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ABSTRACT The current developed friction models are basically based on the assumption of the normal
forces exerted between the contact surfaces known in advance, less work has been done for closed-form
(i.e., analytic) modeling in complex mechanical systems where the normal forces vary greatly over time.
In this paper, the closed-form representations of friction forces in mechanical systems are newly derived in
a way of dynamics. The Udwadia-Kalaba equation is first used to calculate the normal force exerted by the
contact surface in mechanical system. The friction force is then calculated via existing friction models. Such
closed-form expressions of friction forces contain both the magnitude and direction at any instant of time,
even as the normal force is nonconstant. The novel representations offer an effective way for analytically
expressing friction force in dynamical systems, which makes it possible for accurate simulation and control
design of dynamical systems with non-negligible friction forces.

INDEX TERMS Friction force, closed-form modeling, mechanical systems, robotics.

I. INTRODUCTION
Friction was studied extensively in classical mechanical
engineering and there has lately been a strong resurgence
driven by strong engineering needs in a wide range of
industries, especially for the control engineering. Friction
is highly nonlinear and may result in steady state errors,
limit cycles, and poor performance in control engineering [1].
To eliminate the control and simulation errors caused by
friction force in dynamical systems, explicit closed-form
representations of friction force in mechanical system are
deeply required.

The dominant friction phenomena that have been modeled
generally include stiction, Coulomb friction, viscous friction,
Stribeck effect, asymmetries and position dependence etc.
Different friction models may capture different friction
phenomena. Rather than the classical friction models (i.e.,
the Coulomb friction model and the stiction model), much
effort has been put on developing the extended friction
models in mechanical systems for control engineering. Plenty
of friction models were developed based on experiments and
mathematical derivations [2]–[9], include the well-known
Dahl model, LuGre model, Leuven model and the General-
ized Maxwell Slip model, etc. Friction models are generally
classified into two groups, the static friction models and
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the dynamic friction models. New research on developing
friction models is still ongoing, which either focuses on
the effectiveness or governing more friction effects, see
e.g., [10]–[12]. There are also many researches on parameter
identification and model improvement. It is shown that most
of the current known friction models (static or dynamic) are
based on the knowledge of normal forces exerted between the
contact surfaces. Reference [13] offered one representation
of friction for planar objects, which models the reaction
forces generated by a point of contact. However, when it
is generalized to three-dimensional rigid bodies, difficulties
arise.

Although much effort has been done on obtaining the
friction models for mechanical systems, nearly all of the
work is approximate in nature, that is, they consider the
normal forces exerted between the contact surfaces being
known in advance. This leads the applications of such friction
models hardly to avoid using constant normal forces, which
happened even in some nonlinear mechanical systems (see,
e.g., [14], [15]). What is more, the absence of the closed-form
friction models in control design area costs much effort on the
research of either model-based or non-model-based friction
compensation [16]–[21], sensor-based or nonsensor-based
normal forces evaluation/prediction [22]–[24] and some
ingenious solutions through numerical approaches [25]–[27].
We stress that the processes of the above researches are
rather successful. Nevertheless, analytical friction models
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may simplify such work for accurate system simulation and
control design.

Literature reviews showed that little work has been done on
closed-form friction force modeling for complex (i.e., non-
block-simple) mechanical systems where the normal forces
being nonconstant. The current literature, takes closed-form
friction force modeling problems in a quite different view,
i.e., from the view of dynamics, and thus makes it possible
to model closed-form friction forces for any constrained
mechanical system.We take the proposed approach as an ade-
quate supplement to the current known friction models. By
friendly combination with the current known friction models,
the literature succeeds to provide the closed-form expressions
of friction force in constrained mechanical systems. The
closed-form expressions are given not only for the classic
friction models, but also for the extended friction models.
Such closed-form expressions can be used for system design
and simulation wherever there is non-negligible friction force
presented in a mechanical system, no matter whether the
normal force exerted between the contact surfaces is constant
or not. With the adequate supplement to the current known
friction models, the literature may propose a new way for
doing accurate friction modeling and applications.

II. THE UDWADIA-KALABA EQUATION
Consider a discrete mechanical system whose configuration
is described by the coordinate q =

[
q1 q2 · · · qn

]T
∈ Rn,

thus the generalized velocity q̇ =
[
q̇1 q̇2 · · · q̇n

]T
∈ Rn, and

the generalized acceleration q̈ =
[
q̈1 q̈2 · · · q̈n

]T
∈ Rn. Suppose the system is under a resultant external force
Q(q̇, q, t). we have

M (q, t)q̈ = Q(q̇, q, t), (1)

whereM (q, t) = MT (q, t) ∈ Rn×n > 0 is the mass matrix.
The above system without imposing any additional con-

straints is called an unconstrained system [28]. Now suppose
the unconstrained system is subjected to a set of constraints
in the matrix form of

A(q, t)q̇ = c(q, t). (2)

In addition, the virtual displacement δq ∈ Rn, which lies in
the null space formed by A(q, t), is governed by

A(q, t)δq = 0. (3)

The presence of the constraints in (2) will apply additional
constraint force Qc, so the equation of motion of the
constrained system is then

M (q, t)q̈ = Q(q̇, q, t)+Qc, (4)

The constraint force Qc is to be determined, which is one
of the main objectives in constrained mechanical system
modeling.
Remark 1: The constraints in (2), in general, can either

be ideal or nonideal. Ideal constraints will generate ideal
constraint forces (all the forces that subject to D’Alembert’s

Principle), and nonideal constraints will generate nonideal
constraint forces (forces that defy D’Alembert’s Principle,
e.g., friction force, electro-magnetic force, etc.). Thus, if there
are both ideal and nonideal constraints present in the system,
we will have

Qc = Qcid+Q
c
nid (5)

whereQcid is the ideal constraint force andQ
c
nid is the nonideal

constraint force.
Reference [29] extended the D’Alembert’s Principle to

include nonideal constraints. For any virtual displacement δq
subjected to (3), the total work W done by the constraint
forces due to nonideal constraints at each instant of time t
is such that W = δqTC , where C(q, q̇, t) ∈ Rn is a known
vector that may be determined for the specific dynamical sys-
tem under consideration through experimentation, analogous
with other systems, or otherwise.

Taking the time derivative of the (first order) constraint (2),
we have the following second order form

A(q, t)q̈ = b(q̇, q, t), (6)

where

b(q̇, q, t) := ċ(q̇, q, t)−
(
d
dt
A(q̇, q, t)

)
q̇. (7)

It has been shown that [29]

Qcid (q̇, q, t) = M
1
2 (q, t)B+(q, t)(b(q̇, q, t)−A(q, t)

×M−1(q, t)Q(q̇, q, t)), (8)
c
nid (q̇, q, t) = M

1
2 (q, t)(I−B+(q, t)B(q, t))

×M−
1
2 (q, t)C(q̇, q, t), (9)

where B(q, t) := A(q, t)M−
1
2 (q, t) and ‘‘+’’ denotes the

generalized Moore-Penrose inverse. Thus the closed-form
expression of the equation of motion that governs the
evolution of the constrained system is

M (q, t)q̈ = Q(q̇, q, t)+M
1
2 (q, t)B+(q, t)

×(b(q̇, q, t)−A(q, t)M−1(q, t)Q(q̇, q, t))

+M
1
2 (q, t)(I−B+(q, t)B(q, t))

×M−
1
2 (q, t)C(q̇, q, t). (10)

This is the Udwadia-Kalaba equation for the system that is
subject to both ideal and nonideal constraints.
Remark 2: The constraint forces in (8) and (9) are shown

in closed-form, without referring to the Lagrange multiplier.
In addition, the Udwadia-Kalaba equation is applicable to all
holonomically and non-holonomically constraints.
Remark 3: Equation (9) shows the closed-form expression

of Qcnid based on C(q̇, q, t). However, the vector C(q̇, q, t) is
case-dependent and may need additional effort to obtain. In
addition, besides friction force, the nonideal constraint force
may include other forms of force. Therefore, Qcnid in (9) may
not serve the purpose of expressing the friction force.Wemay
need to take a deeper look at the force distribution on the
constraint surface.
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III. THE FORCE DIAGRAM
For the mechanical system (10), the constraint surface is
governed by (2). At time t , assume the contact point with the
constraint surface is O (Figure 1). It moves at a generalized
velocity q̇(t), which is the actual velocity, among all possible
velocity. The actual velocity q̇(t) is tangent to the constraint
surface.

FIGURE 1. Mechanical system and the constraint surface.

Assume rank(A) ≥ 1. Q can be decomposed into two
orthogonal components suggest that ( [30], see the theorem
in Appendix A)

Q(q̇, q, t) = Qp(q̇, q, t)+Qt (q̇, q, t), (11)

where

Qp(q̇, q, t) := A+(q, t)A(q, t)Q(q̇, q, t), (12)

Qt (q̇, q, t) := (I−A+(q, t)A(q, t))Q(q̇, q, t). (13)

Here Qp ∈ R(AT ) is perpendicular to the constraint surface
and Qt ∈ N (A) is tangent to the constraint surface.
At an instant time t , the force diagram is shown in Figure 2.

The ideal constraint force Qcid , which lies in the range space
of AT , does no work under virtual displacement and thus
is perpendicular to the constraint surface (as well as q̇).
This is the normal force at the constraint surface. The
nonideal constraint forceQcnid , which does work under virtual
displacement, is tangent to the constraint surface but may
deflect a certain angle from q̇(t). Thus Qcid+Qp will be the
resultant force that is perpendicular to the constraint surface,
and Qcnid+Qt will be the resultant force that is tangent to the
constraint surface. Note that the two resultant forces work on
supplying the accelerations both perpendicular and tangent to
the constraint surface.
Remark 4: When in the special case that q̇ ≡ 0 (i.e., q̇ = 0

and q̈ = 0), we have

Qcid+Qp ≡ 0, Qcnid+Qt ≡ 0. (14)

The constraint forces, both ideal and nonideal, are generated
to prevent the system from moving. Specifically, Qt is
the force that makes the system to tend to move along
a direction tangent to the constraint surface and Qcnid is
generated to compensate Qt . If there is only friction force
present as nonideal constraint force in the system, this is
right the situation when stiction occurs. In addition, Qcid is
the ‘‘contact’’ force (i.e., normal force) between the constraint

FIGURE 2. Force diagram at the constraint.

surfaces and the system at the constraint point. With the force
diagram analyzed in this section, we start to work on friction
force next.

IV. THE CLOSED-FORM FRICTION FORCE: COULOMB
FRICTION AND STICTION
If there is friction force present in the constraint mechanical
system at the constraint point, the friction force will be
part of, or equal to, Qcnid . In this paper, we assume there is
only friction force present as nonideal constraint force in the
system.

The force diagram in last section is with n-dimensional,
the friction force in mechanical system, in general, occurs
in maximum three dimensional world. Thus we may need
a Jacobian matrix for transforming use. Define a vector
p(t) =

[
x(t) y(t) z(t)

]T
, p(t) ∈ R3 as the coordinate of

the constraint point in Cartesian system. Assume we have the
kinematic relations x = fx(q, t), y = fy(q, t), z = fz(q, t).
The Jacobian matrix is then given by

J (q, t) :=


∂fx (q,t)
∂q1

∂fx (q,t)
∂q2

· · ·
∂fx (q,t)
∂qn

∂fy(q,t)
∂q1

∂fy(q,t)
∂q2

· · ·
∂fy(q,t)
∂qn

∂fz(q,t)
∂q1

∂fz(q,t)
∂q2

· · ·
∂fz(q,t)
∂qn

 . (15)

Here J (q, t) ∈ R3×n.We assume that J (q, t) has full rank (i.e.,
rank(J (q, t)) = 3). Denote Qε the generalized force and Fε
the correspondingCartesian force, using the Jacobian matrix,
we will have the following relations

ṗ(t) = J (q(t), t)q̇(t), (16)

Qε(t) = JT (q(t), t)Fε(t), (17)

Fε(t) = (J (q(t), t)JT (q(t), t))−1J (q(t), t)Qε(t). (18)

Remark 5: For the spatial problem, the constraint point is
orientated by the Cartesian coordinate p in Cartesian system,
or equivalently orientated by the generalized coordinate q
in generalized n-dimensional space. For most mechanical
systems, we have n ≥ 3. Thus the assumption that the
Jacobian matrix J (q) is of full rank 3 can be easily achieved.

Denote Fn as the normal force at the constraint point in
Cartesian system, Ft as the tangential force at the constraint
point in Cartesian system corresponding toQt . From (8), (13)
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and (18), we have

Fn(t) := (J (q(t), t)JT (q(t), t))−1J (q(t), t)Qcid (q̇(t), q(t), t)

= (J (q(t), t)JT (q(t), t))−1J (q(t), t)

×M
1
2 (q(t), t)B+(q(t), t)(b(q̇(t), q(t), t)

−A(q(t), t)M−1(q(t), t)Q(q̇(t), q(t), t)), (19)

Ft (t) := (J (q(t), t)JT (q(t), t))−1J (q(t), t)Qt (q̇(t), q(t), t)

= (J (q(t), t)JT (q(t), t))−1J (q(t), t)

×(I−A+(q(t), t)A(q(t), t))Q(q̇(t), q(t), t). (20)

Knowing that Fn and Ft are explicitly given in closed-form,
the closed-form of Coulomb friction and Stiction can be
derived.

A. Coulomb Friction. The Coulomb friction model
describes the kinetic friction force where there is relative
motion at contact. The closed-form expression of Coulomb
friction Fc in Cartesian system can be given as

Fc(t) = −µ‖Fn(t)‖p̂(t), p̂ 6= 0, (21)

where µ is the coefficient of friction, Fn is from (19), and

p̂(t) := ṗ(t)/‖ṗ(t)‖, ṗ 6= 0 (22)

is an unit vector representing the motion direction. Using
(16), we have

p̂(t) = J (q(t), t)q̇(t)/‖J (q(t), t)q̇(t)‖, q̇ 6= 0. (23)

Throughout the paper, ‖·‖ denotes the Euclidean norm.
By (17), the closed-form generalized Coulomb friction

force expressed in the generalized coordinates will be

Qc(q̇, q, t) :=−µJT (q, t)‖Fn(t)‖
J (q, t)q̇
‖J (q, t)q̇‖

, q̇ 6=0. (24)

B. Stiction. Stiction model is to describe the static friction,
which must be overcome by an applied force before an object
can move. From the instant sliding occurs, static friction is
no longer applicable. Denote Fm as the maximum possible
stiction in Cartesian system, the magnitude of Fm will be

‖Fm(t)‖ = µs‖Fn(t)‖ (25)

where µs be the coefficient of static friction, Fn is again
from (19). Note that Fm is time variant since Fn is time
variant. Knowing that Ft in (20) is the tangential force, the
closed-form expression of the stiction in Cartesian system,
denoted as Fs, is case-wisely,

Fs(t) =

{
−Ft (t), q̇ = 0 & ‖Ft‖ ≤ ‖Fs‖
−µs‖Fn(t)‖f̂ (t), q̇ = 0 & ‖Ft‖ > ‖Fs‖.

(26)

where f̂ := Ft (t)/‖Ft (t)‖ is also an unit vector. With (13),
similar with (24), the generalized stiction expressed in the
generalized coordinates will be

Qs(t) =

{
−Qt , q̇ = 0 & ‖Ft‖ ≤ ‖Fs‖
−µsJT (q, t)‖Fn(t)‖f̂ (t), q̇ = 0 & ‖Ft‖ > ‖Fs‖.

(27)

Remark 6: One may want to combine (24) and (27)
together to express both the Coulomb friction and the static
friction. Using Qf to denote the generalized friction force,
we then have the closed-form

Qf =


−µJT ‖Fn‖p̂, q̇ 6= 0
−Qt , q̇ = 0 & ‖Ft‖ ≤ ‖Fs‖
−µsJT ‖Fn‖f̂ , q̇ = 0 & ‖Ft‖ > ‖Fs‖,

(28)

with Fn from (19).
Remark 7: Equations (24), (27) and (28) are closed-form

expressions of friction force for spatial systems. For a planar
system, the coordinates is then p = [x, y]T , the Jacobian
matrix in (15) is then become

J (q, t) =

 ∂fx (q,t)
∂q1

∂fx (q,t)
∂q2

· · ·
∂fx (q,t)
∂qn

∂fy(q,t)
∂q1

∂fy(q,t)
∂q2

· · ·
∂fy(q,t)
∂qn

 , (29)

the closed-form expressions of friction forces are still held.
Remark 8: In the special scalar case, we have J ≡ 1. Thus

we have Fn = Qcid = Qp, Ft = Qt . Define a sign function

sgn(α) :=


−1, α < 0
0, α = 0
1, α > 0.

(30)

Let v be the scalar velocity of the system motion, equation
(28) is then

Qf =


−µ‖Fn‖sgn(v), v 6= 0
−Ft , v = 0 & ‖Ft‖ ≤ ‖Fs‖
−µs‖Fn‖sgn(Ft ), v = 0 & ‖Ft‖ > ‖Fs‖,

(31)

thus the classic scalar form introduced in most textbooks.
Remark 9: With using the newly developed closed-form

normal force representations, we have the closed-form
representations of the classic friction models. We would
expect that it will not change the behaviors of the classic
friction models for some practical conditions (e.g., shape
of the contact surfaces, elastic or inelastic collision, slip
behavior of the elastic surface, etc.). However, this is out of
the scope of the current paper and may be studied elsewhere
for further verification through certain experiments.

V. THE CLOSED-FORM FRICTION FORCE: EXTENDED
FRICTION MODELS
Plenty of extended friction models, which are more accurate
in presenting the friction phenomena, are developed, e.g.,
the Dahl model, the LuGre model, etc. as referenced in the
Introduction. Most of the extended models are, interestingly,
dependent on the magnitude of the Coulomb friction, say
‖Fc‖, and/or the magnitude of maximum possible stiction,
say ‖Fm‖. However, Nearly all the current known models are
approximate in nature as they suffer from using a constant
exerted normal force.
From (21), the magnitude of the Coulomb friction is
‖Fc‖ = µ‖Fn‖ and the magnitude of the maximum stiction
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is given in (25). With (19), we have

‖Fc‖ = µ
∥∥(JJT )−1JM 1

2B+(b−AM−1Q)
∥∥, (32)

‖Fm‖ = µs
∥∥(JJT )−1JM 1

2B+(b−AM−1Q)
∥∥. (33)

Having the closed form expressions of both ‖Fc‖ and ‖Fm‖,
it is thus possible to give the closed-form expressions of the
extended friction models. We illustrate the idea by giving the
explicit expressions of the Dahl model.

The Dahl model introduced in [2] was developed for
the purpose of simulating control systems. Starting from
stress-strain curve in classical solid mechanics, Dahl modeled
the stress-strain curve by a differential equation. The model is
given in the scalar form. Let Fd be the friction force of Dahl
model, then the model takes the form of

dFd
ds
= σ

(
1−

Fd
‖Fc‖

sgn(v)
)α
, (34)

where s is the displacement, v is the relative velocity, σ is the
stiffness coefficient and α is a parameter that determines the
shape of the stress-strain curve, ‖Fc‖ is the magnitude of Fc
but in the scalar case. Fd can then be calculated by a time
domain Dahl model of

dFd
dt
=

dFd
ds

ds
dt
= σ

(
1−

Fd
‖Fc‖

sgn(v)
)α

v. (35)

The Dahl model is a generalization of ordinary Coulomb
friction and it does not capture stiction, so it is only applicable
to the case when v 6= 0.
We generalize the above parameters into a spatial case.

Denote x, y, z as the displacements along the axis of
the Cartesian system (generalization of s), thus ẋ, ẏ, ż as
the corresponding velocity (generalization of v). Similarly,
denote σx , σy, σz as the stiffness coefficient along x, y, z,
αx , αy, αz as the shape parameters along x, y, z, Fcx ,Fcy,Fcz
as the Coulomb friction along x, y, z, and Fdx ,Fdy,Fdz as the
corresponding Dahl friction force. Thus the generalized Dahl
model for spatial system is, for k = x, y, z and k̇ 6= 0,

dFdk
dt
= σk

(
1−

Fdk
‖Fck‖

sgn(k̇)
)αk

k̇. (36)

Here ‖Fck‖, the norm of Coulomb friction along each
direction, can be calculated by using (32). No matter whether
the normal force is constant or not, we have ‖Fck‖ =
‖Fc‖

‖k̇‖
‖ṗ‖ k̇ 6= 0. Here the vector p is from the vector defined

above (15). Fdx ,Fdy,Fdz in (36) can then be explicitly solved.
Thus theDahl friction force for the spatial system in Cartesian
system is Fd = [−Fdx −Fdy −Fdz]T , and the generalized
Dahl friction force is then Qd = JTFd .
Remark 10: The Dahl model is initially developed only

for one dimensional problems. We generalize the model
to be applicable to the spatial case and each direction is
taken equally as an one dimensional problem. The resultant
friction force is then gathered from all three dimensions.
Other extendedmodels relatedwithFc andFm (ormaybewith
Ft as well) can follow the same way and will no more suffer
from the assumption of the applied normal force be constant.

Remark 11: Different extended friction models may cap-
ture different friction phenomena. Since most of the extended
friction models are developed to model the dynamic
phenomenon (e.g., stick-slip friction, oscillation, viscous
friction, Stribeck effect, etc.), the proposed closed-form
representation of friction force will inherit the properties of
the employed friction model. Readers shall choose proper
friction model for capturing different friction phenomena.

VI. ILLUSTRATIVE EXAMPLES
We first employ the simple horizontal sliding block system
in Figure 3 for validating the proposed modeling approach.
Assume the mass of the block is m, then the gravity force
is −mg with g be the gravitational acceleration. An external
force F acts on the block and there is friction force f between
the block and floor. The coefficient of friction is µ. We thus
simply know that for Coulomb friction model, the normal
force Fn = mg, and the friction force f = −µmg according
to the given coordinates in Figure 3.

FIGURE 3. Horizontal sliding block system.

To validate the effectiveness of the proposed approach,
we model the normal force Fn and the friction force f by the
proposed approach. We have the system equation as:

Mq̈ = Q+Fn+f , (37)

where

M =
[
m 0
0 m

]
, q =

[
x
y

]
, Q =

[
F
−mg

]
. (38)

The constraint equation is ẏ = 0. Take the derivative to time
and write in the form of (6) as Aq̈ = 0 with A = [0 1].

No Jacobian matrix is needed as x, y are chosen to be
generalized coordinates. According to analysis in Section III
& IV, simple symbolic calculation leads to

Fn = Qcid = M
1
2

(
AM−

1
2

)+
(b−AM−1Q)

=

[
m

1
2 0

0 m
1
2

][
0

m
1
2

](
0−
[
0 m−1

] [ F
−mg

])
=

[
0
mg

]
. (39)

Thus, the friction force f = [−µmg 0]T , with the − sign
representing the direction.

VOLUME 9, 2021 31291



J. Huang et al.: Closed-Form Representations of Friction

For the sticking phase, according to (26), the friction force
is −Ft (t) when q̇ = 0 and ‖Ft‖ ≤ ‖Fs‖. And, according
to (20), the tangent force leads to

Ft (t) := (I−A+A)Q

= (I−
[
0
1

] [
0 1

]
)
[
F
−mg

]
=

[
F
0

]
(40)

Thus, the friction force f = [−F 0]T with the sign that
represents the direction. This simple case validates somehow
intuitively on the effectiveness of the proposed approach.

FIGURE 4. Two-link planar manipulator system.

We then go to the nonlinear friction problems. Consider
a two-link planar manipulator shown in Figure 4. Assume
all masses exist as point masses at the distal end of each
link, these masses are m1 and m2. Denote θ1, θ2 as rotational
displacement of the links, we then have the dynamic motion
equations of the unconstrained manipulator as [31]:

τ1 = m2l22 (θ̈1+θ̈2)+m2l1l2 cos θ2(2θ̈1+θ̈2)+(m1

+m2)l21 θ̈1−m2l1l2 sin θ2θ̇22−2m2l1l2 sin θ2θ̇1θ̇2
+m2l2g cos(θ1+θ2)+(m1+m2)l1g cos θ1 (41)

τ2 = m2l1l2 cos θ2θ̈1+m2l1l2 sin θ2θ̇21
+m2l2g cos(θ1+θ2)+m2l22 (θ̈1+θ̈2) (42)

The above equations can be written in the matrix form of (1)
with

q =
[
θ1
θ2

]
, M =

[
m11 m12
m12 m22

]
, Q =

[
h1
h2

]
, (43)

where

m11 = m2l22+2m2l1l2 cos θ2+(m1+m2)l21 , (44)

m12 = m2l22+m2l1l2 cos θ2, (45)

m22 = m2l22 , (46)

h1 = τ1+m2l1l2 sin θ2θ̇2(θ̇2+2θ̇1)−m2l2g cos(θ1+θ2)

−(m1+m2)l1g cos θ1, (47)

h2 = τ2−m2l1l2 sin θ2θ̇21−m2l2g cos(θ1+θ2). (48)

Now assume the distal end of link 2 is constrained by a
parabola-trajectory governed by y = βx2+γ . Here x, y is the
planar coordinate at the distal end of link 2,β, γ are constants.
Assume that the friction force between the distal end of link
2 and the parabola-trajectory is non-negligible. The kinetic
friction coefficient is µ and the maximum possible stiction
coefficient is µs. Note that this is quite a practical problem in
which the closed-form of friction force is hard to achieve by
any other current known methods due to the normal force is
nonconstant.

Since x = l1 cos θ1+l2 cos(θ1+θ2), y = l1 sin θ1+
l2 sin(θ1+θ2) use the generalized coordinates θ1, θ2,
the constraint will be l1 sin θ1+l2 sin(θ1+θ2)−β(l1 cos θ1+
l2 cos(θ1+θ2))2−γ = 0. Take time derivative twice, we have
the second order form constraint as in (6) with

A =
[
2β(l1 cos θ1+l2 cos(θ1+θ2))(l2 sin(θ1+θ2)

+l1 sin θ1)+l1 cos θ1+l2 cos(θ1+θ2),

2β(l1 cos θ1+l2 cos(θ1+θ2))l2 sin(θ1+θ2)

+l2 cos(θ1+θ2)
]
, (49)

b = l1 sin θ1θ̇1+l2 sin(θ1+θ2)(θ̇1+θ̇2)2

−2β(l1 sin θ1θ̇1+l2 sin(θ1+θ2)(θ̇1+θ̇2))2

−2β(l1 cos θ1+l2 cos(θ1+θ2))(l1 cos θ1θ̇21
+l2 cos(θ1+θ2)(θ̇1+θ̇2)2). (50)

From expressions of x, y, we have the Jacobian matrix

J =
[
−l1 sin θ1−l2 sin(θ1+θ2) −l2 sin(θ1+θ2)
l1 cos θ1+l2 cos(θ1+θ2) l2 cos(θ1+θ2)

]
. (51)

With the M , Q, A, b and J given above, the closed-form
expressions of the Coulomb-stiction model can be obtained
as in (28), whose closed-form is given in Appendix B. We
intendedly list the complex-in-look closed-form represen-
tations of friction force for the readers’ information, as it
might be convincing that the closed-form friction forces in
any non-block-simplemechanical systems are rather complex
and difficult to achieve by any other current known methods.
With the closed-form expressions of Coulomb friction and
stiction, the closed-form of the extended friction models can
be derived as in Section V.

We do numerical simulation by using the Coulomb-Static
friction model for illustration. The Baumgarte’s numerical
stabilization method [32] is employed to eliminate numerical
errors in simulation. For the system parameters, we choose
m1 = 1, m2 = 1, l1 = 1, l2 = 2, g = 9.8 and µ =
0.1. Assume the manipulator system is constrained by the
trajectory governed by y = 1/4 x2 (i.e. β = 1/4, γ = 0),
and the system input τ1 = 5 sin t is a periodical function of
the time t , the input τ2 = 2 is constant. The system is then
doing a reciprocating movement at the distal end of link 2,
and the normal force at the contact surface is nonconstant.
Figure 5 shows the variety of the norm of the resultant normal
force. Since the system is moving in a two dimensional space,
we show the movement and the friction force by the two
dimensions. Figure 6 (a) shows the reciprocating moving
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FIGURE 5. The norm of the normal force at the contact surface, it is
nonconstant.

FIGURE 6. Reciprocating movement of the distal end of link 2 along x
direction and the corresponding Coulomb friction force along x direction.

FIGURE 7. Reciprocating movement of the distal end of link 2 along y
direction and the corresponding Coulomb friction force along y direction.

trajectory of the distal end of link 2 along x direction, the
corresponding Coulomb friction force along the direction
is shown in Figure 6 (b). Similarly, the movement of the
distal end of link 2 and the friction force along y direction
is shown in Figure 7 (a,b). We see that the closed-form
friction force serves the system well and presents certain
stick-slip performances. For further comparison information,
normal numerical approaches (e.g., Lagrange approach with
using Lagrange multipliers) for doing system simulation with
friction force can hardly get consistent results with different
simulate steps, as they only can employ recursive normal
forces, where the cumulative error can hardly be eliminated.

VII. CONCLUSION AND PROSPECTS
By friendly combination with the current known friction
models, the literature succeeds to provide the closed-form
expressions of friction force in constrained mechanical sys-
tems. Closed-form friction models are introduced including
the classic Coulomb friction and stiction models, as well as
the extended friction models, no matter whether the normal
force exerted between the contact surfaces is constant or not.
We take the proposed modeling approach as an adequate
supplement to current known friction models, which may
open a new way for accurate friction force modeling and
applications.

Although succeeded in obtaining closed-form expressions
of friction force in constrained mechanical systems, there is
still much work to do for further research with the help of the
proposed closed-formmodels, e.g., to perform system control
design, to model and govern more friction phenomena with
nonconstant normal forces and to develop general methods
and tools for closed-form modeling of mechanical systems,
etc.

APPENDIX A
We cite the mathematical results for reference.
Theorem [30]: Assume 9 has rank r ≥ 1, it is true that

R(9T ) = R(9+) = R(9+9), N (9) = R(I−9+9),
whereR(·) andN (·) denote the range space and null space of
the designated matrix, respectively. Then any vector y ∈ Rn

can be decomposed into 9+9y, in R(9+), and (I−9+9)y,
in R(I−9+9), i.e., y = 9+9y+(I−9+9)y.

APPENDIX B
The closed-form friction force, represent casewisely, is, when
q̇ 6= 0,

Qf =
[[
−µ

(
(j1(n1b1+n2b2)+j2(n2b1+n3b2))2(b−b3)2

+(j3(n1b1+n2b2)+j4(n2b1+n3b2))2(b−b3)2
) 1
2(

((−l1 sin θ1−l2 sin(θ1+θ2))q̇1+(−l2 sin(θ1+θ2))

q̇2)2+((l1 cos θ1+l2 cos(θ1+θ2))q̇1+(l2 cos(θ1

+θ2))q̇2)2
)− 1

2
(
(−l1 sin θ1−l2 sin(θ1+θ2))

((−l1 sin θ1−l2 sin(θ1+θ2))q̇1+(−l2 sin(θ1+θ2))q̇2)

+(l1 cos θ1+l2 cos(θ1+θ2))((l1 cos θ1+l2 cos(θ1

+θ2))q̇1+(l2 cos(θ1+θ2))q̇2)
)]
;[

−µ
(
(j1(n1b1+n2b2)+j2(n2b1+n3b2))2(b−b3)2

+(j3(n1b1+n2b2)+j4(n2b1+n3b2))2(b−b3)2
) 1
2(

((−l1 sin θ1−l2 sin(θ1+θ2))θ̇1+(−l2 sin(θ1
+θ2))θ̇2)2+((l1 cos θ1−l2 cos(θ1+θ2))θ̇1+(l2 cos(θ1

+θ2))θ̇2)2
)− 1

2
(
(−l2 sin(θ1+θ2))((−l1 sin θ1−l2 sin(θ1

+θ2))θ̇1+j2θ̇2)+(l2 cos(θ1+θ2))((l1 cos θ1−l2 cos(θ1

+θ2))θ̇1+(l2 cos(θ1+θ2))θ̇2)
)]]

, (52)
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when q̇ = 0 and ‖Ft‖ ≤ ‖Fs‖,

Qf =
[[
−

((
−l1 sin θ1−l2 sin(θ1+θ2)

)(
j1(1−a21(a

2
1

+a22)
−1)h1−a1a2h2(a21+a

2
2)
−1
+j2(−a1a2h1(a21

+a22)
−1
+(1−a22(a

2
1+a

2
2)
−1)h2)

)
+
(
l1 cos θ1+l2

cos(θ1+θ2)
)(
j3((1−a21(a1+a2)

−1)h1−a1a2h2
(a1+a2)−1)+j4(−a1a2h1(a1+a2)−1+(1−a22(a

2
1

+a22)
−1))

))]
; (53)[

−

(
−l2 sin(θ1+θ2)

(
j1(1−a21(a

2
1+a

2
2)
−1)h1

−a1a2h2(a21+a
2
2)
−1
+j2(−a1a2h1(a21+a

2
2)
−1
+

(1−a22(a
2
1+a

2
2)
−1)h2)

)
+l2 cos(θ1+θ2)

(
j3((1

−a21(a1+a2)
−1)h1−a1a2h2(a1+a2)−1)+j4(−a1

a2h1(a1+a2)−1+(1−a22(a
2
1+a

2
2)
−1))

))]]
, (54)

and, when q̇ = 0 and ‖Ft‖ > ‖Fs‖,

Qf =
[[
−µs

(
(j1(n1b1+n2b2)+j2(n2b1+n3b2))2(b−b3)2

+(j3(n1b1+n2b2)+j4(n2b1+n3b2))2(b−b3)2
) 1

2
(
j1

(1−a21(a1+a2)
2h1−a1a2h2(a21+a

2
2)
−1)+j2(−a1

a2h1(a21+a
2
2)
−1)+(1−a22(a

2
1+a

2
2)
−1)h2

)(
(j1(1

−a21(a1+a2)
2h1−a1a2h2(a21+a

2
2)
−1)+j2(−a1a2h1

(a21+a
2
2)
−1)+(1−a22(a

2
1+a

2
2)
−1)h2)2+(j3((1−a21

(a1+a2)−1)h1−a1a2h2(a1+a2)−1)+j4(−a1a2h1

(a1+a2)−1+(1−a22(a
2
1+a

2
2)
−1)))2

)− 1
2
]
;[

−µs

(
(j1(n1b1+n2b2)+j2(n2b1+n3b2))2(b−b3)2

+(j3(n1b1+n2b2)+j4(n2b1+n3b2))2(b−b3)2
) 1

2
(
j3

((1−a21(a1+a2)
−1)h1−a1a2h2(a1+a2)−1)+j4

(−a1a2h1(a1+a2)−1+(1−a22(a
2
1+a

2
2)
−1))

)(
(j1(1

−a21(a1+a2)
2h1−a1a2h2(a21+a

2
2)
−1)+j2(−a1a2h1

(a21+a
2
2)
−1)+(1−a22(a

2
1+a

2
2)
−1)h2)2+(j3((1−a21

(a1+a2)−1)h1−a1a2h2(a1+a2)−1)+j4(−a1a2h1

(a1+a2)−1+(1−a22(a
2
1+a

2
2)
−1)))2

)− 1
2
]]
, (55)

where,

j1 =
((

(l1 cos θ1+l2 cos(θ1+θ2))2+(l2 cos(θ1+θ2))2
)

(
−l1 sin θ1−l2 sin(θ1+θ2)

)
−
(
(−l1 sin θ1−l2 sin(θ1

+θ2))(l1 cos θ1+l2 cos(θ1+θ2))+(−l2 sin(θ1+θ2))

(l2 cos(θ1+θ2))
)(
l1 cos θ1+l2 cos(θ1+θ2)

))((
−l1

sin θ1−l2 sin(θ1+θ2)
)2(l2 cos(θ1+θ2))2+(−l2 sin

(θ1+θ2)
)2(l1 cos θ1+l2 cos(θ1+θ2))2−2(−l1 sin θ1

−l2 sin(θ1+θ2)
)(
l1 cos θ1+l2 cos(θ1+θ2)

)(
−l2 sin

(θ1+θ2)
)(
l2 cos(θ1+θ2)

))−1
, (56)

j2 =
(((

l1 cos θ1+l2 cos(θ1+θ2)
)2
+
(
l2 cos(θ1+θ2)

)2)(
−l2 sin(θ1+θ2)

)
−
(
(−l1 sin θ1−l2 sin(θ1+θ2))(l1

cos θ1+l2 cos(θ1+θ2))+(−l2 sin(θ1+θ2))(l2 cos(θ1

+θ2))
)(
l2 cos(θ1+θ2)

))((
−l1 sin θ1−l2 sin(θ1+θ2)

)2
(
l2 cos(θ1+θ2)

)2
+
(
−l2 sin(θ1+θ2)

)2(l1 cos θ1+l2
cos(θ1+θ2)

)2
−2
(
−l1 sin θ1−l2 sin(θ1+θ2)

)(
l1 cos θ1+l2 cos(θ1+θ2)

)(
−l2 sin(θ1+θ2)

)
(
l2 cos(θ1+θ2)

))−1
, (57)

j3 =
((

(−l1 sin θ1−l2 sin(θ1+θ2))2+(−l1 sin θ1−l2

sin(θ1+θ2))2
)(
l1 cos θ1−l2 cos(θ1+θ2)

)
−
(
(−l1

sin θ1−l2 sin(θ1+θ2))(l1 cos θ1+l2 cos(θ1+θ2))

+(−l2 sin(θ1+θ2))(l2 cos(θ1+θ2))
)(
−l1 sin θ1

−l2 sin(θ1+θ2)
))((
−l1 sin θ1−l2 sin(θ1+θ2)

)2
(
l2 cos(θ1+θ2)

)2
+
(
−l2 sin(θ1+θ2)

)2(l1 cos θ1
+l2 cos(θ1+θ2)

)2
−2
(
−l1 sin θ1−l2 sin(θ1+θ2)

)(
l1 cos θ1+l2 cos(θ1+θ2)

)(
−l2 sin(θ1+θ2)

)
(
l2 cos(θ1+θ2)

))−1
, (58)

j4 =
((

(−l1 sin θ1−l2 sin(θ1+θ2))2+(−l1 sin θ1−l2

sin(θ1+θ2))2
)(
l2 cos(θ1+θ2)

)
−
(
(−l1 sin θ1−l2

sin(θ1+θ2))(l1 cos θ1+l2 cos(θ1+θ2))+(−l2

sin(θ1+θ2))(l2 cos(θ1+θ2))
)(
−l2 sin(θ1+θ2)

))
((
−l1 sin θ1−l2 sin(θ1+θ2)

)2(l2 cos(θ1+θ2))2
+
(
−l2 sin(θ1+θ2)

)2(l1 cos θ1+l2 cos(θ1+θ2))2
−2
(
−l1 sin θ1−l2 sin(θ1+θ2)

)(
l1 cos θ1+l2 cos(θ1

+θ2)
)(
−l2 sin(θ1+θ2)

)(
l2 cos(θ1+θ2)

))−1
, (59)

n1 =
1
4
(m2

22−2m22m11+m2
11+4m

2
12)
−

1
2
(
2m22

+2m11−2(m2
22−2m22m11+m2

11+4m
2
12)

1
2
) 1
2
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(m22−2m22m11+m2
11+4m

2
12)

1
2+m11

(
2m22

+2m11+2(m2
22−2m22m11+m2

11+4m
2
12)

1
2
) 1
2

−m11(2m22+2m11−2(m2
22−2m22m11+m2

11

+4m2
12)

1
2 )

1
2−m22

(
2m22+2m11+2(m2

22

−2m22m11+m2
11+4m

2
12)

1
2
) 1
2+m22

(
2m22+

2m11−2(m2
22−2m22m11+m2

11+4m
2
12)

1
2
) 1
2

+(m2
22−2m22m11+m2

11+4m
2
12)

1
2
(
2m22+2m11

+2(m2
22−2m22m11+m2

11+4m
2
12)

1
2
)
, (60)

n2 =
1
2
(m2

22−2m22m11+m2
11+4m

2
12)
−

1
2m12

(
−
(
2

m22+2m11+2(m2
22−2m22m11+m2

11+m
2
12)

1
2
)

+
(
2m22+2m11−2(m2

22−2m22m11+m2
11

+4m2
12)

1
2
))
, (61)

n3 =
1
4
(m2

22−2m22m11+m2
11+4m

2
12)
−

1
2
(
2m22

+2m11−2(m2
22−2m22m11+m2

11+4m
2
12)

1
2
) 1
2

(m22−2m22m11+m2
11+4m

2
12)

1
2+m22

(
2m22

+2m11+2(m2
22−2m22m11+m2

11+4m
2
12)

1
2
) 1
2

−m22
(
2m22+2m11−2(m2

22−2m22m11+m2
11

+4m2
12)

1
2
) 1
2−m11(2m22+2m11+2(m2

22

−2m22m11+m2
11+4m

2
12)

1
2 )

1
2+m11

(
2m22+

2m11−2(m2
22−2m22m11+m2

11+4m
2
12)

1
2
) 1
2

+(m2
22−2m22m11+m2

11+4m
2
12)

1
2
(
2m22+2m11

+2(m2
22−2m22m11+m2

11+4m
2
12)

1
2
)
, (62)

b1 = (a1n3−a2n2)(n1n3−n22)
−1((a1n3−a2n2)(n1n3

−n22)
−2
+(a2n1−a1n2)(n1n3−n22)

−2)−1, (63)

b2 = (a2n1−a1n2)(n1n3−n22)
−1((a1n3−a2n2)(n1n3

−n22)
−2
+(a2n1−a1n2)(n1n3−n22)

−2)−1, (64)

b3 = (−m2
12+m22m11)−1(h1a1m22−h1a2m12

−h2a1m12+h2a2m11), (65)
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