME 9, 2021



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

FIGURE 14. A conceptual model to form the proposed data structure.

Few studies focus on the visualization of web application
vulnerability scan results in the security visualization domain
[14]. The only existing study which targets web application
security black-box test results enables visualization of statis-
tical measures. The measures/metrics proposed in this study
would enable a broader perspective of the security status for
various stakeholders. More studies are required in this area to
empower an extensive comparative analysis for this field.

Contributions of this study include a new dashboard tool
for visualizing vulnerability scan results based on a unique
data structure formed by combining multiple data sources.
Using the phasing structure allows combining these mul-
tiple data sources. The design was developed through the
use of Tableau software. Tableau dashboard designs can
be viewed through Tableau Public, Tableau Desktop, and
Tableau Reader applications. They may also be integrated
with any web application which allows frame-based HTML
pages. Using Tableau Public will not be appropriate for view-
ing the web vulnerability scanner results for security reasons.
However, Tableau Reader and Tableau Desktop may be more
adequate to access HWAS-V. The secondary contribution of
this work is the list of metrics/measures that the tool presents.
The paper also presents a case study and the validation efforts.

Some of the proposed metrics/measures were left out dur-
ing the prototype design. Collecting information related to the
average remediation latencies for each alert type was left as
future work. Similarly, the classification of the alerts based on
their effects on sensitive information, their impacts on busi-
ness, and their relation to the existing vulnerable components
was also left out.

The main limitation of this study is the use of OWASP
Zed Attack Proxy tool for the case study. The proposed sys-
tem was not tested with other vulnerability scanner outputs.
The list of available attributes may change slightly using
other vulnerability scanners. The proposed metrics provide
information related to the various aspects of web application
security. It enables monitoring and comparing independent
analyses for multiple projects. It is not limited to the raw
outputs of the vulnerability scanner. On the contrary, it serves
a quite large number of metrics and measures. However, there

are some concepts which the proposedmetrics are not directly
related.

The web application security-related factors which are not
measured with the proposed metrics/measures are:

• Tool efficiency
• Number of false positives
• Number of false negatives
• Security economics
• Cost to fix
• The success of security education/certification
• Defect injection ratio
• The success of code analysis
• Defect detection ratio during code analysis
• The success of the test
• Defect detection ratio by testers

In order to measure tool efficiency, ZAP results should be
compared to manual inspection or similar results or should
be compared with the results of other tools. However, such
a comparison, thus, measuring the tool efficiency, was not
in the scope of this work. In order to measure the security
economics, various other data types, such as precaution costs,
personnel costs and education costs should be associated with
the ZAP data. This association, and, thus, security economics
of web applications was not in the scope of this work. The
success of security education was also completely outside the
scope. Presenting the success of the users of the tool would
require a comparison among multiple users, or a test project
with known defects, which allows measuring the success of
the users.

During the study, the Tableau software was evaluated to
some extent for its suitability to develop a dashboard based
on data coming from multiple sources and showing a large
number of metrics in association with each other. The results
showed that the software was a proper choice to design and
develop complex security dashboards with feasible effort and
time.

As mentioned previously, due to having a dashboard
design, and including quite a large number of metrics,
HWAS-V can be considered as a Security Information and

VOLUME 9, 2021 25881



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

FIGURE 15. Data structure and attributes of the proposed model.

Event Management (SIEM) tool and can be compared to
them. Gartner [35] divided the SIEM products into four quad-
rants; Leaders, Challengers, Visionaries, and Niche Players.
Based on this categorization HWAS-V can be located in the
Niche players region due to its niche focus area, vulnerability
scan results of black-box vulnerability scanners.

A critical factor that differentiates the HWAS-V from the
SIEM tools is the decision of joining project life cycle related
information with the vulnerability scan results. This differ-
entiation also exists due to integrating the vulnerability scan
results with multiple security standards, not just one, and
having a built-in structure allowing comparison of vulnera-
bility scan results in multiple phases collected intermittently
due to set operations. HWAS-V has a project management

perspective. It aims to provide a way to monitor the security-
related progress, such as new developments and bug fixes
associated with previous alerts that do not commonly exist
in the SIEM systems.

Investigation results indicate that SIEM tools and the pro-
posed web application vulnerability visualization tool are
prominently different, since both their intended purposes and
features do not overlap. The intended purpose of SIEM tools
is to provide ways to collect data, to analyze data in real-
time, generate compliance and regulatory reports, to correlate
data and to find out indicators of events, and to present these
findings. However, the intended purpose of HWAS-V is to
provide an efficient way to examine present, past, and recent
vulnerability scan results that are coming from black-box

25882 VOLUME 9, 2021



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

tests for one or more projects for the decision informing and
difference detection purposes.

VIII. CONCLUDING REMARKS
This paper presented a new visualization study focusing on
web application vulnerability scanner results. The visualiza-
tion supports a large set of measures/metrics. It integrates the
vulnerability scanner data with some secondary data sources.
In this way, it provides both a technical view and amanagerial
view. A visualization tool called HWAS-V was developed
(available under this name on GitHub) and demonstrated to
the participants, who then evaluated the tool.

The results indicate that the proposed design can help ana-
lysts and managers due to its ‘‘decision informing’’ and ‘‘dif-
ference detection’’ capabilities. Its level of ‘‘Efficiency’’ and
‘‘Practicality’’ were, on the other hand, questionable. These
were in the ‘‘Slightly Helpful’’ range based on the validation
results. The large number of metrics and the large number of
charts distributed to eight interconnected dashboards might
affect the level of ‘‘Efficiency’’ and ‘‘Practicality’’ of the
proposed design. A lighter version of the proposed design
with a smaller number of charts and metrics might have
different results.

In the authors’ best knowledge, dashboard security visu-
alization systems with a set of metrics/measures involving a
specific user interaction with precise identification of each
metric in the displays via tooltips is unique to this study,
which has not been used in security visualization systems
before. Precise identification of the metrics will increase the
usability of the proposed system.

The system will provide a broad perspective of the security
status of one ormore projects. It also allows presenting results
from subsequent analyses made by automatic web security
analysis tools and comparison among them. Automatic com-
parison of subsequent scans will also enable understanding
if there is a barrier that prevents proper scanning in a spe-
cific vulnerability analysis session. The proposed system was
demonstrated using data generated by the ZAP tool. Incor-
porating other automated web vulnerability scanner results
seems like a logical direction for future research.

APPENDIX
A. A CONCEPTUAL MODEL TO FORM THE PROPOSED
DATA STRUCTURE
In this part a conceptual model presenting possible integra-
tions of different systems to form the proposed data structure
is presented. The user need not adhere to these sample soft-
ware products. They may use manual ways or replace some
software with other alternatives.

B. DATA STRUCTURE USED AND PROPOSED IN THIS
STUDY
The subparts of these groups and their relationships are pro-
vided in Figure 15. DomainProject records can be manually
inserted into the database once for each web application
project. Phase table stores the records that define each vul-

nerability scan phase and can be manually entered when a set
of scan results are uploaded to the system. ApplicationProper-
ties records can also be entered manually as new phases, i.e.,
new vulnerability scans, occur. The values in this tablemay be
static or may change if the size and/or components of the web
project changes. VulnerabilityNewDevelopment and Vulner-
abilityBugFix tables contain project development’s related
data. Similar to ApplicationProperties records, these records
can be created either manually or automatically, if integration
is possible. Some task management tools, such as JIRA may
allow querying the number of task records belonging to each
category between the phase start and end dates. AlertMas-
ter, ScanRule and ScanRuleAlert relation tables hold the
metadata. This part contains the only tool dependent data
part of the proposed visualization tool. Each vulnerability
scanner has its own set of scan rule names and corresponding
alert names. However, according to the general state of the
art, scan rules and alerts always exist. If the user wants to
use other scanner tools, then corresponding metadata should
be created. Once this metadata is created, corresponding
records that hold their relationships to the Classifications
and the Standards should also be entered to the Standards
and Classifications tables. The structure of the main table,
Alerts table, is very generic indeed, holding the id, associ-
ated URL, and phase_ID of the alert found. Thus, it should
not differ much from one tool to another. The execution of
the proposed tool mainly depends on having the metadata
definitions, alerts data, and the temporal data which defines
the application/project properties independent of the scanner
tool. The proposed structure can be used for scan results
from different scanners, as long as the metadata prepared for
each scanner has consistent names for the same alerts/scan
rules and different names for different alert/scan rules without
causing any collision and conflict.

REFERENCES

[1] K. A. Demir, ‘‘A survey on challenges of software project management,’’ in
Software Engineering Research and Practice. Las Vegas, NV, USA: Stylus
Publishing, 2009.

[2] B. Molnar and A. Tarcsi, ‘‘Architecture and system design issues of con-
temporary web-based information systems,’’ in Proc. 5th Int. Conf. Softw.,
Knowl. Inf., Ind. Manage. Appl. (SKIMA), Benevento, Italy, Sep. 2011,
pp. 1–8.

[3] Imperva. The State of Web Application Vulnerabilities in 2019. Accessed:
Jan. 23, 2020. [Online]. Available: https://www.imperva.com/blog/the-
state-of-vulnerabilities-in-2019/

[4] Web Application Security Testing Fundamentals. (2021). Software Test-
ing Tips and Tricks. Accessed: Jan. 15, 2021. [Online]. Available:
https://www.softwaretesttips.com/web-application-security-testing/

[5] Acunetix. Acunetix. Accessed: Jan. 8, 2019. [Online]. Available:
https://www.acunetix.com/

[6] Netsparker | Web Application Security Scanner. Netsparker. Accessed:
Jan. 8, 2019. [Online]. Available: https://www.netsparker.com/

[7] OWASP. The OWASP Foundation. Accessed: Nov. 5, 2018. [Online].
Available: https://www.owasp.org/index.php/Main_Page

[8] Portswigger. Portswigger Web Security-BurpSuite. Accessed: Jan. 8, 2019.
[Online]. Available: https://portswigger.net/

[9] O. Romania. OWASP Zed Attack Proxy. Accessed: May 20, 2018.
[Online]. Available: https://www.owasp.org/images/9/96/OWASP_2014_
OWASP_ROMANIA.pdf

VOLUME 9, 2021 25883



F. Özdemir Sönmez, B. Günel Kiliç: Holistic Web Application Security Visualization

[10] M. Bingham, A. Skillen, and A. Somayaji, ‘‘Even hackers deserve usabil-
ity: An expert evaluation of penetration testing tools,’’ in Proc. 9th Annu.
Symp. Inf. Assurance, Albany, NY, USA, 2014, pp. 1–95.

[11] S. Chiasson, R. Biddle, and A. Somayaji, ‘‘Even experts deserve usable
security: Design guidelines for security management systems,’’ in Proc.
Symp. Usable Secur. Privacy (SOUPS) Workshop Usable e Secur. Privacy
(SOUPS) Workshop Usable IT Secur. Manage., 2007, pp. 1–4.

[12] J. R. Nurse, S. Creese, M. Goldsmith, and K. Lamberts, ‘‘Guidelines
for usable cybersecurity: Past and present,’’ in Proc. 3rd Int. Workshop
Cyberspace Saf. Secur. (CSS), Milan, Italy, Sep. 2011.

[13] F. Özdemir Sönmez, ‘‘Security visualization infrastructures, techniques,
methodologies for improved enterprise security,’’ Ph.D. dissertation, Grad-
uate School Inform., METU, Ankara, Turkey, 2019.

[14] F. Ö. Sönmez and B. Günel, ‘‘Security visualization extended review
issues, classifications, validation methods, trends, extensions,’’ in Security
and Privacy Management, Techniques, and Protocols. Hershey, PA, USA:
IGI Global, 2018, pp. 152–197.

[15] T. T. Dang and T. K. Dang, ‘‘An extensible framework for Web application
vulnerabilities visualization and analysis,’’ in Future Data and Security
Engineering. Ho Chi Minh City, Vietnam: Springer, 2014, pp. 86–96.

[16] H. Assal, S. Chiasson, and R. Biddle, ‘‘Cesar: Visual representation of
source code vulnerabilities,’’ in Proc. IEEE Symp. Vis. Cyber Secur.
(VizSec), Baltimore, MD, USA, Oct. 2016, pp. 1–8.

[17] J. R. Goodall, H. Radwan, and L. Halseth, ‘‘Visual analysis of code
security,’’ in Proc. 7th Int. Symp. Visualizat. for Cyber Secur. (VizSec),
New York, NY, USA, 2010, pp. 46–51.

[18] L. Harrison, R. Spahn,M. Iannacone, E. Downing, and J. R. Goodall, ‘‘NV:
Nessus vulnerability visualization for theWeb,’’ in Proc. 9th Int. Symp. Vis.
Cyber Secur., 2012, pp. 25–32.

[19] M. Alsaleh, A. Alarifi, A. Alqahtani, and A. Al-Salman, ‘‘VisualizingWeb
server attacks: Patterns in PHPIDS logs,’’ Secur. Commun. Netw., vol. 8,
no. 11, pp. 1991–2003, 2015.

[20] T. T. Dang and T. K. Dang, ‘‘Visualizing Web attack scenarios in space
and time coordinate systems,’’ in Transactions on Large-Scale Data-and
Knowledge-Centered Systems XVI. Ho Chi Minh City, Vietnam, 2014,
pp. 1–14.

[21] D. Gugelmann, F. Gasser, B. Ager, andV. Lenders, ‘‘Hviz: HTTP (S) traffic
aggregation and visualization for network forensics,’’ in Proc. 2nd Annu.
DFRWS Eur., 2015, pp. S1–S11.

[22] Z. Kan, C. Hu, Z. Wang, G. Wang, and X. Huang, ‘‘NetVis: A network
security management visualization tool based on treemap,’’ in Proc. 2nd
Int. Conf. Adv. Comput. Control, Mar. 2010, pp. 18–21.

[23] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, ‘‘Why don’t
software developers use static analysis tools to find bugs?’’ in Proc.
35th Int. Conf. Softw. Eng. (ICSE), San Francisco, CA, USA, May 2013,
pp. 672–681.

[24] Zaproxy. ZAP OWASP Zed Attack Proxy. Accessed: Jan. 8, 2019. [Online].
Available: https://www.zaproxy.org/

[25] A. Meneely, B. Smith, and L. Williams, ‘‘Validating software metrics: A
spectrum of philosophies,’’ ACM Trans. Softw. Eng. Methodol., vol. 21,
no. 4, p. 24, 2013.

[26] J. Nielsen, 10 Usability Heuristics for User Interface Design, Nielsen
Norman Group, Fermont, ON, Canada, 1995.

[27] D. G. Murray, Tableau Your Data!: Fast and Easy Visual Analysis With
Tableau Software. Indianapolis, IN, USA: Wiley, 2013.

[28] D. T. Tri and T. K. Dang, ‘‘Security visualization for peer-to-peer
resource,’’ Int. J. Comput. Sci. Eng., vol. 1, no. 2, pp. 47–55, 2009.

[29] ManageEngine. 19 9 2018. Accessed: Sep. 19, 2018. [Online]. Available:
https://www.manageengine.com/

[30] Splunk. (Jul. 15, 2013). JQuery Sparklines. Accessed: Aug. 7, 2018.
[Online]. Available: https://omnipotent.net/jquery.sparkline

[31] Rapid7. InsightIDR. Accessed: Sep. 19, 2018. [Online]. Available:
https://www.rapid7.com/products/InsightIDR

[32] Solarwinds. Solve Your Toughest IT Management Problem, Today.
Accessed: Sep. 19, 2018. [Online]. Available: https://www.
solarwinds.com/

[33] MicroFocus. ArcSight Enterprise Security Manager. Accessed:
Sep. 19, 2018. [Online]. Available: https://software.microfocus.com/en-
us/products/siem-security-information-event-management/overview

[34] AlienVault. AlienVault Unified Security Management. Accessed:
Sep. 19, 2018. [Online]. Available: https://www.alienvault.com/products

[35] M. Nicolett and K. M. Kavanagh, ‘‘Magic quadrant for security
information and event management,’’ Gartner, Stamford, CT, USA,
Tech. Rep. G00246886, 2013.

[36] F. Ö. Sönmez and B. Günel, ‘‘Evaluation of security information and
event management systems for custom security visualization generation,’’
in Proc. Int. Congr. Big Data, Deep Learn. Fighting Cyber Terrorism
(IBIGDELFT), Dec. 2018, pp. 38–44.

[37] IT Central Station. (2020). Application Security Testing (AST).
Accessed: Dec. 1, 2010. [Online]. Available: https://www.itcentralstation.
com/categories/application-security-testing-ast

[38] G. A. Campbell and P. P. Papapetrou, Sonarqube in Action, Manning
Publications Co., Greenwich, CT, USA, 2013.

[39] Parasoft. Accessed: May 20, 2018. [Online]. Available: http://www.
parasoft.com/

[40] D. Vitek, Auditing Code for Security Vulnerabilities with CodeSonar.
Boston, MA, USA: IEEE, 2016.

[41] N. Imtiaz, A. Rahman, E. Farhana, and L. Williams, ‘‘Challenges with
responding to static analysis tool alerts,’’ in Proc. IEEE/ACM 16th
Int. Conf. Mining Softw. Repositories (MSR), Montreal, QC, Canada,
May 2019, pp. 245–249.

FERDA ÖZDEMIR SÖNMEZ (Member, IEEE)
received the B.Sc. degree in electrical and elec-
tronics engineering, and the M.Sc. and the Ph.D.
degrees in information systems from Middle East
Technical University (METU), Ankara, Turkey,
in 1997, 2012, and 2014, respectively. After
receiving her B.Sc. degree, she worked in the pri-
vate sector for 18 years as a Software Special-
ist, a Software Development Consultant, a Project
Manager, and an ITManager. She has been holding

the PMP degree, since 2009. She worked on projects were mainly in the areas
of e-government and telecommunications. She is currently a Postdoctoral
Researcher with the Institute for Security Science and Technology, Imperial
College, London, U.K. Her research interests include security visualization,
security requirements engineering, and blockchain security.

BANU GÜNEL KILIÇ (Member, IEEE) received
the B.Sc. degree (Hons.) in electrical and elec-
tronics Engineering from Middle East Technical
University (METU), Ankara, Turkey, in 2000,
the M.Sc. degree (Hons.) in communication sys-
tems and signal processing from the University
of Bristol, U.K., in 2001, and the Ph.D. degree
in computer science from the Queen’s University
of Belfast, U.K., in 2004. From 2004 to 2010,
she worked as a Postdoctoral Researcher with the

Center for Communication Systems and Signal Processing, University of
Surrey, U.K. She is currently an Associate Professor with the Department of
Information Systems, METU Graduate School of Informatics. Her research
interests include signal processing, social network analysis, and security and
surveillance.

25884 VOLUME 9, 2021


