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ABSTRACT Scene text detection is a task that detects the position of text in natural scenes. Due to the
different sizes, arbitrary orientations, different colors of texts, as well as low contrast and resolution in the
complex background, text detection in natural scene images is very challenging. So far, the detection results
for text instances in motion blur, low-resolution images are still not satisfactory. In this paper, in order
to solve the above problems, we propose an effective and robust text detection network that combines a
state-of-the-art contrastive learning method SimCLR. Before being input to the feature extractor, the data is
augmented in different methods, and then we calculate the similarity of the extracted corresponding feature
pairs. This can significantly improve the performance of the detector in difficult conditions. We conduct
a series of experiments on the public dataset ICDAR2013, ICDAR2015 and MSRA-TD500. On the
ICDAR 2015 dataset, our method achieves F-measure of 0.840 and runs at 9.1 FPS at 720p resolution,
demonstrating that the proposed method is effective and efficient.

INDEX TERMS Scene text detection, contrastive learning, data augmentation.

I. INTRODUCTION
Text is the essential medium for the human to transmit infor-
mation, and it can be seen everywhere in natural scenes
and contains rich and vital semantic information. Therefore,
the detection and recognition of text in natural scenes could
greatly promote the image understanding and processing.
In recent years, the detection and recognition of text infor-
mation in natural scenes have gradually become one of the
most concerned research fields. As the prerequisite for text
recognition, text detection aims to locate text boundaries.
In the past ten years, many excellent methods [1]–[9] have
been proposed to detect text in natural scenes.

Traditional text detection methods are usually based on
sliding windows [2]–[4] or connected component extrac-
tion [5]–[9]. With the rapid development of deep learning,
text detection methods based on it [11]–[16] sprang up.
By training a deep neural network to extract features, instead
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of manually designing features, text detection accuracy is
greatly improved. However, due to the huge differences in text
size, orientation, color and contrast, resolution in complex
background, text detection in natural scene images is still
challenging. In particular, we find that if there is blur or
the low contrast between the text and the background, the
detection performance of the text area will be significantly
worse.

In order to cope with the above problems, we pro-
pose a text detection network based on EAST proposed by
Zhou et al. [17]. We use the commonly used VGG-16 net-
work [18] to extract multi-scale features on the input image,
and then use unpooling to enlarge the feature maps of the
highest layer and sequentially merge the feature maps of
corresponding scales. Merging different scales of features has
the advantage of decreasing the computationwhile containing
semantic information of various scales. However, there will
still be some problems. For example, this merged feature is
not effective in detecting large-size text instances, and the text
in blurry and jittery images can not be well detected. Inspired
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by self-supervised learning methods, especially SimCLR
proposed by Chen et al. [19], we solve the above problems
by performing pairwise augmentation of the image, includ-
ing random color jittering, random Gaussian blur and ran-
dom grayscale. And then, we calculate the similarity of the
extracted corresponding feature pairs. The added contrastive
learning branch effectively optimizes the accuracy of the
detection module.

Our contributions are summarized as follows:
1) We propose an end-to-end trained natural scene text

detection network. Our network architecture incorporates the
structure of EAST and contrastive learning methods, which
can make full use of multi-scale image features and sig-
nificantly improve the effect of blur and low-contrast text
detection.

2) As far as we know, the contrastive learning method is
mostly used in Natural Language Processing (NLP), image
classification and other tasks before. We apply this method to
text detection tasks and make significant improvements.

3) We conduct a series of experiments to evaluate our
model. On the ICDAR2013 dataset, our method achieves
0.904 precision, 0.888 recall and 0.896 F-measure. On the
ICDAR2015 dataset, our model achieves 0.840 F-measure
scores and run at 9.1 FPS, and on the MSRA-TD500 dataset,
it achieves 0.784 F-measure scores, which proves the effec-
tiveness and robustness of the model.

II. RELATED WORK
A. TEXT DETECTION
For a long period of time, scene text detection and recogni-
tion in natural scenes have been popular research topics in
computer vision. Researchers have investigated a number of
inspiring ideas and effective strategies [6], [16], [21]–[29].
Systematic comments and exhaustive analysis can be found in
the survey papers [30]–[32]. Previous work on text detection
can be roughly divided into two categories: the one is con-
ventional methods, extracting features of scene text manually,
which is based on sliding windows [2]–[4] or connected
components [5]–[9], and the other is based on deep learning
methods. The sliding window-based methods move a sliding
window on each position of the image to detect text. The
methods based on connected components first extract charac-
ter candidates and then perform post-processing to eliminate
non-text noise and connect those extracted candidates.

In recent years, deep learning has achieved rapid devel-
opment, and text detection algorithms based on it have
gradually become the mainstream of text detection. Further-
more, the widespread application of convolutional neural net-
works (CNN) has greatly promoted the development of text
detection [14], [21], [25], [26], [33]–[35]. Object detection
and text detection have similarities. The recently proposed
object detection methods are mainly divided into two cat-
egories: two-stage methods, which mainly rely on region
proposal network, such as regions with CNN (R-CNN) [26],
and Faster R-CNN [36]. The other is the one-stage method,

which predicts the position of the object directly, such as
YOLO [37] and SSD [38]. Regarding text as a special object,
Huang et al.[25] first proposed MSER to retrieve candi-
date texts, followed by CNN to classify text or non-text
regions. DeepText [39], based on Faster R-CNN, proposed
Inception-RPN and further optimize it to adapt to text detec-
tion. Tian et al. [14] designed Connectionist Text Proposal
Network (CTPN), which connects Long Short TermMemory
networks (LSTM) to CNN, predicts a series of small-scale
text components and splices text lines through context
information. EAST first uses Fully Convolutional Networks
(FCN) [40] to extract different scales of features and gener-
ates text predictions with rotating rectangles or quadrilaterals
and then connects to its own locality-aware NMS (LANMS)
algorithm to replace non-maximum suppression (NMS) to
produce the final result. Yao et al. [28] use FCN to predict
text/non-text, character classes, and character linking ori-
entations respectively, then apply a series of processes for
text detection. In order to separate adjacent text instances,
PixelLink [55] performs pixel-level text/non-text and link
prediction, and excludes noise by performing post-processing
to obtain text boxes. TextSnake [56] uses ordered disks and
text centerlines to model text instances, which is an earlier
method for arbitrary text shapes.

B. SELF-SUPERVISED LEARNING
Self-supervised learning is one of the two basic learning
paradigms of machine learning. Compared with supervised
learning, self-supervised learning requires fewer data and
labels, and it can also improve the generalization performance
of the model. For each picture, the supervised learning model
will make classification predictions or give region proposals
based on the labeled training data, while the self-supervised
learning model will learn the details of each part of the image
to give more prediction information. This is consistent with
the pixel-wise prediction network architecture used in this
article to avoid missing possible text regions. The primary
purpose of self-supervised learning is to learn a general fea-
ture expression for downstream tasks. It supervises itself,
such as removing some parts of the picture and relying on the
surrounding information to predict the missing patch. Cur-
rently, there are two mainstream methods for self-supervised
learning: Generative Methods [41] and Contrastive Meth-
ods [42], [43]. Compared with Generative Methods, Con-
trastive Methods do not require the model to reconstruct the
original input but to attain the goal of distinguishing different
inputs in the feature space.

There has always been a problem of how to learn
effective visual representations without human supervision.
Chen et al. [19] proposed a simple framework for contrastive
learning of visual representations (SimCLR)to solve it. This
work proposes different data augmentation methods for an
input sample. Different augmentations of the same sample are
regarded as positive samples, and other different samples are
regarded as negative samples. Compared with another con-
trastive learning method, the Momentum Contrast (MoCo)
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FIGURE 1. Overall structure of our method, containing text detection branch and contrastive learning branch.

proposed by He et al. [20], the data storage queue is omitted
in SimCLR. They add a non-linear mapping between the
representation layer and the final loss layer, which can greatly
improve the quality of the learned representation. In addition,
data augmentation is beneficial to self-supervised learning,
and the different combinations of data augmentation methods
will have different effects. Section IV details the results of our
comparative experiments on different augmentation methods.

III. METHOD
The schematic diagram of our model is shown in Figure 1.
We use EAST as the backbone network, which directly makes
dense pixel-wise predictions of text lines or words in the
input images and shows the corresponding geometric shapes.
Compared with other methods mentioned, we simplify some
steps, such as the application of the regional proposal network
and the generation of text regions. Therefore, the computa-
tion cost of the entire network is much lower. Inspired by
self-supervised learning and SimCLR, we add a contrastive
learning branch to supervise the detection effect in order to
improve the accuracy of detection.

A. NETWORK DESIGN
Since the size of the text region varies greatly in different
images, feature maps of different scales are required to corre-
spond to text instances of different sizes. More precisely, the
existence of large text instances requires high-level features
in neural networks, while predicting the precise geometry of
smaller text instances requires early low-level information.
Therefore, the proposed network must use different scales of
features to meet these requirements. In previous work, the
EAST network architecture satisfies this requirement well.

However, through experiments, we find that EAST is not
ideal in detecting text instances in motion blurry and jit-
tery pictures. Inspired by contrastive learning, especially the
SimCLR method, we perform pairwise augmentation on the
image. We hope to solve the problem above through aug-
mentation methods such as adding random Gaussian blur
and random color jittering. Then, after merging the feature,
we add a contrastive learning branch, where we pass the
merged feature pair through a nonlinear fully connected layer
to obtain a better representation. Finally, we calculate the
similarity of each pair of feature maps, which is included in
the loss function for training.

B. DATA AUGMENTATION AND CONTRASTIVE
LEARNING BRANCH
First, we perform two different random data augmentations
on the training set image. In this case, each image sample can
be randomly converted to generate two related image pairs
for this sample, denoted as xi and xj. In the next step, we feed
them into VGG-16 for feature extraction.

In this work, we successively analyze and experiment with
a variety of simple enhancements: randomly cropping and
resizing, horizontal flipping, random Gaussian blur, random
greyscale, random color jitter. Then we conduct a series of
combination comparison tests to find out the most effective
data enhancement combinations among them.

After feature extraction and feature merging, we feed
merged feature ri and rj as the representation of xi and xj, into
the projection head to obtain the corresponding image repre-
sentations zi and zj. The projection head here is a Multi-Layer
Perceptron(MLP) with one hidden layer we use to obtain
zi, zi = g(ri) = W (2)σW (1)ri where σ is a ReLU activate
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function. It is beneficial to define the contrastive loss on zi
rather than ri.

C. FEATURE EXTRACTION AND LABEL GENERATION
We respectively pass two sets of augmented related image
pairs xi and xj through the VGG-16 network to extract four
different sizes of feature maps f1, f2, f3 and f4 at different
scales, which are respectively 1

4 ,
1
8 ,

1
16 ,

1
32 of the original

image size. Then we upsample the feature map of the highest
layer (f4) and concat it with f3. After that we use conv1×1
to reduce the number of channels to decrease computation,
finally pass the result through the conv3×3 to get the merged
feature map m1, and use the same operation to get m2 and
m3. Here, m3 is the final merged feature map, and then we
output it to the next step. In the contrastive learning branch,
we flatten them3 of the last step to get ri and rj. The schematic
diagram of the specific process is shown in Figure 2.

FIGURE 2. (a) is the input image. (b) stands for the augmentation. (c) is
the merged feature. (d) shows the generated feature map. C in the blue
boxes means number of channels. 1 × 1 in the yellow boxes stands for
conv1×1, and it is same for 3 × 3.

Since this network is designed for multi-orientation text
detection problems, we believe that the geometric shapes of
text boxes are all quadrangles. Following the idea of EAST,
we design the positive region of the quadrangle on the score
map as a shrunk version of the original image.

For each quadrangle Q = {vi | i ∈ {1; 2; 3; 4}}, where
vi = {xi, yi} are vertices on the quadrangle in clockwise order.
To shrink Q, we first compute a reference length li for each
vertex vi as:

li = min(D(vi, v(i mod 4)+1), D(vi, v((i+2) mod 4)+1)) (1)

where D(vi, vj) is the L2 distance between vi and vj.Then we
shrink the long edges and the short edges of the quadran-
gle. For each edge 〈vi, v(i mod 4)+1〉, we move two endpoints
respectively inward along the edge by 0.3 × li and 0.3 ×
l(i mod 4)+1 to shrink it.

D. LOSS FUNCTION
The loss can be formulated as:

L = Ls + λLg + µLc (2)

where Ls represents the loss for the text score map of both
xi and xj, Lg represents the loss for the geometry of both
xi and xj, and Lc represents the loss for the contrastive
loss respectively. λ and µ are the weight of the importance
between 3 parts of loss, we set λ to 1 and µ to 1 in this paper.
The specific forms of the three parts are described below.

1) LOSS FOR SCORE MAP
In some of the previous effective methods, how to design the
loss function to make it closer to the data distribution has
become a key part of training an excellent model. We need
a suitable loss function to balance the label and background
in the training image. This can significantly improve the gen-
eralization performance of the network, but the complex loss
functionwill inevitably introducemore hyper-parameters that
need to be manually set. These hyper-parameters depend
heavily on human experience and even result in worse gener-
alization ability. Therefore, the class-balanced cross-entropy
and dice-loss are now more used as the loss function of the
score map. In the proposed method, we use dice-loss, which
has a faster training convergence rate, given by:

Ls = DiceLoss(Ŷ ,Y ∗)

= 1−
2
∣∣Ŷ ∩ Y ∗∣∣∣∣Ŷ ∣∣+ |Y ∗| (3)

where Ŷ represents the prediction of the score map,
and Y ∗ is the ground truth.

2) LOSS FOR GEOMETRIES
Generally, the geometric map regression is calculated by
using L1 norm or L2 norm as the standard measuring loss.
Since the geometric map in this model merges the features of
various scales, it is very hard to measure it accurately using
these two methods. Because simple distance metrics cannot
be used arbitrarily in features of different sizes. In order to
solve this problem, we use the IoU loss [52] to measure the
geometric regression between the prediction region and the
ground truth region since it is invariant against targets of
different scales. The formula is as follow:

Lg = Le + λθLθ (4)

The overall geometry loss consists of Le, which stands for
edge loss, and Lθ is the angle loss. We set λθ to 10 in our
experiments. Le is given by:

Le = − log IoU (̂R,R∗)

= − log

∣∣̂R ∩ R∗∣∣∣∣̂R ∪ R∗∣∣ (5)

where R̂ represents the predicted edge geometry and
R∗ is its corresponding ground truth. Lθ is as follow:

Lθ (θ̂ , θ∗) = 1− cos(θ̂ − θ∗) (6)

where θ̂ is the prediction of the rotation angle and θ∗ repre-
sents the ground truth.

26434 VOLUME 9, 2021



R. Wei et al.: Robust and Effective Text Detector Supervised by Contrastive Learning

FIGURE 3. Positive and negative samples in one mini-batch.

3) LOSS FOR CONTRASTIVE LEARNING BRANCH
In this part we continue to use the normalized temperature-
scaled cross-entropy loss proposed in SimCLR, given by:

L =
1
2N

∑N
k=1[l(2k − 1, 2k)+ l(2k, 2k − 1)] (7)

We randomly sample a mini-batch of N samples each time
and define a comparison prediction task on the paired aug-
mented instance pairs derived from the mini-batch to obtain
2N data. Similar to SimCLR, we do not sample negative
examples, but take the other 2(N − 1) instances in the
mini-batch as negative examples. As Figure 3 shows, there is
only one similar feature map aj and all the others are negative
samples in each mini-batch for ai. This is same for aj, bi, bj,
ci, cj, . . . , xj.
We use cosine similarity to calculate the similarity between

two augmented images, given by:

sim(a, b) =
a>b
‖a‖‖b‖

(8)

Then the loss function for a positive pair of examples (i, j)
is defined as:

li,j = − log
exp(sim(zi, zj)/τ )∑2N

k=1 1(k 6=i) exp(sim(zi, zk )/τ )
(9)

where 1(k 6=i) ∈ {0, 1} is an indicator function evaluating to 1 if
k 6= i and τ denotes a temperature parameter. The final loss
is computed across all positive pairs, both(i, j) and (j, i), in a
mini-batch.

IV. EXPERIMENTS
We compare the proposed method with recent algo-
rithms and conduct quantitative and qualitative experiments
on the public benchmark: ICDAR2013, ICDAR2015 and
MSRA-TD500. All the training data we use is available
publicly.

A. IMPLEMENT DETAILS
We use Pytorch [45] to implement our method. The fea-
ture extraction part of the proposed method is based on
VGG-16, we use its pre-trained model on ImageNet[54].
We use Radam [46] and Lookahead [47] to optimize our
model with the learning rate set to 1e−3. We first train our
text detection branch for 100 iterations, and then the whole
model for 700 iterations.

All our experiments are conducted on a server (CPU:
Intel E5-2620 v4 @ 2.10GHz; GPU: NVIDIA GTX1080 TI;
RAM: 64GB).We train our model with the batch size of 20 on
2 GPUs in parallel and evaluate our model on 1 GPU.

B. BENCHMARK DATASETS
ICDAR2013 [59] is the dataset proposed in Challenge 2 of
the 2013 Robust Reading Competition. It contains 229 train-
ing images and 233 testing images in different resolutions.
Most images focus on horizontal texts and also have some
slightly oriented texts.

ICDAR2015 [44] is the dataset used in Challenge 4 of
the ICDAR 2015 Robust Reading Competition. It consists
of 1500 images, 1000 of which are used for training and the
other 500 are for testing. The text regions are annotated by
four vertices of the quadrangle. These images are taken inci-
dentally byGoogle Glass. Therefore, the text in the scenemay
be in arbitrary orientations, motion blur and lower resolution.

MSRA-TD500 [57] comprises 300 training images
and 200 test images. It is a dataset with arbitrary-oriented
and long text lines. Different from the ICDAR2015 dataset,
it contains both English and Chinese text instances. Since its
training images are too few to learn a deep network, we follow
the previous works [17], [55], [56] to harness 400 images
from HUST-TR400 [58] as training data.

C. EVALUATION PROTOCOL
Text detection is usually divided into character-level detec-
tion and word-level detection. The ICDAR2015 dataset uses
word-level detection. In order to verify the effectiveness of
our model, we used its standard as the verification standard,
which is based on the notions of precision and recall. Preci-
sion is defined as the number of correct estimates divided by
the total number of estimates:

Precision =

∑
rd∈D m(rd ,G)

|D|
(10)

where r means a rectangle in the set, G represents a
ground-truth set of targets and D stands for a set of detection
results of proposed model. For text detection, it is unrealistic
to expect the model to be exactly the same as the bounding
rectangle of the word identified by the human marker. The
match between two matching bounding boxes is defined as
the area of intersection divided by the union of area of two
bounding boxes (IOU). For identical bounding boxes, the
value of IOU is 1, and for bounding boxes that do not have
intersection, the value of IOU is 0. For each rectangle in D,
we find the closest match in G, and vice versa.

m(r,R) = IOU (r, r ′)|r ′ ∈ R (11)

m(r,R) stands for the best match for a rectangle r in a set of
bounding boxes R. Recall is defined as the number of correct
detections divided by the total number of targets:

Recall =

∑
rg∈G m(rg,D)

|G|
(12)
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FIGURE 4. Some successful detection examples of our method on ICDAR2013 dataset.

Precision and Recall evaluate the model from two aspects.
A model that over-estimates bounding boxes will be penal-
ized by a lower Precision score. Amodel that under-estimates
the number of bounding boxes will be penalized by a lower
Recall score.

In order to facilitate representation and unify standards,
we use the standard F-measure to combine the precision and
recall numbers into a single measure of quality.

F-measure = 2×
Precision× Recall
Precision+ Recall

(13)

D. RESULTS ON ICDAR2013
We test our model on the ICDAR2013 dataset to evaluate its
performance to detect horizontal texts. For a fair comparison,
we alsomix the 1000 training pictures of ICDAR2015 and the
training pictures of ICDAR2013 together as the training set.
Our method achieve 0.904 precision, 0.888 recall and 0.896
F-measure.

Figure 4 shows a set of examples of successful text detec-
tion on the ICDAR2013 dataset. It can be seen that the
dense text can be well detected by our method, while the
text-like patterns and textures are not misdetected. Successful
detection in dark and reflective places proves the robustness
of the model.

E. RESULTS ON ICDAR2015
We conduct quantitative and qualitative experiments on the
authoritative ICDAR2015 data set to verify the effective-
ness and robustness of our method in multi-oriented text
detection tasks. The evaluation criteria of the ICDAR2015
dataset uses a quadrilateral box to test the model’s ability
to detect multi-orientation text. Moreover, the background of
the images in the ICDAR2015 data set is more complex, and
there are more interference conditions, such as illumination

TABLE 1. Results on ICDAR2013. MS stands for multi-scale testing.

and blur caused by motion, object occlusion. Therefore, this
dataset is a huge challenge to the text detection model.
It can be seen from Table 1 that we achieve 0.860 precision,
0.822 recall and 0.840 F-measure. Among them, recall and
F-measure are better than other methods, the precision is
competitive.

Figure 5 illustrates some detection results on the test set.
It can be seen that whether they are traffic signs on the
roadside, tiny texts on the subway, shopping mall texts with
motion blur, or texts with low contrast and dark light, our
model can accurately detect the texts and locate them by
bounding boxes.

A set of comparison charts with other methods is shown in
Figure 6. As can be seen, our proposed method can accurately
locate the text and distinguish eachword correctly in the small
and dense texts (a); with poor light conditions and object
occlusion (b), our model does not produce missing detection;
when in scene (c), our detector successfully locates all the
text, including the blurred text on the wall and the reflection
on the ground; in (d), the proposed model performs well,
while other methods made more or less missing detections.
It proves that our method can accurately and robustly han-
dle difficult cases, such as object occlusion, dark light, low
contrast, motion blur, and jitter when taking pictures.
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FIGURE 5. Some successful detection examples of our method on ICDAR2015 dataset.

FIGURE 6. Qualitative comparisons of text detection results on ICDAR2015 with other methods. (a) Our methods (b) EAST (c) PAN (d) CTPN.

F. RESULTS ON MSRA-TD500
In order to verify the robustness of ourmethod in long text and
mixed language (English and Chinese) text detection, we per-
form an evaluation on the MSRA-TD500 dataset. As can be

seen in Table 2 that we achieve the highest recall (0.7873) and
F-measure (0.7840) among listed methods.

Figure 7 shows some of the test results of ourmethod on the
MSRA-TD500 dataset. There is usually a larger gap between
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FIGURE 7. Some successful detection examples of our method on MSRA-TD500 dataset.

TABLE 2. Results on ICDAR2015. MS stands for multi-scale testing.

Chinese characters than between English words, which is
a difficult point in detecting Chinese text lines. It can be
seen that our method successfully detects both Chinese and
English text lines.

G. DIFFERENT AUGMENTATION METHODS
Different from the classification tasks, we take into account
the particularity of the text location in the text detection,
and remove some improper augmentation methods, such as
random cropping and horizontal flipping. The reason is that
after these two augmentations, the feature regions on the rep-
resentation will be hardly corresponding, which leads to a low
similarity between zi and zj. These low similarity pairs will
have a negative impact on the contrastive learning branch.
In order to further explore, we also conduct these two aug-
mentations experiments. The experimental results confirm

our assumptions. Therefore, we use different combinations
of random color jittering, random Gaussian blur, and random
grayscale to conduct comparative experiments.

As shown in Table 2, when using random color jitter-
ing alone as the data augmentation method, we achieve the
best experimental results, on average more than 1% higher
than other methods. On the other hand, when using random
Gaussian blur + random grayscale (without random color
jittering) as the augmentation method, we achieve the worst
experimental results, which verify the effectiveness of ran-
dom color jittering from the side. It also verifies that the
contrastive learning branch significantly improves the effect
of text detection.

TABLE 3. Results on MSRA-TD500.

H. SPEED COMPARISON
The result of speed comparison is demonstrated in Table 3.
We use our best-performing networks to run through the
ICDAR 2015 test set (containing 500 images with 1280×720
resolution) and report the average speed. These experiments
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are conducted on a server using a single NVIDIA GTX1080
TI graphic card and Intel E5-2620 v4. For other methods,
we directly list the results of their original papers. As is
shown in Table 3, our model runs at 9.1 FPS, which is the
fastest except TextBoxes++. While maintaining the highest
F-measure score, the speed of our proposed model is still
competitive.

TABLE 4. Results of different augmentation methods on ICDAR2015
dataset. ‘‘CJ’’ represents random color jittering. ‘‘GB’’ stands for random
Gaussian blur. ‘‘GS’’ means random grayscale.

TABLE 5. Results of speed comparison.

V. CONCLUSION
In this paper, we propose a text detection model with a con-
trastive learning branch.Wemake full use of the feature pyra-
mid in FPN to extract multi-scale features, then upsample and
merge them, and finally use the similarity calculated by the
contrastive learning branch to optimize the effect of the detec-
tion branch. The network can be used for multi-orientation,
multi-scale scene text detection tasks and achieves good
scores on multiple public datasets. However, the model can
still be improved. One is that in addition to straight lines,
text in natural scenes also has text arranged in curves. Since
the label generated of this model only contains positions and
rotation angles of 4 vertices, our method is not suitable for
curved text. In the follow-up plan, we will study more deeply
and improve the method to adapt to this situation. In addition,
we only use English and Chinese datasets to train and validate
our method in this period. We plan to improve the model in
the future and challenge more multilingual datasets.
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