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ABSTRACT This paper presents a large, modular X-band rectenna array developed for the planned
demonstration of a space-to-Earth power beaming link operating at 10 GHz. The array is composed of 16 tiles
assembled into a panel greater than 1 m × 1 m in size. To accommodate tests during the early development
and construction of the space-based transmitter, the rectenna cells are designed to maximize performance at
low power densities using commercial-off-the-shelf Schottky diodes. To increase efficiency at the expense
of some field-of-view, each rectenna cell employs a 4-antenna subarray to feed a single diode. Array
performance is validated over a 30-dB range of power densities from 1 mW/m2 to 1 W/m2, reaching a
total rectenna efficiency in excess of 39% at 1 W/m2. The rectenna array’s field of view, defined by the 3-dB
beamwidth of its antenna subarray, is 36◦ × 36◦. The DC power collected by each tile is combined in a
reconfigurable manner to control the output voltage level for the protection of electrical loads. These results
are expected to directly influence the first demonstrations of space-to-Earth power transfer.

INDEX TERMS Wireless power transmission, rectennas, solar power, satellites.

I. INTRODUCTION
The space-to-Earth transfer of power has long been an attrac-
tive proposal for generating environmentally clean energy at
a large scale. The concept is that a solar-power satellite (SPS)
in Earth’s orbit would convert solar power into microwave
power that is beamed down to Earth and collected by rectenna
(rectifying antenna) arrays [1], [2].

Despite being originally envisioned in 1968 and assessed
for decades, no prototype SPS systems have actually been
deployed due to high costs and technological challenges [2].
However, given the maturity of modern space technology,
the Air Force Research Laboratory (AFRL) has announced
plans to develop and deploy the first-ever prototype SPS
system under a new program: Space Solar Power Incremental
Demonstrations and Research (SSPIDR) [3]. The prototype
will focus on a smaller scale but critical application: deliv-
ering power to forward operating bases in areas that do not
otherwise have access to power. Using SPS systems, power
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can be beamed from space to wherever it is needed on the
ground.

This paper presents the first rectenna-array prototype
developed for SSPIDR. The design is required to receive
left-hand circularly polarized (LHCP) RF power at 10 GHz
over a 1 mW/m2 to 1W/m2 range of incident power densities.
This low level of incident RF power is targeted to accommo-
date the reduced transmit levels that will be available in early
development of the SSPIDR SPS. For rapid development and
deployment, the array features interconnecting, modular tiles
based on commercial-off-the-shelf technology.

Rectenna arrays themselves are not new. The first arrays
were developed in the 1960s and 1970s by William
Brown, who embedded an array of Schottky-diode rectifiers
into dipole antennas to rectify incident S-band microwave
power [4]–[8]. A historical overview of these experiments is
provided in [4]. Since then, numerous rectenna and rectifier
designs have been demonstrated at a variety of frequency
bands. Fig. 1 presents a survey of rectifier and rectenna
efficiencies at 915 MHz [9]–[22]; 2.45 GHz [6], [20]–[36];
5.8 GHz [35]–[46]; 8-12 GHz [47]–[55]; 24-35 GHz
[55]–[62]; and 90-95 GHz [62]–[69].
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FIGURE 1. A survey of measured rectifier and rectenna efficiencies in the
literature for a variety of frequencies. Markers with a red outline are
rectenna efficiencies, plotted versus power incident into a rectenna cell.
Markers with a black outline are rectifier efficiencies estimated from
rectenna measurements, as explained in Section IV-E. Markers with no
outline are simply rectifier measurements. The shaded portion of the plot
represents the estimated rectifier power levels for the power densities
prescribed by the SSPIDR program. For comparison, the measured
rectenna cell efficiency ηcell and estimated rectifier efficiency ηrect from
this work are also plotted (see Section IV-E).

Two well-known trends are clear from Fig. 1: (1) the
rectifier efficiency increases as incident power level increases
and (2) rectifier efficiency drops with increasing frequency.
The first trend is due to the required forward voltage drop
across the diode(s) in the rectifier. As incident power level
decreases, a larger proportion of the generated DC voltage
(and thus power) is lost to the diodes [70]. The second trend
is due to the low-pass filter effect caused by the diode junction
capacitance and series resistance [70].

Although the efficiency of rectifiers decreases with
increasing frequency and the atmospheric attenuation gener-
ally increases with increasing frequency [71], the required
transmit-aperture sizes decrease with frequency [4] and
can therefore be easier to deploy. The 10-GHz transmit
frequency of SSPIDR represents a compromise between
transmit-aperture size and rectifier efficiency; in addition,
at 10 GHz, total standard atmospheric attenuation from sea
level to space at zenith is estimated to be less than 0.06 dB
for typical atmospheric conditions [71], making this an attrac-
tive frequency for space-to-Earth microwave power beaming.
Unfortunately, Fig. 1 indicates that no designs found in the
literature in the 8-12 GHz range are optimized for the low
power levels required for the SSPIDR demonstration. The
rectenna panel design presented in this paper fills that void
and exhibits efficiencies that significantly exceed the limited
results from the literature.

The new rectenna array is designed with large-scale
manufacturability and simplicity in mind. Most examples
of rectenna arrays approaching a size of 1 m × 1 m
in the literature appear to involve the manual assem-
bly of individual rectenna elements [8], [32], [72], [73]
and the suspension of elements λ/4 above a metallic

reflector [8], [32], [72], [73], [74]. The design presented here
employsmodular printed-circuit-board (PCB) tiles, which are
more conducive to large-scale manufacturability and ease of
repair. The tiles can be arranged into a panel of arbitrary size.
In addition, to allow safe connection of multiple tiles to a sin-
gle DC load, this paper presents a double-pole, double-throw
(DPDT) switch matrix; the switch matrix provides recon-
figurable control of the output current and voltage levels
to maintain a safe connection to a variety of practical DC
loads and to improve the efficiency of subsequent DC-to-DC
conversion by presenting an input voltage that minimizes
dissipative loss.

This paper is structured as follows: Section II presents
the design of the rectenna unit cell. Section III describes the
population of the rectenna cell into 36-cell tiles that comprise
the 1.0 m × 1.1 m panel. Section IV presents experimental
results detailing the performance of the rectenna tiles and
panel versus incident power density and angle. Section V
concludes this paper by summarizing its extension of the
state of the art in terms of efficiency, sensitivity, scalabil-
ity, and reconfigurable tile interconnectivity. These results
are expected to influence multiple demonstrations of space-
to-Earth power beaming within this decade.

II. RECTENNA CELL DESIGN
A rectenna consists of one or more antennas for receiving
RF power and a rectifier for converting the RF power into
DC power. Most low-power rectifier designs, including the
design in this paper, employ Schottky diodes. Schottky diodes
have low forward voltages that yield higher efficiency at
low power levels compared to transistors and other diode
devices [70]. Also, the low junction capacitance of Schottky
diodes improves efficiency when operating in the microwave
range.

The DC outputs of numerous rectennas can be connected
together [8], [32], [72], [73], [74] to collect RF power over
larger aperture areas. In this paper, the individual rectennas
are referred to as cells. The entire rectenna array is referred
to as a panel. The panel is comprised of PCB tiles that serve
as an intermediate between the cell and panel.

FIGURE 2. Block diagram of the rectenna topology used in this paper.
This topology is based on the original rectenna designs by William
Brown [4]–[8].

Fig. 2 illustrates the block diagram of the rectenna cell
topology used in this paper. Multiple antenna elements
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receive incident RF power. A matching network provides
a complex-conjugate impedance match between the anten-
nas and the Schottky-diode rectifier, to minimize reflected
RF power. The Schottky diode converts the RF power
to DC power. A low-pass filter supplies DC power to
the load while containing RF power within the rectenna.
A harmonic-rejection filter suppresses the radiation of har-
monic frequencies generated by the diode and improves effi-
ciency by containing harmonic power within the rectenna for
additional rectification.

The number of antenna elements per cell is a key tradeoff
in low-power-density rectenna arrays. At the lowest power
densities prescribed by the SSPIDR program, the rectenna
efficiency is expected to be very low (see Fig. 1). Combining
RF power from multiple antenna elements can boost the
rectifier’s input drive level in order to increase RF-to-DC
conversion efficiency. This increase in efficiency, however,
comes at the expense of a narrower field of view, which may
be problematic for SPS applications since the position of a
low-Earth-orbit (LEO) transmitter may be changing or impre-
cisely aligned relative to the rectenna array. As a tradeoff
between the conflicting requirements of a wide field of view
and sensitivity to very low levels of incident power, the design
presented in this paper combines RF power from four antenna
elements.

FIGURE 3. PCB layout of the rectenna unit cell, measuring 42.2 mm ×
42.2 mm. The cells are comprised of four LHCP microstrip antennas
(A) connected together by coplanar strips (B) of length 360◦ and
terminated on the right by a 90◦ line (C); 2-pF, ceramic, 0402 capacitor
(D); and 90◦ open stub (E). The antennas are connected to a differential
Schottky-diode (F) rectifier on the left. A 90◦ open stub (G) and a 2-pF,
shunt capacitor (H) are located 90◦ away (I) from the diode to isolate RF
power from the DC load while providing a Class-F termination to the
diode. The matching network is comprised of open stubs (J) for matching
and open-stub, 20-GHz-harmonic shorts (K) for reducing the radiation of
the 20-GHz harmonic.

The rectenna unit cell, shown in Fig. 3, was fabricated
on a 0.76-mm-thick Rogers 3003 (εR = 3) printed circuit
board (PCB) with 18-µm-thick rolled-copper metallization
and immersion-silver plating. Four identical left-hand circu-
larly polarized (LHCP) microstrip antenna elements [75] are
spaced 21.1 mm (0.7λ0) center to center, resulting in a 3-dB
beamwidth of 36◦ by 36◦.

The antennas in Fig. 3 are connected to a differential
Schottky-diode rectifier using coplanar strips [4], [45]. The
single-diode approach maximizes rectifier sensitivity and
efficiency [70]. The Skyworks SMS7630-061 Schottky diode
was selected for its low forward voltage, low junction capac-
itance (0.14 pF), and minimal package parasitics at 10 GHz.
A 90◦ open stub and 2-pF, shunt capacitor are located 90◦

away from the diode to isolate RF power from the DC
load. At the plane of the diode, these terminations ideally
present an open-circuit condition for all odd harmonics and a
short-circuit condition for all even harmonics, corresponding
to a Class-F harmonic load [76]. All microstrip dimensions
in Fig. 3 are designed based on electromagnetic simulation
with a modified version of the manufacturer-provided diode
model, as described in Section IV-A.

An open-stub matching network provides a complex-
conjugate impedance match between the Schottky-diode
rectifier and the antennas at an incident power density
of 200 mW/m2 and 10 GHz operation. Reflection loss is kept
small over the entire 1 mW/m2 to 1 W/m2 range. An open
stub of length 90◦ at 20GHz is embeddedwithin thematching
network to minimize radiation of the second harmonic.

III. RECTENNA ARRAY DESIGN
To demonstrate scalability toward an array of significant size,
36 rectenna cells are incorporated into a 250 mm x 280 mm
tile, which serves as the modular building block for the panel.
The DC outputs of all 36 cells are combined to form a single
DC output for the tile. The panel is comprised of a 4-by-4 grid
of 16 tiles and measures 1.0 m × 1.1 m. The DC outputs
of each tile are combined in a reconfigurable matrix using
a series of DPDT switches.

FIGURE 4. The rectenna tile PCB layout. The tile consists of 6 rows, each
containing 6 cascaded rectenna cells. Since the cells within a row are
connected in parallel, the DC currents generated by each cell are summed
together. The DC outputs of each row are then connected in series,
thereby adding their DC voltages. This graphic assumes that each cell
generates the same voltage and current, but these values will vary slightly
from cell to cell in practice.

Fig. 4 illustrates the rectenna tile design. The tile is com-
prised of 6 rows. Each row sums the DC currents from
6 cascaded rectenna cells. On the left-hand side of Fig. 4,
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FIGURE 5. The front-side view of the assembled rectenna panel,
comprised of a 4-by-4 array of rectenna tiles. The panel is shown here
mounted on a mechanical positioner for testing in an anechoic chamber.

FIGURE 6. A wiring diagram for a double-pole, double-throw (DPDT)
switch that selects between a series connection and a parallel connection
for a pair of rectenna tiles. The switch is represented by its 6 pins (black
circles), with the electrical connection between pins shown for both
toggle states.

the differential outputs of the 6 rows connect in series to sum
together their DC voltages. Assuming uniform illumination
and identical performance for all cells, the tile will produce
6x the current and 6x the voltage of a single rectenna cell.
This represents 36x the DC power of a single rectenna cell
and the same field of view as a single rectenna cell since only
the DC output power is combined rather than any RF power.
A 1.8-V Zener diode at the end of each row protects the
Schottky diodes from an overvoltage condition. To provide
mechanical rigidity, the tile is bonded to a 1.6-mm FR4
substrate, with no associated electrical impact.

A total of 16 tiles assemble into a 4-by-4 array, incor-
porating 576 rectenna cells, as shown in Fig. 5. Each
of the 16 tiles provides a differential DC output. These
16 outputs can connect to a common load (i) in series,

FIGURE 7. The wiring diagram employed by the rectenna panel for
reconfigurable connection of the rectenna tiles. Using this switching
scheme, the rectenna panel can be connected in configurations of 16:1,
8:2, 4:4, 2:8, 1:16, where M:N indicates groups of M tiles connected in
series and N such groups connected in parallel.

FIGURE 8. The back-side view of the assembled rectenna panel.
Twin-axial cables feed the DC output from each tile to a box housing the
reconfigurable switch matrix. Mechanical switches are used in this
implementation in order to minimize DC power consumption during
experimental demonstrations. The panel is shown here mounted on a
mechanical positioner for testing in an anechoic chamber.

(ii) in parallel, or (iii) with some in series and some in parallel.
Prior work [72], [77], [78], provides comparisons between
these three options and shows that, although DC power is
nearly identical in all cases, DC voltage and current varies
significantly. Connecting tiles in series will sum their volt-
ages together while connecting tiles in parallel will sum their
currents together. At the lowest prescribed incident power
density of 1 mW/m2, it is best to connect all outputs in
series tomaximize the output voltage. However, at the highest
prescribed power density of 1W/m2, the summation of all tile
voltages may exceed the voltage limits of a practical output
load, e.g., a voltage regulator connected to a battery. In this
case, parallel connections may be better.

Reconfiguring the DC connections between tiles allows the
panel to adapt load voltage and current for a wide range of
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FIGURE 9. Measured and simulated two-axis antenna patterns:
(a) azimuth and (b) elevation. The simulated results were computed using
the commercial electromagnetic solver Ansys HFSS.

incident power densities. Fig. 6 shows a wiring diagram for
a DPDT switch that selects between a series connection and
parallel connection for a pair of rectenna tiles. The wiring
diagram in Fig. 7 extends this DPDT scheme to all 16 tiles
used in the rectenna panel. Tiles are interconnected using
DPDT switches in a recursive, four-layer hierarchy until there
is only one DC output, the load for which is represented by a
resistor in the figure. When all the switches in any given layer
of the hierarchy are thrown in the same direction, all 16 tiles
are loaded with an equal output resistance, which is useful
for ensuring that the effective output resistance seen by each
tile is set to the optimal value for RF-to-DC conversion effi-
ciency. Under this constraint, the switching scheme depicted
in Fig. 7 can drive five different connection configurations:
16:1, 8:2, 4:4, 2:8, and 1:16, where M :N indicates groups of
M tiles connected in series and N such groups connected in
parallel. Unlike the alternative switching scheme presented
in [77], this topology is ‘‘fail safe’’ in that no choice of switch
configuration will result in an opened or shorted output.

The DC switching circuitry is housed in a metal box
on the back of the rectenna panel, with twin-axial cable
connecting the switch matrix to the 16 individual tiles,

FIGURE 10. The impedance transformation between the antenna and
rectifier: (a) reference plane locations and (b) matching-network
impedance transformation plotted on a Smith chart over 9.5 to 10.5 GHz.
The solid curves are simulated results; the dashed curves are
measurements at Planes 1 and 4. Complex-conjugate load impedances
are shown in blue for a variety of power levels incident upon the rectifier
and indicate some variation vs. input power level.

as shown in Fig. 8.Mechanical switches are used here in order
to minimize DC power consumption during experimental
demonstrations, which may feature power densities as low as
1 mW/m2. For future demonstrations with higher power den-
sities, transistor-based switches or electromechanical relays
can also be considered to enable a simple and efficientmethod
of controlling the DC output voltage digitally.

IV. EXPERIMENTAL RESULTS
Experiments were conducted on breakout PCBs for the rec-
tifier, antenna, and matching network to verify performance.
Measurement and simulation results for these subcomponents
are presented first, followed by the measurement and simula-
tion results for the rectenna tiles and panel.

A. RECTIFIER DIODE
The rectifier was individually fabricated on a breakout PCB,
without any matching network included. The measured DC
I-V curve of the Schottky diode deviates slightly from the
manufacturer-provided SPICE model; a least-squares curve
fit of the Shockley diode equation to the measured data
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FIGURE 11. Rectenna measurement setup in the anechoic chamber.

resulted in three adjusted SPICE parameters: RS = 13.2 �,
IS = 4.2·10−6 A, N = 1.1725. Additionally, the model
junction capacitance was adjusted to CJ0 = 0.11 pF based on
the measured DC output voltage versus accepted RF power
characteristic.

B. ANTENNA
The 2 × 2 differential antenna was fabricated on a break-
out PCB. It was measured in an anechoic chamber using a
2-port vector network analyzer (VNA) and a transmit horn
of known gain. The measured two-axis antenna patterns pro-
vided in Fig. 9 show excellent agreement with simulation.
Themeasured pattern has a beamwidth of 36◦ in both azimuth
and elevation; the measured gain is 13.0 dBic at broadside.
The measured polarization loss factor [75], representing the
polarization mismatch loss between the antenna and an ideal
LHCP wave, is 0.1 dB.

C. MATCHING NETWORK
Fig. 10 illustrates the impedance transformation between
the antenna and the rectifier. The simulated results are pro-
vided by the commercial electromagnetic simulation software
Advanced Design System. The measured results are provided
by a VNA, which measured a breakout PCB containing only
the matching network and a breakout PCB containing only
the antenna. Deembedding was used to remove fixture effects
from the measurements. The impedance looking to the right
of Plane 4 matches well with the complex conjugate of the
rectifier impedance ZL looking to the left of Plane 4 for a wide
range of power levels incident upon the rectifier. The rectifier
was connected to a load resistance of 800 �. Note that the
length of transmission line between Plane 1 and Plane 2 con-
trols the size of the ‘‘loop’’ shown in the impedance contour
at Plane 4 and is chosen to broaden the impedance-matching
bandwidth to provide tolerance to fabrication variance.

D. RECTENNA
The total efficiency ηt of a rectenna array is best defined as

ηt =
DC Output Power∫
A PD(x, y) · dA

, (1)

where the denominator is an integral of the incident power
density PD(x, y) over the area of the rectenna. This definition
thus accounts for all sources of loss: aperture efficiency,
polarization loss, impedance mismatch, RF-to-DC conver-
sion efficiency, and all other dissipative losses within the
rectenna. The efficiency ηt was measured in an anechoic
chamber using the measurement setup depicted in Fig. 11.
A VNA provided the signal source, which was amplified
by a 20-W commercial power amplifier. A 90◦ hybrid and
dual-feed horn antenna were used in tandem to produce
left-hand circularly polarized (LHCP) radiation. The rectenna
under test was mounted on a positioner that can roll and yaw,
enabling pattern measurements. The separation distance d
was chosen so that the tapering of power density from the cen-
ter to the edge of the rectenna under test was less than 1 dB.
The distance d was set to 2.0m for the rectenna tiles and 4.8m
for the rectenna panel. The incident power density at the plane
of the rectennawas calibrated using aNarda 640 receiver horn
and a power meter. The DC voltage produced by the rectenna
tile or panel was measured by the VNA’s DC voltmeter for
automated data collection. A 1-M� potentiometer was used
to step down the voltage to within the limits of the VNA’s
voltmeter. A second voltmeter was used for calibration of the
potentiometer settings.

Using this setup, the DC output from a single rectenna
tile was measured while sweeping the load resistance using a
variable resistor (PRS-200W from IETLabs) to determine the
optimal value, which was found to be 800 �. Fig. 12 shows
the measured total efficiency ηt for 20 fabricated rectenna
tiles, each driving an 800-� load. An average total efficiency
ηt of 39%was measured at PAVG = 980 mW/m2, where PAVG

27902 VOLUME 9, 2021



B. B. Tierney et al.: Scalable, High-Sensitivity X-Band Rectenna Array for the Demonstration of Space-to-Earth Power Beaming

is the average incident power density over the surface of the
rectenna tile. The figure shows excellent agreement between
simulation and measurement.

The 1.0 m× 1.1 m rectenna panel was assembled using the
best 16 of the 20 rectenna tiles. The total efficiency ηt for all
five DPDT-switch configurations is plotted in Fig. 12. Each
configuration yielded approximately the same efficiency. For
the 5 panel configurations (16:1, 8:2, 4:4, 2:8, 1:16), the load
resistance was scaled as needed (12.8 k�, 3.2 k�, 800 �,
200 �, 50 �) to provide the optimal 800-� load condition to
each tile. An average total efficiency 41% was measured at
PAVG = 920 mW/m2.

FIGURE 12. Measured and simulated rectenna efficiencies for the tile and
panel in (a) linear and (b) dB scale. The x-axis indicates the incident
power density averaged across the entire face of the rectenna. A load
resistance of 800 � was used for the tiles. For the 5 panel configurations
(16:1, 8:2, 4:4, 2:8, 1:16), the load resistance was scaled as needed
(12.8 k�, 3.2 k�, 800 �, 200 �, 50 �).

To demonstrate the utility of the DPDT-switch matrix to
provide efficient rectification over a wide range of load resis-
tances, Fig. 13 provides the efficiency versus load resistance
for the panel at PAVG = 920 mW/m2. An alternative way
of viewing these results is that the switch matrix provides
coarse control over the panel’s output voltage, which can
range from 5 to 71 V in this example. When connecting to
a battery-charging circuit comprised of a DC-to-DC voltage

FIGURE 13. Rectenna panel efficiency versus load resistance at
920 mW/m2 average power density. The output voltage at each efficiency
peak is provided.

converter, this coarse control canmaintain a safe input voltage
level and could potentially be used to optimize charging
efficiency. The 1:16 configuration can be used for high power
densities to minimize output voltage while the 16:1 configu-
ration can be used for the lowest power densities to maximize
output voltage.

Fig. 14 shows the received DC power for the rectenna
panel versus angle at several incident power densities in the
1 mW/m2 to 1 W/m2 range. Because the antenna subarray’s
field of view was sacrificed for higher gain (see Sec. II),
the received power begins to roll off beyond ±20◦. Due to
the roll off, the transmitter source should be located within the
±20◦ cone for most efficient power transfer.

E. LITERATURE COMPARISON
Comparing the rectenna panel performance to prior work is
not simple for a three reasons:

1. As discussed in Sec. I, there are very few prior designs
presented in the 8-12 GHz band that focus on such low
power densities. Instead, rectenna designs have been
primarily concentrated in the 915 MHz, 2.45 GHz, and
5.8 GHz bands. However, a direct comparison of effi-
ciencies when frequencies differ does not provide the
entire picture. One should also consider the advantages
of a higher frequency, such as the reduced size of the
space-based transmitter.

2. Efficiency comparisons lack validity if the antenna
designs differ significantly in gain (e.g., the 4-patch
antenna presented in this paper versus a single patch).
The tradeoff in field of view must also be considered.

3. Most designs surveyed in Fig. 1 are single rectenna
cells that are not arrayed, making it difficult to define a
fair physical area for the purposes of (1).

A good comparison to start with is that of estimated rec-
tifier efficiency. Since the rectifier is the dominant source of
loss, such a comparison is quite significant and avoids the sec-
ond and third issues above. Moreover, comparisons can be
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FIGURE 14. Rectenna panel DC output power versus (a) azimuth and
(b) elevation for the 16:1 case with RL = 12.8� for a range of average
power densities.

made to papers that only discuss rectifiers. For rectenna
measurements, the rectifier efficiency can be estimated after
computing the effective area Ae of the rectenna cell’s antenna
using the measured or simulated antenna gain and polariza-
tion loss factor [75]:

Ae =
λ2 · G · PLF

4π
, (2)

where G is the antenna gain and PLF is the polarization loss
factor. The estimated rectifier efficiency is then given by

ηrect =
PDC

PAVG · N · Ae
, (3)

where PDC is DC output power of the device,N is the number
of rectenna cells in the device, and PAVG is the average inci-
dent power density over the surface of the rectenna aperture.
The disadvantage of using the ηrect metric is that it does not
penalize for low aperture efficiency or high polarization loss.

For arrays, an even better metric of comparison than
ηrect is the rectenna cell efficiency ηcell , which can be
computed as

ηcell =
PDC

PAVG · N · Acell
, (4)

where Acell is the physical area of a single rectenna cell.
However, for single-element results in the literature, it is
difficult to define Acell .
Fig. 1 plots both ηrect and ηcell of this paper alongside the

efficiencies found in the literature. ηrect is calculated using the
measured antenna gain of 13.0 dBic, measured PLF of 0.1 dB,
and the average, measured efficiencies of the 20 rectenna
tiles. At an average incident power density of 980 mW/m2,
2.4 dBm is incident upon a rectenna cell and an estimated
1.4 dBm is incident upon the rectifier. In this case, ηrect
and ηcell are 55% and 43% respectively. The metric ηcell
exceeds ηt because the DC connections on the left side of
the tile occupy area over which incident power density is
not collected, corresponding to an estimated 10% decrease in
efficiency. The figure shows that the efficiencies measured in
this work exceed all previous work above 8 GHz at the power
levels of interest.

V. CONCLUSION
A large X-band rectenna panel design optimized for low
power densities was presented. The panel was comprised
of 16 interconnecting, modular rectenna tiles made using
printed-circuit-board (PCB) technology. The average, mea-
sured total rectenna efficiency ηt was 39% at 10 GHz for an
average incident power density PAVG of 980 mW/m2 across
a given rectenna tile. At this power density, the rectifier
efficiency ηrect and ηcell are estimated to be 55% and 43%
respectively. Using a multilayer board design, the DC con-
nections within the tile could be moved to the backside of the
rectenna array to let ηt equal ηcell .

FIGURE 15. A hypothetical plot of rectenna panel output voltage versus
incident power density using the reconfigurable tile-interconnection
scheme. The voltage can be kept below a prescribed level (e.g., 5 V) over
the 30-dB dynamic range of incident power density. This is advantageous
for connection to a battery-charging circuit comprised of a DC-to-DC
voltage converter, as it maintains a safe voltage level and can result in
more efficient charging.

The rectenna tiles’ DC outputs were interconnected in a
reconfigurable manner using an array of DPDT switches to
produce a single DC output for the entire panel. As shown
in Fig. 15, the DPDT-switch matrix can be used to constrain
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the panel’s output voltage below a threshold (e.g., 5 V in
this case) with negligible loss over the entire 30-dB dynamic
range of incident power density. For low-power applica-
tions, such control of the output voltage can also improve
the efficiency of subsequent DC-to-DC voltage conversion,
e.g., in battery-charging applications.

Multiple rectenna panels can be interconnected for even
more DC output power. Parallel connections between panels
are recommended since theywill be easier to cascade together
over large outdoor facilities. For large-scale applications,
an individual tile should be sized while keeping in mind that
the minimum voltage achievable by the switch matrix is equal
to the output voltage of a single tile. Likewise, the number of
tiles assembled into parallel-connected panels should be cho-
sen while keeping in mind that maximum voltage achievable
from each panel sets the maximum voltage available from the
parallel cascade of panels.
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