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ABSTRACT Spectrum prediction based sensing schemes minimize the overall energy consumption of the
sensing module in cognitive radio networks (CRNs) by predicting the status of spectrum before performing
actual physical sensing. But, the performance of independent or local prediction models suffer from
inaccuracies. Cooperative mode of spectrum prediction is found to be suitable to overcome the issues of
local prediction models. In this work, we propose a cooperative spectrum prediction-driven sensing scheme
for energy constrained cognitive radio networks to reduce the energy consumption while maintaining the
spectral efficiency. The proposed scheme first employs a long short term memory network technique to
perform local spectrum prediction, which identifies the status of a channel before actual sensing to improve
energy efficiency. Thereafter, a parallel fusion based cooperative spectrum prediction model is applied to
minimize the errors induced in local prediction model. Finally, the resultant cooperative prediction model is
combined with a spectrum sensing framework to perform sensing operation when the cooperative spectrum
prediction results to an indeterminate state in order to enhance the spectral efficiency. Simulation results
show the efficacy of the proposed scheme in terms of spectral efficiency and energy efficiency compared to
similar schemes from literature.

INDEX TERMS Cognitive radio networks, energy efficiency, prediction-driven sensing, spectral efficiency,
spectrum prediction.

I. INTRODUCTION
With the advancement of technology, the usage of wireless
devices increases enormously from the last decades [1]. The
ubiquitous uses of these wireless devices demand for large
amount of radio spectrum. As most of the radio spectrum
region are already being allocated to existing wireless ser-
vices, there has been a spectrum scarcity problem that arises
for emerging wireless services. The recent measurements
carried out by Federal Communications Commission (FCC)
have shown that 70% of the allocated spectrum in US is
not utilized [2]. This motivates the development of the con-
cept of cognitive radio (CR) [3], which allows CR enabled
users or secondary users (SUs) to utilize the licensed radio
spectrum when the spectrum is temporally not being utilized
by its licensed users or primary users (PUs).

The associate editor coordinating the review of this manuscript and
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In today’s CR networks (CRNs), SUs are mostly battery
driven wireless devices and have energy constraints in terms
of power [4]–[6]. In energy constrained CRNs, spending
more energy in sensing would lead to less energy avail-
able for transmission, which degrades the overall spectrum
utilization. In such energy constrained CRNs, energy effi-
ciency (EE) and spectral efficiency (SE) become two impor-
tant aspects that need due attention to make communication
viable. SE implies efficient utilization of spectrum holes,
whereas, EE states minimal energy depletion for achieving
desired level of SE.

Spectrum sensing is a key functionality to detect the pres-
ence of PUs in licensed channels but it incurs considerable
energy overhead. In high traffic CRNs [7], the possibility of
licensed channels being busy is very high. Thus, a random
selection of channels for sensing incurs high energy overhead
as well as increases waiting time of SUs, which eventually
reduces the transmission time. Spectrum prediction or chan-
nel state prediction based sensing schemes [8] select only
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those channels for sensing that are likely to be idle in the
next successive slots. Thus, usage of spectrum prediction
method along with sensing framework reduces the overall
waiting time of SUs to find idle channel for transmission, and
eventually enhances spectral efficiency. Although prediction
module requires additional time but it can be compensated
to overall time spent by SUs for sensing, which includes
time to decide when and what channels to be sensed to find
free slots for data transmission. Further, spectrum prediction
based sensing reduces the overall energy consumption during
spectrum sensing, and thereby improves energy efficiency
of SUs.

Spectrum prediction schemes [8]–[10] typically use
machine learning (ML) techniques to locally predict the
future channel availability using the spectrum sensing history.
The work in [8] discusses multilayer perceptron (MLP) based
channel status prediction model, which can explore the spec-
trum holes based on the past sensing history and selects the
channel predicted to be idle. In [9], a hidden markov model
(HMM) based channel state prediction scheme is presented,
which minimizes the delay that gets incurred during real-
time spectrum sensing by performing spectrum prediction.
Another, HMM based spectrum prediction method is dis-
cussed in [10], which represents the spectrum prediction as
a pattern classification problem and considers higher num-
ber of hidden states to capture the different levels of PU’s
activity, hence increasing the span of prediction very unlikely
in the traditional HMM based spectrum prediction model.
To perform spectrum prediction in energy-constrained CRNs,
a HMMbased prediction technique is presented in [11] which
classified the SUs into two sets namely Interfered by PU (IP)
and Non-interfered by PU (NIP). The SUs that are interfered
by PUs are prevented from spectrum sensing to save energy
consumption. In CRNs under Global System for Mobile
Communications (GSM) based primary networks [12], SUs
that are located closer to PU are not allowed to access the
licensed channel as SU transmissions in this situation may
cause interference to PU. A support vector machine (SVM)
based spectrum prediction technique is discussed in [13],
which enhances the energy-efficiency of the CRNby optimiz-
ing prediction duration and prediction energy under network
different environments.

The works in [14], [15] discuss long-term spectrum state
prediction techniques which are found to be better for
dynamic spectrum access (DSA) in comparison to short-
term prediction in CRNs. In short-term prediction, spectrum
prediction is performed for single time slot in a slot by slot
manner whereas long-term prediction aims to get status of
multiple time slots at any particular time, which eventually
improves the accessibility of the vacant spectrum. Authors
in [14], [15] use tensor based model to obtain the long-
term status of spectrum in different dimensions such as time,
frequency, and day. Another work which emphasizes the
significance of machine learning in prediction to perform
DSA for next generation networks like CR enabled internet
of things (IoTs) is discussed in [16]. The work discusses the

state-of-the-art ML techniques employed in DSA, a struc-
tured taxonomy of DSA via ML, challenges, and open issues
for future directions.

However, local prediction [8]–[10] results usually suffer
from inaccuracy due to possible learning error and data errors
likely to be present in historical sensing dataset collected
through independent sensing. The errors in dataset are mainly
due to the erroneous environment. To overcome the issues
of local spectrum prediction, cooperative mode of spectrum
prediction are presented in [7], [17]–[19], which leverage a
collaborative decision about PU existence through the fusion
of the local prediction results of geographically distributed
secondary users (SUs). The work in [17], [18], presents col-
laborative approaches for spectrum prediction under various
PU traffic conditions to minimize error probability that may
incur during local spectrum prediction in term of PU’s activity
pattern and the sensing error. The work in [7] presents a
cooperative spectrum prediction model (CPM), which makes
use of past sensing data. Their model uses MLP and HMM
for prediction and performs spectrum sensing for only those
channels that are predicted to be available. Although the
authors in [7] claim to reduce energy consumption for sens-
ing, SE is also reduced due to false prediction. A coopera-
tive prediction-and-sensing based spectrum sharing (CPSS)
model presented in [19] performs spectrum sensing for all
channels irrespective of spectrum prediction results. This
leads to improved detection accuracy, and hence higher SE,
but at the expense of increased energy overhead. It performs
sensing to all channels irrespective of the output of spectrum
prediction operation.

Due to usage of MLP based prediction [7], [8], [19],
these models cannot handle sequence dependence issues of
time series prediction problems. The HMM based prediction
model [9], [10], [18] has a very high complexity while pre-
dicting large number of future slots. Furthermore, the coop-
eration based prediction models [7], [19], which resolve the
issues of local spectrum prediction problem typically use
fixed value of κ in κ-out-of-N fusion rule during fusion.
Due to the fixed value of κ , it may not be able to capture
the fluctuations in received primary user (PU) signal, which
arises due to environmental noise and fading effects [20].

To handle the sequence dependency issues, which arise
in MLP based time series spectrum prediction model and
to predict status of a large number of future spectrum slots,
a long short term memory (LSTM) network based spec-
trum prediction is presented in [21]. The work in [21] uses
LSTM to predict the power spectral density (PSD) values of
a channels and applies taguchi method for network structure
optimization of local prediction model. However, the work
in [21] only discusses the local mode of spectrum prediction
problem and lacks in capturing the error scenarios, which
arise during local spectrum prediction. Since, the foundation
of cooperation based prediction scheme for CRNs envisions
to reduce the overall energy consumption during spectrum
opportunity detection while maintaining a high spectrum
utilization, development of an efficient cooperation based
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prediction scheme is highly desirable, which can reduce
the energy consumption during sensing while maintaining a
higher SE. The cooperation based prediction model should
also handle the sequence dependency issues and incorporate
the adaptability of fusion rule that captures the network envi-
ronment variations.

The main objective of this article is to develop a cooper-
ative spectrum prediction-driven sensing scheme for energy
constrained CRNs, which reduces the energy consumption
while maintaining SE during spectrum opportunity detection.
A cooperative prediction-driven sensing adopted in the pro-
posed scheme helps in enhancing both detection accuracy and
energy efficiency. The overall contributions of this article are
summarized as follows:

• We employ an LSTM network based local prediction
model for two aspects - (a) to identify the status of a
channel before performing the actual sensing in order to
improve EE and (b) to handle the sequence dependency
issues in time series prediction problems that exist in
MLP based prediction model [7], [19].

• We apply the results from local prediction model to a
parallel fusion based cooperative prediction model to
reduce the local prediction errors that may exist in the
independent prediction model like in [21] and capture
the network environment variations through a dynami-
cally configurable value of κ in κ-out-of-N fusion rule.

• The resultant cooperative prediction model is combined
with a spectrum sensing framework to perform sens-
ing operation when the cooperative spectrum prediction
results in an indeterminate state in order to enhance
detection accuracy, which eventually increases SE.

• Simulation based evaluation of the proposed scheme
is carried out to show the efficacy of the proposed
scheme in terms of SE and EE compared to similar
schemes from literature. Simulation results also reveal
that incorporating an adaptive κ-out-of-N fusion rule in
the proposed scheme leads to better performance than
the conventional majority-fusion rule used in [7], [19] at
higher error levels in time series data.

The rest of this article is organized as follows. Section II
discusses the system model and assumptions. In Section III,
the proposed scheme is presented. The performance eval-
uation of the proposed scheme with the existing schemes
is discussed in Section IV followed by the conclusion in
Section V.

II. SYSTEM MODEL AND ASSUMPTIONS
A centralized network architecture is assumed, which con-
sists of a set of N number of SUs denoted by N =

{1, 2, . . . ,N }, a set ofM number of PU channels denoted by
M = {1, 2, . . . ,M}, and a fusion center (FC). It is assumed
that SUs are battery enabled and have energy constrained in
terms of power. Further, it is assumed that PUs fall under the
sensing range of SUs and FC.Also, FC located at central posi-
tion with respect to SUs and acts as a central entity for SUs,

FIGURE 1. Network architecture.

which is given the responsibility of performing cooperative
prediction activities and spectrum sensing when the result of
cooperative prediction is found to be indecisive. This leads to
reduction in spectrum sensing overhead of SUs. A diagram
of the assumed network architecture is shown in Fig. 1. FC
performs spectrum sensing using energy detection (ED) [22].
To synchronize SUs with PU, a time-slotted system is consid-
ered as in [23], [24] and SUs access the channel in a time divi-
sion multiple access (TDMA) fashion. Each time slot (T ) is
further divided into three sub-slots, named as prediction time
(tp), sensing time (ts), and transmission time (tt ) respectively.
All the information between SUs and FC are communicated
using a dedicated common control channel [20].

We model spectrum prediction as a time-series prediction
problem [8], where the binary time series data have been
prepared from sensing history of PU channels. The binary
time series for a channel is prepared by employing ED over
channels for Z slots, where Z = {1, 2, . . . ,Z } and the
estimated strength of the received signal, Y (z), at time slot
z, ∀z ∈ Z is then compared with the sensing threshold λs to
decide on the status of a channel. For SU n ∈ N , at a given
time slot z ∈ Z of channel m ∈M, the sensing status of the
channel, �n

m,z, is given by (1).

�n
m,z =

{
0, if Y (z) < λs,

1, Otherwise
(1)

where�n
m,z equals to 0 or 1, respectively, indicate the absence

and presence of PU activity.
Every SU prepares a time series for each channel based on

their own sensing. λs can be decided empirically [25] or as
given in [26]. It is considered that before the starting of the
prediction module, SUs perform spectrum sensing indepen-
dently over PU channels for a large number of slots in order
to collect sufficient sensing data for prediction. Once a SU
starts its prediction module and observes that it’s prediction
accuracy falls below a designated threshold compared to the
final cooperative result, the SU immediately stops its predic-
tion module and restarts sensing module to collect new set of
sensing data in order to improve its prediction.

The noise environment is assumed to be circularly
symmetric complex gaussian (CSCG) and each PU uses
complex-valued phase shift keying (PSK) signals for data
transmission [27]. The two metrics which determine the
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FIGURE 2. Different phases of the proposed scheme.

performance of a spectrum sensing, namely the probability of
detection (Pd ) and the probability of false alarm (Pf ). The Pd
indicates the probability of correctly detecting the PU signal
when it is actually present, and Pf indicates the probability
of falsely detecting the PU signal when it is actually absent.
The probability of false alarm and probability of detection for
each SU are computed using (2) and (3) [27], respectively.

Pf = Q
(( λs
σ 2 − 1

)√
tsfs

)
(2)

Pd = Q
(( λs
σ 2 − γ − 1

)√ tsfs
2γ + 1

)
(3)

where, σ 2 represents noise variance, γ refers to signal-to-
noise ratio, Q(.) indicates complementary distribution func-
tion, and fs sampling frequency. Since, the probability of miss
detection (Pm) is complement of the probability of detection
and it can be given by (4).

Pm = 1− Pd (4)

III. PROPOSED SCHEME
The proposed scheme comprises of three phases: local spec-
trum prediction, cooperative spectrum prediction, and joint
prediction and sensing. In local spectrum prediction phase,
every SU performs local prediction based on their sensing
history and sends their prediction results to FC. In the coop-
erative prediction phase, FC performs cooperation on local
prediction results received from SUs to achieve a cooperative
decision about the existence of PU. In the joint prediction
and sensing phase, FC performs spectrum sensing using the
ED framework to decide the status of those slots of channels
could not be predicted with certainty by cooperative predic-
tion. A diagrammatic representation of different phases of the
proposed scheme is shown in Fig. 2.

A. LOCAL SPECTRUM PREDICTION
In this phase, we employ an LSTM network [21], which han-
dles long term dependencies in time series data at each SU to

FIGURE 3. A block diagram of long short-term memory.

perform spectrum prediction. LSTM networks are basically
made up of memory blocks that are inter-connected through
layers of neurons. The main components of memory blocks
are cells and gates, where cells are primarily used to store the
temporal state information and gates are used to regulate the
in/out-flow of information to/from the memory cells. A basic
block diagram of LSTM is given in Fig. 3. The cell and hidden
state are being propagated to the next cell and information
about the gradients are stored in the memory blocks. The
contents of the memory block is manipulated with the help
of some structural unit, called gates.

There are basically three gates available in a LSTM unit:
input, output, and forget gates. The input gate decides about
which input flows into the memory cell, the output gate
controls the outflow of cell information to the network and
the forget gate is responsible for resetting of cell’s memory.
As shown in the Fig. 3, (it ), (ot ) and (ft ) represent input,
output and forget gate, respectively. σ (.), tanh(.),

⊕
, and⊗

represent sigmoid activation function, hyperbolic tangent
activation function, addition and multiplication, respectively.
In order to determine the value of cell state (ct ) and hid-
den state (ht ) based on an input variable (xt ) at a particu-
lar instance (t), a set of computations are involved in feed
forward propagation that can be discussed in the form of
equations as follows [28]:

ft = σ (wf ht−1 + wf xt + bf ) (5)

it = σ (wiht−1 + wixt + bi) (6)

lt = tanh(wcht−1 + wcxt + bc) (7)

ct = ft � ct−1 + it � lt (8)

ot = σ (woht−1 + woxt + bo) (9)

ht = o� tanh ct (10)

where, the w’s and b’s terms indicate different weight matri-
ces and bias vectors to different gates, respectively, and �
represent element-wise multiplication operation. The time
series data for any channel is divided into two parts: train-
ing data and testing data. The training data are fed into
the LSTM network based local spectrum prediction (LSP)
model as input during the training phase. The training is
continued until the error, which can be determined using
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mean squared error (MSE), is brought down to a desired
level or maximum number of epochs (ξ ) set is reached. Once
the training is over, testing is performed using the testing
data.

In LSP, an iterative approach is adopted to tune the hyper
parameters of LSTM network to achieve a desired level of
accuracy in prediction. To start with, each of the hyper-
parameter is assigned a range of values. Whichever com-
bination of values of the parameters gives better training
accuracy, that combination is considered to be the final values
of those parameters. For cross-validation of LSP, a basic
model of nested cross-validation [29] is employed since the
traditional cross-validation techniques are not suitable for
time-series data due to its temporal dependencies. Using LSP,
every SU prepares a prediction list, which contains local
prediction results for a set of L future slots denoted by L =
{1, 2, . . . ,L}, for each of the M channels, and sends the pre-
diction lists to FC using a common control channel. Since an
exhaustive search on all combinations of all possible values
of hyper parameters has not been done, this iterative approach
does not claim the optimal tuning of hyper-parameters for
LSP model.

B. COOPERATIVE SPECTRUM PREDICTION
In this phase, we introduce a cooperative spectrum prediction
(CSP) model. The cooperative prediction model for collab-
oration is harnessed by incorporating learning error, αe and
sensing data error, βe. Here, αe indicates the errors generated
by the prediction model when a particular learning algorithm
in the model uses error-free dataset, whereas βe indicates the
errors that exist in the sensing dataset collected from spectrum
sensing operation.

In network environment variations, where environmental
noise and fading effects get changed spatio-temporarily, βe
also varies according to the network environment. This is
because, while SUs perform sensing using ED, the fluctu-
ations in SNR affects overall sensing [30] and deteriorates
the performance when SNR level reaches to a significantly
low value. Due to the deteriorated sensing performance, more
errors are introduced in the sensing dataset and as a result βe
increases. To capture such dynamics in network environment,
we introduce an adaptive κ-out-of-N fusion rule (AF), which
dynamically determines κ , that is, the number of SUs that take
a cooperative decision at a particular time slot for a channel.
As the value of αe or βe increases, it triggers a larger value
for κ (that is, considers more number of SUs for cooperation)
to compensate for the local prediction errors of SUs, whose
sensing data are highly affected by environmental hazards.
Again, when the value of αe or βe becomes small, a smaller κ
value is sufficient enough to take a cooperative decision over
local prediction results. Considering these facts, the value of
κ is determined based on the values of αe and βe such that it
captures the changes in the network environment and is given
by (11),

κ = d(1− (1− Pαe )(1− Pβe ))N + 1e (11)

FIGURE 4. Time slot structure for the proposed scheme.

where, Pαe and Pβe represent probabilities of learning error
and errors exist in sensing data, respectively.

We design a centralized cooperative spectrum prediction
model by adopting the parallel fusion framework [31]. The
cooperative spectrum prediction is implemented in the FC
(or base station) only. We assign all the cooperation activ-
ities to the FC so that the SUs need to synchronize only
with the FC for all cooperation activities. In the scenarios
where there can be more than one FCs in the same network,
cooperative spectrum prediction in the FCs can be imple-
mented in a distributed fashion with resultant final prediction
obtained through a consensus. The presence of multiple FC
will increase deployment cost, message overhead as well
as time required for synchronization. In ad-hoc secondary
network setup, the SUs can themselves play the role of FCs
and distributed cooperative spectrum sensing [32] will best
suit for this purpose but at the expense of message overhead,
time, and extra energy at the SUs.

While fusing the local prediction results, the cooperative
model outputs two possible decision states, viz. determinate
(DM) and indeterminate (IM). In DM, status of a channel
m at any time slot l, ∀m ∈ M,∀l ∈ L can either be 1
(occupied) or 0 (available). The IM state means, a binary
decision cannot be made about the status of a channel solely
on the basis of cooperative prediction, and therefore, the sta-
tus of the channel is considered as −1 (indecisive). The
available status indicates that PU is absent at the particular
slot of the channel with certainty. In this case, SUs do not per-
form spectrum sensing operations and go to the power saving
mode to conserve energy for the entire sensing slot (ts). Once
the sensing slot time is over, SUs can start transmission at the
beginning of tt . Similarly, when channel status is occupied ,
neither sensing nor transmission is performed for the entire
slot. SUs get to the sensing mode and perform spectrum sens-
ing to actually determine the PU’s occupancy on the channel
at a particular slot, when cooperative prediction outputs an
IM state. The time slot structure for the proposed scheme is
illustrated with the help of a diagram as shown in the Fig. 4.

Let N0 and N1 represent the number of SUs who have
reported with decisions 0 and 1, respectively, to FC based
on their local prediction about a time slot l of channel m.

VOLUME 9, 2021 26111



P. Chauhan et al.: CSP-Driven Sensing for Energy Constrained CRNs

The cooperative spectrum prediction decision at time slot l
for channel m is expressed by (12),

1d
m,l =


0, (N0 ≥ κ) & (N1 < κ)

1, (N1 ≥ κ) & (N0 < κ)

}
DM

−1, otherwise
}
IM

(12)

where, 1d
m,l represents the cooperative spectrum prediction

decision for lth time slot of channel m and & indicates the
logical AND operation. Let xm,l be a binary variable whose
value is 1 if 1d

m,l = −1 otherwise 0 for channel m at time
slot l. The probability of occurrence of indeterminate state
(PIM) is estimated empirically from the prediction history of
M channels over L time slots using (13).

PIM =

∑M
m=1

∑L
l=1 xm,l

LM
, ∀m ∈M, ∀l ∈ L (13)

Therefore, the probability of occurrence of determinate state
(PDM) is obtained as PDM = 1− PIM.
Let Pfp and Pmp represent the probabilities of false pre-

diction and miss prediction, respectively. In false prediction,
a channel is predicted as busywhen it is actually free, whereas
in miss prediction, a channel is predicted as free when it is
actually busy. If yfpm,l is a binary variable whose value is 1 if
false prediction is occured for channel m at time slot l, and
0 otherwise. Similarly, if ymp

m,l is a binary variable whose
value is 1 if miss prediction is occured for channel m at time
slot l, and 0 otherwise. Then, Pfp and Pmp can be estimated
empirically from the prediction history ofM channels over L
time slots using (14) and (15), respectively.

Pfp =

∑M
m=1

∑L
l=1 y

fp
m,l

LM
, ∀m ∈M, ∀l ∈ L (14)

Pmp =

∑M
m=1

∑L
l=1 y

mp
m,l

LM
, ∀m ∈M, ∀l ∈ L (15)

Using AF-rule, the collaborative probabilities of false pre-
diction (Qfp) andmiss prediction (Qmp) are derived using (16)
and (17) [19], respectively.

Qfp =

N∑
j=N−κ

(
N
j

)
(Pfp)j(1− Pfp)N−j (16)

Qmp =

N∑
j=N−κ

(
N
j

)
(Pmp)j(1− Pmp)N−j (17)

C. JOINT COOPERATIVE SPECTRUM
PREDICTION AND SENSING
In this phase, we combine cooperative prediction model with
spectrum sensing framework in which FC performs spectrum
sensing when the cooperative decision of CSP is in IM state,
and combines the sensing results with prediction results to get
a global decision about PUs existence. In a wireless fading
channel environment, to attain the same level of detection
probability for each of the time slots, the sensing threshold
needs to be updated from one slot to another. Furthermore,
with a long sensing duration, the performance of fusion

results with unknown fading coefficient reaches closer to the
known fading coefficient [27]. Let Pd and Pf represent the
probabilities of detection and false alarm respectively of FC.
Then, the required sensing time for FC to achieve target Pd
and target Pf is computed by [18], [27].

ts =

(
Q−1(Pf )− Q−1(Pd )

√
2γ + 1

)2
(γ )2 fs

(18)

where, ts represents the required sensing time for FC. Since
ts is the maximum duration allocated for sensing in any time
slot, the value of ts should not be larger than ts.
Let PH0 and PH1 denote the probabilities of a given channel

to be actually idle and busy, respectively, which can be com-
puted from channel history. Inspired from [19], the probabil-
ity of a channel to be actually idle when the proposed scheme
detects it as idle (P0|0) and the probability of a channel to be
actually busy but the proposed scheme detects it as idle (P1|0)
can be determined using (19) and (20), respectively.

P0|0 =
PH0 (1− PIM)(1− Qfp)+ PH0PIM(1− Pf )

PH0 (1−PIM)(1−Qfp)+PH1 (1−PIM)Qmp+PH0PIM
(19)

P1|0 =
PH1 (1− PIM)Qmp + PH1PIM(1−Pd )

PH1 (1−PIM)(1−Qmp)+PH0 (1−PIM)Qfp+PH1PIM
(20)

Also, using (19) and (20), we have P0|1 = 1 − P0|0 and
P1|1 = 1−P1|0, where,P0|1 andP1|1 indicate the probabilities
of detecting idle channel as busy and busy channel as busy,
respectively.

Using the above probabilities, the spectral efficiency and
energy efficiency for the proposed scheme can be determined.
Spectral efficiency for the proposed scheme is measured
in terms of both improvement in average data transfer per
slot by SUs and minimization of average loss of spectrum
opportunity. Using (19), average data transfer per slot denoted
by C is determined by (21).

C = P0|0(1− (
tp
T
+
ts
T
))r (21)

where, r indicates the data rate of the channel. Similarly, loss
of spectrum opportunity denoted by 8 is given by (22).

8 = 1− P0|0 (22)

Since, reduction of energy consumption plays a key role to
attain energy efficiency, we compute the energy efficiency for
the proposed scheme in terms of average amount of energy
consumed during sensing, ratio of average data transfer per
slot to the average sensing energy consumption, and ratio
of average data transfer per slot to the average transmission
energy consumption. The amount of energy spent during
sensing denoted by Es is computed using (23).

Es = PIMes, (23)

where, es be the slot wise energy spent by FC during sensing.
Again, using (21) and (23), the ratio of average data transfer
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per slot to the sensing energy consumption is given by (24).

ηs =
C
Es

, (24)

where, η denotes the ratio of average data transfer per slot to
the average sensing energy consumption.

Similarly, the amount of energy spent during transmission
denoted by Et is computed using (25).

Et = (P0|0 + P1|0)et , (25)

where, et denotes the amount of energy spent per bit of
transmission. Further, using (21) and (25), the ratio of average
data transfer per slot to the transmission energy consumption
is given by (26).

ηt =
C
Et
, (26)

The main steps of the proposed scheme are given in
Algorithm 1.

Algorithm 1 Cooperative Spectrum Prediction-Driven
Sensing

Input: Spectrum sensing history
Output: Final decision about channel status

Step 1: Local spectrum prediction:
1.1 Setup the LSTM network (LN ) with input layers,

LSTM layers and output layers
1.2 for ξ do
1.3 Train LN using training data
1.4 end for
1.5 Test LN using testing data
1.6 Calculate the MSE
1.7 If the desired accuracy is achieved in terms of MSE

goto step 1.8, otherwise repeat step 1.3 to 1.6 with
different setting of the network

1.8 SUs perform spectrum prediction and send local pre-
diction results to FC for cooperation

Step 2: Cooperative spectrum prediction:
2.1: FC receives local prediction results from SUs
2.2: Perform cooperation using parallel fusion framework
2.3: If the cooperation model results into IM state then

goto step 3, otherwise final decision about the chan-
nel status can be made solely based on the coopera-
tive prediction results

Step 3: Joint cooperative spectrum prediction and sensing:
3.1: FC performs spectrum sensing using ED
3.2: Combines the sensing results with prediction results

to get a final decision about channel status.

Computational Complexity: The overall computational
complexity of the proposed scheme aggregates the computa-
tional complexity of each of the three main steps involves in
the scheme. The computational complexity in step 1 mainly
includes learning complexity of the LSTM network. Dur-
ing learning of LSTM network, in forward pass weighted

sum of inputs from previous layer to the next are calcu-
lated whereas in backward pass errors are calculated and
accordingly weights are modified. Since, the computational
complexity of learning LSTM models per weight and time
step with the stochastic gradient descent optimization tech-
nique is O(1) [33], the overall computational complexity of
the LSTM based LSP model after training of ξ epochs is
O(ξW ), where W indicates the total number of edges in the
LSTM network. For LSTM network W is represented as
W = 48i8h + 482

h + 38H + 8h8o, where 8i, 8o, and
8h indicate the number of inputs, the number of outputs, and
the number of cells in the hidden layer, respectively. In step 2,
the maximum number of iterations performed by FC to take a
cooperative spectrum prediction decision for a channel at any
time slot is N , where N indicates the number of SUs in CRN.
Therefore, the computational complexity of step 2 is O(N ).
In step 3, FC performs spectrum sensing based on cooperation
prediction results, which takes a fixed amount of time. Thus,
the computational complexity of step 3 is O(K ). Therefore,
the overall computational complexity of the Algorithm 1 over
a channel at any particular time slot is O(ξW + N + K ).

IV. PERFORMANCE EVALUATION
A. SIMULATION SETUP
To evaluate the performance of the proposed scheme, a sim-
ulation based experiment is conducted and the results are
compared with two existing schemes, namely CPM [7] and
CPSS [19] from literature. In CPM scheme, a centralized
CRN is considered where a SU frame is divided into three
periods namely prediction period, sensing period, and trans-
mission period. In prediction period, each of the SU performs
local spectrum prediction using HMM/MLPmodel and sends
the local prediction results to FC for cooperation. FC per-
forms fusion of the local prediction results to get a coop-
erative decision using hard fusion rules. In sensing period,
spectrum sensing is done to only those channels which are
predicted to be available. If the spectrum sensing result is
idle, the SU performs transmission in the transmission period.
In CPSS scheme, all SUs perform local spectrum prediction
using MLP in the prediction period of the time slot and
sends their results to FC. FC combines the local prediction
results to obtain a cooperative decision. After the spectrum
prediction is over, the base station performs spectrum sensing
in the sensing period of the time slot. In CPSS, sensing is
always performed by the base station after spectrum predic-
tion, to enhance the detection accuracy.

The performance of the proposed scheme is evaluated in
terms of spectral efficiency and energy efficiency. The dataset
from [25], collected by RWTH Aachen University are used.
We prepare the time series data for LSP, which are divided
into training dataset and testing dataset in 3:1 ratio. The
training and testing of prediction model is carried out using
Keras library in python. For the LSTM based local spectrum
prediction model, we consider number of neurons per hidden
layer as 10, number of hidden layers as 1, and learning rate
equals to 0.001, respectively. We further set the length of
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FIGURE 5. Prediction accuracy of time-series prediction models like
ARIMA, MLP, and LSTM for the dataset [25].

time slot T = 1000 ms and sensing time ts = 100 ms [34],
prediction time tp = 1 ms, energy spent per sensing es = 100
mJ, transmission energy per bit et = 1mJ, rate of channel
r = 2 Mbps, and Pαe = 9.75%. We run simulations for
10000 runs to compute the average result. The average result
of data transfer per slot, loss of spectrum opportunity and
energy spent during spectrum sensing are obtained with a
95% confidence interval that is not greater than 4.2% of the
reported average results. For simulation, we introduce errors
in the time series data. The errors in the binary time series
are taken up to 40%, which are introduced by flipping the
binary values. Maximum level of errors is considered up to
40%, because error level at 50% or above, majority of binary
series data become erroneous and performance of cooperative
prediction will deteriorate drastically.

B. PERFORMANCE OF THE TIME SERIES
PREDICTION MODELS
To establish the efficacy of the LSTM based time series
prediction model over traditional model such as MLP and
auto regressive integrated moving average (ARIMA) based
model, we plot a graph in Fig. 5.

Figure 5 shows the relative prediction performance of the
three different time series prediction models viz. ARIMA,
MLP, and LSTM. Out of the given three models, LSTM
based prediction model outperforms ARIMA and MLP with
approximately 15% and 9% better in prediction accuracy,
respectively.

C. PERFORMANCE OF THE AF-RULE AND
MAJORITY-RULE BASED COOPERATIVE PREDICTION
To show the advantage of the presented AF-rule for decision
fusion over conventional majority-rule, we plot the perfor-
mance of the AF-rule and Majority-rule based cooperative
prediction models in Fig. 6. Figure 6 indicates that with the
presence of higher error levels in time series data, prediction
accuracy has deteriorated for both AF-rule and Majority-
rule based cooperative prediction. However, at error levels
varying from 30% to 50%, AF-rule shows an average of 8%
better prediction accuracy compared to the Majority-rule.
This happens due to fact that in the Majority rule, the value of

FIGURE 6. Prediction accuracy versus errors in time series data.

FIGURE 7. Average data transfer per slot versus errors in time series data.

κ in κ-out-of-N fusion rule is fixed which is equal to
(N
2 + 1

)
whereas in AF-rule, κ is decided dynamically on the basis of
error levels present in the time series data using (11).

D. SPECTRAL EFFICIENCY
We present the performance in terms of average data transfer
per slot and average loss of spectrum opportunity to evaluate
the spectral efficiency of the proposed scheme. Figure 7
plots the average data transfer per slot versus error level in
time series data. It shows that, with increased errors in time
series data, the average data transfer per slot is degraded
for all three schemes. It happens due to the negative impact
of errors on the performance of both local and cooperative
predictions. The proposed scheme achieves 23% higher aver-
age data transfer than that of CPM when the error level is
40%, since CPM simply excludes the slots those are falsely
predicted as busy and could have otherwise used. CPSS has
2% higher average data transfer per slot than that of the
proposed scheme at 40% error level. This is because, in CPSS
sensing is always performed after prediction, and hence has
lower false prediction compared to the proposed scheme,
as sensing is not performed in the proposed scheme for DM
state.
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FIGURE 8. Average data transfer per slot versus number of SUs in
cooperation.

FIGURE 9. Average loss of spectrum opportunity versus errors in time
series data.

Figure 8 reveals that increasing the SUs in cooperation
increases the average data transfer for all the three schemes.
This is because, more number of SUs in cooperation offsets
local prediction errors of individual SU, which improves
the cooperative prediction accuracy. The proposed scheme
outperforms CPM because in CPM sensing is performed
for only the channels those are predicted to be available,
which eventually reduces the chances of exploration of falsely
predicted busy channels. However, due to the always sensing
policy in CPSS, the performance of CPSS is higher than the
proposed scheme where sensing is performed when coopera-
tive prediction results an IM state.
In Fig. 9 and Fig. 10, average loss of spectrum opportunity

are plotted with respect to error and number of SUs, respec-
tively. Figure 9 indicates that with the increase in error level
in time series data, the average loss of spectrum opportunity
increases for all the three schemes viz. the proposed scheme,
CPM, and CPSS. This increased in spectrum opportunity loss
decreases the spectral efficiency by reducing the chances of
utilizing the idle slots of PU channel. But, the Fig. 9 also
reflects that the proposed scheme performs around 40%better
than CPM and 2% lower than CPSS in terms of average loss
of spectrum opportunity when the error in time series data

FIGURE 10. Average loss of spectrum opportunity versus number of SUs
in cooperation.

FIGURE 11. Average amount of energy consumed during sensing versus
error in time series data.

ranges from 10% to 40%. Figure 10 plots the average loss
of spectrum opportunity with respect to varying number of
SUs in cooperation. From the figure, it can be observed that
with the increasing number of SUs in cooperation the loss
of spectrum opportunity reduces gradually for all these three
schemes. However, the proposed scheme outperforms CPM
with 41% lower average spectrum opportunity loss and shows
an equivalent performance with CPSS when the number of
SUs ranges from 5 to 30 in cooperation.

E. ENERGY EFFICIENCY
We evaluate the energy efficiency of the proposed scheme
with two different metrics: (i) average amount of energy con-
sumed during sensing and (ii) ratio of average data transfer
per slot to the average sensing energy consumption.

In Fig. 11 and Fig. 12, we demonstrates the performance
of the proposed scheme in terms of average amount of energy
consumed during sensing with respect to error in time series
data and the number of SUs in cooperation, respectively.
Figure 11 reveals that the proposed scheme consumes lesser
energy in sensing operations at varying level of errors in
time series data and outperforms both CPM and CPSS. The
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FIGURE 12. Average amount of energy consumed during sensing versus
number of SUs in cooperation.

proposed scheme consumes approximately 3.8 times and
2.5 times lower sensing energy compared to CPSS and CPM,
respectively, when error level reaches to 40%. The proposed
scheme performs sensing only when cooperative prediction
outputs an IM state. With the increase in errors level, the fre-
quency of occurrences of IM state gets increased, leading to
higher energy consumption. In contrast, energy consumption
in CPMandCPSS is higher compared to the proposed scheme
and follows different trends. In CPM, increase in error level
escalates the false prediction, which yields a lower amount
of sensing operations whereas energy consumption in CPSS
is independent of level of errors and sensing is always per-
formed irrespective of the prediction results.

Figure 12 shows that, with increase in the number of SUs
in cooperation, the proposed scheme reduces energy over-
head and consumes at least 33 and 25 times lower sensing
energy compared to CPSS and CPM, respectively, when the
number of SUs reaches up to 25 or above. In the proposed
scheme, PIM decreases with increasing SUs, which leads to
reduced sensing operations, and hence lower energy con-
sumption. Energy consumption in CPM remains at a higher
level and marginally increases with increasing SUs. The pos-
itive impact of the number of SUs on prediction accuracy in
CPM leads to more sensing operations with more correctly
predicted idle slots. For CPSS, sensing is always performed
by FC irrespective of the prediction results, and hence energy
consumption remains almost constant, which is significantly
higher compared to the proposed scheme.

In TABLE 1 and TABLE 2, we present the performance
of the proposed scheme in terms of ratio of average data
transfer per slot to the average sensing energy consumption
with respect to varying level of errors in time series data and
the number of SUs in cooperation, respectively. The perfor-
mance in terms of above ratio provides a better insight of the
proposed scheme regarding its efficacy in realistic scenario
of deployment. The proposed scheme achieves approximately
3.2 times and 3.7 times better performance compared to the
CPM and CPSS, respectively, when error level in time series
data reaches to 40%. This is because, the proposed scheme

TABLE 1. Ratio of average data transfer per slot to the average sensing
energy consumption versus error in time series data.

TABLE 2. Ratio of average data transfer per slot to the average sensing
energy consumption versus number of SUs.

TABLE 3. Ratio of average data transfer per slot to the transmission
energy consumption versus error in time series data.

simultaneously considers the enhancement of spectral effi-
ciency by improving detection performance and reduction of
energy consumption by lowering the frequency of sensing.
TABLE 2 reveals that the proposed scheme achieves 26 times
and 28 times better performances than that of CPMandCPSS,
respectively, when the number of SUs in cooperation ranges
from 5 to 30.

In TABLE 3 and TABLE 4, we present the performance
of the proposed scheme in terms of ratio of average data
transfer per slot to the transmission energy consumption with
respect to varying level of errors in time series data and the
number of SUs in cooperation, respectively. The proposed
scheme achieves approximately 1.73 times better perfor-
mance compared to the CPM when error level in time series

26116 VOLUME 9, 2021



P. Chauhan et al.: CSP-Driven Sensing for Energy Constrained CRNs

TABLE 4. Ratio of average data transfer per slot to the transmission
energy consumption versus number of SUs.

data reaches to 40%. This is because, the proposed scheme
effectively detects the available slots using prediction-driven
sensing technique, which enhances the spectral efficiency.
Further, the proposed scheme achieves 97% similar perfor-
mance compared to the CPSS when error level in time series
data reaches to 40%. CPSS adopts an always sensing policy
after prediction which results in better detection accuracy and
leads to higher spectral efficiency but at the cost of higher
energy overhead. TABLE 4 reveals that the proposed scheme
achieves 1.57 times better performance than that of CPM and
achieves similar performance compared to the CPSS, when
the number of SUs in cooperation reaches to 30.

V. CONCLUSION
In this article, we proposed a cooperative spectrum
prediction-driven sensing scheme to reduce energy consump-
tion while maintaining the spectral efficiency for energy
constraint CR networks. We applied an LSTM based local
spectrum prediction model to identify the status of a channel
before actual sensing to improve energy efficiency. We fur-
ther designed a parallel fusion based centralized cooperative
prediction model, which uses adaptive fusion rule to improve
the performance of local prediction. Finally, the resultant
cooperative prediction model was combined with a spec-
trum sensing framework. Sensing operation was performed
only when the cooperative spectrum prediction results in
an indeterminate state in order to enhance the spectral effi-
ciency. Simulation results demonstrated that the proposed
scheme outperformed both CPMandCPSS in terms of energy
efficiency. It also revealed that the spectral efficiency of
the proposed scheme was better than CPM and comparable
to CPSS.
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