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ABSTRACT In order to pursue rapid development of the new generation of wireless communication systems
and elevate their security and efficiency, this paper proposes a novel scheme for automatic dual determination
of modulation types and signal to noise ratios (SNR) for next generations of wireless communication
systems, fifth-generation (5G) and beyond. The proposed scheme adopts unique signatures depicted in
two-dimensional asynchronously sampled in-phase-quadrature amplitudes’ histograms (2D-ASIQHs)-based
images and applies the support vector machines (SVMs) tool. Along with the estimation of the instantaneous
SNR values over 0-35 dB range, the determination of nine modulation types that belong to different
modulation categories i.e., phase-shift keying (Binary-PSK, Quadrature-PSK, and 8-PSK), amplitude-shift
keying (2-ASK and 4-ASK) and quadrature-amplitude modulation (4-QAM, 16-QAM, 32-QAM, and 64-
QAM) could be achieved by this scheme. The application of this scheme has been simulated using a channel
model that is impaired by additive white Gaussian noise (AWGN) and Rayleigh fading, covering a broad
range of SNRs of 0-35 dB. The performance of this dual-determination scheme shows high modulation
recognition accuracy and low mean SNR estimation error. Therefore, it can be a better alternative for
designers of next generation wireless communication systems.

INDEX TERMS Modulation recognition, SNR estimation, 5G communication system, support vector
machine, feature-based approach.

I. INTRODUCTION
The recent decades have witnessed a tremendous demand
for more secure, reliable, efficient, high-quality and cost-
effective wireless and mobile applications and services.
Future wireless applications and services are envisaged to
lead to a continuous growth of demand for high data rates,
quality of service (QoS) and mobility. With the rapid growth

The associate editor coordinating the review of this manuscript and

approving it for publication was Md Fazlul Kader .

of telecommunication systems, it seems that there are many
challenges which still cannot be addressed by the current
technologies, such as enhancing the QoS of the wireless
schemes, securing wireless communication, simplifying
implementation complexity, and providing accurate channel
state estimation [1]. Automatic determination techniques of
signal parameters can be a suitable and potential platform
that provides solutions to the abovementioned challenges.
In the literature, many techniques for the estimation of
signals’ parameters, such as modulation type, signal-to-noise
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ratio (SNR), bit-rate, transmitted signal power etc., in wire-
less communications have been presented [2]–[7].

The transmitters in the next generation wireless networks
are expected to vary and adjust some of these parameters
based on the existing channel conditions. This, in turn,
will demand the receivers that engaged in these systems
to be fully equipped with the autonomous determination
techniques of various signal parameters. The majority of the
existing schemes in the literature focus on identifying one
signal parameter for e.g. modulation type i.e. automatic mod-
ulation recognition (AMR) [8]–[16] or signal-to-noise ratio
(SNR) [17]–[20] rather than on dual identification of multiple
parameters. Additionally, they entail tight-synchronous and
fast sampling of the detected signals. Besides, the majority of
existing AMR or SNR estimation techniques consider only
AWGNand notmultipath fading channels. This affects vitally
on the performance of these present techniques.

In general, signal parameter determination techniques are
usually categorized into feature-based (FB) and likelihood
ratio-based (LB) approaches [2], [21]. The former scheme
exploits the statistical characteristics of the received signals
and determines the desired signal parameters based on the
extracted features of these characteristics. On the other
hand, the latter adopts multiple hypothesis-based solutions,
calculates the values of the likelihood functions and compares
themwith a threshold value in order tomake final decisions as
elaborated in [22]–[24]. Alternatively, there are few existing
techniques adopted in the literature which propose a fusion
model of both FB and LB schemes together for modulation
formats classification [25], [26]. LB schemes may offer
an optimal solution in the determination process but they
undergo very high computational complexity [21], [27].

The signal identification, by FB algorithms, is made
based on the extraction of single or multiple statistical
features from the received signal. For instance, high order
cumulants (HOCs) features are used in [28] and in [29], [30]
in order to discern the modulation types. However, one
drawback of HOCs is that it requires huge number of
samples [31]. Besides, poor performance results for higher
order QAM modulation as shown in [29], [30]. The average
instantaneous amplitude values in conjunction with the
maximum value of spectral power density are utilized
in [32] for the recognition of modulation types. However,
the presented algorithm in [29] outperforms the method
in [32] due to its robustness to the noise. In [33], the authors
propose a cumulant-based technique to identify only PSK and
QAM-based signals with the assumption of having a perfect
channel information.

Identification of PSK and QAM signals have been investi-
gated in [16], [27], [34], [35]. The work in [16] focused on the
modulation classification of only three types of signals (i.e.,
QPSK, 16QAM and 64QAM). In the process of modulation
identification, they had to apply Cepstrum technique to resist
the multipath fading phenomenon. In term of modulation
recognition accuracy, their method approached an average
value of 80%. The scheme presented in [27] can be concluded

as follows: 1) It identifies only four types of modulations (i.e.,
BPSK, QPSK, 16-QAMand 64-QAM), 2) the scheme applies
to a cooperative relay network that requires at least two
time slots to perform successful AMR, 3) the communication
channel between transmitter and receiver is impaired by
flat fading, 4) the modulation recognition accuracies of
SVM are quite good, it reaches 98.25% at best (assuming a
perfect channel state knowledge), for a pool of signals with
four modulations only, 5) the performance of the algorithm
depends on intermediate nodes (relays) between source and
destination. An outage or any disconnection in these nodes
will cause a failure in the entire communication system,
6) the scheme assumes that SNR is known. A Similar
modulation family to [27], has been deemed in the work [35]
to handle AMRproblem using their features-based technique.
In their method, authors proposed Bhattacharrya Distance
based Feature Selection (BDFS) algorithm and neural
network tool to extract distinctive features and differentiate
modulations from a set of signals (BPSK, QPSK, 8-PSK,
16QAM). On the other hand, a larger pool of digital signals
has been considered in our work, aiming to accurately
estimate both the modulation type and the SNR parameters,
simultaneously.

A wider range of modulations has been earlier identified
in [10] compared to [27]. The modulation candidates to be
recognized were FSK, ASK, PSK and QAM-based signals.
The analysis in their work was conducted over a specific
range of SNR (-4, 0, 4 and 8 dB). The channel effect was
limited toGaussian noise only and the accomplished accuracy
was 97.74%. However, they have considered an ideal channel
and needed to employ a combination of three types of features
for AMR target, that are, i) the instantaneous characteristics,
ii) higher order moments (HOMs), and iii) higher order
cumulants, which inherently increased the computational
complexity. Furthermore, SNR parameter was assumed to be
known to the receiver.

Similarly, the work in [36] proposed a solution for AMR
problem and utilized SVM tool to recognize a set of
modulation types (i.e., FSK, MSK, ASK, PSK and QAM
based signals). The proposed solution attained around 97%
modulation recognition accuracy. Their model had to extract
multiple features from the received signal in order to facilitate
the recognition process at the SVM classifier. Moreover, their
work was limited to only AWGN, and the SNR parameter
assumed to be known.

Another work in [37] utilized graph-based analysis to
differentiate between only QAM signals. Their model
constructed the graphs based on the cyclic spectra of
the detected signal and extracted the features from the
corresponding adjacency matrices. Their work attained a
modulation recognition accuracy more than 85 %. However,
their work considered on only AWGN channel. Moreover, the
modulation pool in their model was limited to QAM signals
and their classifier was unable to recognize, for example, PSK
types due to the fact that QAMand PSK signals have identical
cyclic spectra (i.e., same features).
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A larger modulation pool was examined in [38] for
modulation type recognition using four types of classifiers
(i.e., CNN, random forest, extreme gradient boosting trees,
and decision tree). They proposed a feature-based model, that
is sensitive to the spectrum dynamics of the detected signal,
called dyadic aggregated autoregressive model (DASAR) to
extract the detected signal features using 200 samples of
the signal (i.e., smaller size of dataset). Their technique
showed that random forest (RF) classifier performed best
with DASAR where and attained average accuracy achieved
up to 70.96% at SNR value higher than 10 dB. In addition,
observing the performance of the RF classifier in their
simulation, there was a difficulty\confusion in differentiating
QPSK, 8PSK, and 16QAM from 64QAM signal.

In contrast to [38], a better performance of modulation
recognition has been achieved in [39] via convolutional
neural network (CNN) tool but considering 1024 samples
per transmitted signal (i.e., larger size of dataset compared
to [38]). Their model processed analog and digital modulation
types under Rayleigh fading channel and obtained an average
recognition accuracy of 91.48% at SNR value of 10 dB.

In [34], their proposed algorithm required high values
of SNR in order to achieve satisfactory performance. Their
technique necessitated an equalizer to tackle the effect of
multipath fading.

Wavelet transform-based features were also utilized for
the discrimination of digital modulation types in the litera-
ture [40], [41]. One drawback of these proposed recognition
methods is that, with only AWGN channel, they were
unable to recognize advanced modulation schemes such as
QAM signals. In that respect, the techniques applied in the
aforementioned work performed identification of only one
signal parameter i.e., modulation type, and overlooked the
instantaneous SNR values or assumed the knowledge of SNR
is known.

Alternative types of features are the spectral instantaneous
amplitude, phase and frequency were used in combination
with cumulant in [42] in order to distinguish between
PSK and QAM signals. The channel impairments were
the frequency selective fading. The achievable accuracy
was 93.21%. In their work, they assumed that the carrier
frequency is known at the receiver as they assumed the signal
to be already in baseband form. In addition, their algorithm
was unable to estimate the channel quality i.e. SNR and
instead the SNR knowledge was assumed to be perfectly
known at the receiver. Moreover, learning machine DNN
was used. Its training process occurred deeply among all
layers and nodes where all had to connect with each other to
perform the deep learning process, which in turn increased
the computational complexity especially when the training
dataset is small. DNN usually requires large input data which
is impractical when small training dataset is considered.

Recently we have proposed the 2D-ASIQHs-based model
in [43]. The proposed feature-based approach in that work
was examined to recognize a single parameter (modulation)
i.e., four digital modulation types and the channel is limited

to AWGN only. In the presented work of this paper, we have
extended our work in [43] and investigated the proposed
model for multiple signal parameters with larger pool of
modulation types and wide range of SNRs under realistic
environment (i.e., multipath fading channel).

On the other hand, an estimation technique of SNR
was proposed in [44]. In their work, frozen bits of polar
codes-based features were adopted to assist for SNR estima-
tion. The mean error of SNR estimation was calculated over
a short range of SNR values (i.e., 0–5 dB). The estimation
result of SNR obtained according to the mapping of the SNR
values to the frozen bit error rate. These features were able
to provide the receiver only SNR information but were not
capable of modulation type recognition which is an essential
knowledge for data recovery. Furthermore, the channel con-
sidered was a simple communication medium (i.e., AWGN
channel).

Very few techniques for simultaneous determination of
several signal parameters have been suggested recently such
as the asynchronous amplitude histograms (AAHs)-based
techniques in [45] and the asynchronous delay-tap plots
(ADTPs)-based techniques in [7], [46]. The researchers
who proposed these schemes conducted their experiments to
classify three modulation types (2ASK, QPSK and 16QAM).
One limitation of these techniques is that they are incapable
of identifying more than one type of PSK signals. This is
due to the fact that, based on their proposed features, PSK
signals would have identical patterns as all PSK types are
characterized with only one unique amplitude.

Moreover, the work in [46] is limited to only AWGN
channel before it is extended in [7] for fading channel.
Additionally, its implementation necessitates an extra sam-
pler to acquire the samples of the envelope signal which
in turn will lead to more installed hardware components
in the non-coherent receiver. Besides, it requires a delay
in time 1t between the two samplers employed in their
technique in order to construct their features. Furthermore,
the data rates of the modulated signals are associated with the
tap-delay between both samplers, hence further adjustment
is demanded accordingly which subsequently raises the
implementation complexity [47].

Unlike their works, the presented scheme in this
paper devotes the existing hardware structure in coherent
receiver to establish the proposed 2D asynchronous In-
phase-Quadrature histograms (2D-ASIQHs)-based images
where no additional hardware devices are required. It offers
a more generic receiver that can simultaneously determine
any of the nine modulation types (including 3 types of
PSK modulation family) and the instantaneous SNRs, under
AWGN and Rayleigh fading channels.

Recently, many researchers deploying machine learning
tools and their applications in their automatic signal recog-
nition methods which also cover paradigms in future 5G
wireless networks [48], [49]. It morphs to be a trend in the
field due to the significant capabilities they provide. Such
tools are artificial neural network (ANN) [11], [50]–[52],
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deep\ convolutional neural network (DNN\CNN) [53]–[59]
and support vector machine (SVM) [9], [45], [60]–[62].

SVM technique has proven its superiority in a vast range
of real-world problems [63] in term of classification [64]
and regression [65] as well as in avoiding overfitting
problem [48], [61], [66]. Moreover, according to the com-
parative study and experiments conducted by authors in [67],
SVM was more flexible than sparse auto-encoder (SAE) in
dealing with datasets that are characterized by small size of
training samples. Hence, SVM is adopted in this presented
scheme.

In fact, automatic simultaneous determination of multiple
signal parameters (such as modulation types, transmitted
powers, data rates, SNRs and so on) in wireless com-
munications systems still lack of investigation and not
widely addressed. Therefore, in this paper, we propose
one sole technique that can identify simultaneously several
parameters i.e., modulation types and SNRs. Furthermore,
as FB algorithms provide a near-optimal solution with less
computational complexity in contrast to LB hence, this
approach is adopted in this paper. The contributions of the
proposed work lie in the following folds:
• The proposed mechanism enables a reliable automatic
dual-determination of nine different modulation types
and wide range of SNRs in the coherent receivers. The
simultaneous determination process of the aforemen-
tioned parameters exploits only one algorithm to achieve
its goal unlike most of the up-to-date methods which
employ more than one algorithm to determine the two
parameters individually.

• The proposed scheme simplifies the sampling process
by utilizing low speed and asynchronous sampling to
produce patterns based on novel statistical features
called (2D-ASIQHs) which reveal unique signatures
among various wireless modulated signals. The pro-
posed algorithm requires no synchronous sampling
process; i.e., does not necessitate sampling at the
center (peak) of the symbol period (requiring no tight
synchronization and timing knowledge between source
and destination) hence less hardware and computational
complexity.

• The scheme offers significant determination accuracies
and robust resistance against the existence of both
AWGN and real-world scenarios (Rayleigh fading
channels). This has been achieved through utilizing a
combination of statistical features and SVM tool for
the simultaneous automatic determination ofmodulation
formats and SNRs. Furthermore, the algorithm produces
unique signatures of each modulation types even in
faded channels, making equalizer unnecessary for tack-
ling the effect of fading.

• The presented model persistently aims to diminish the
implementation complexity by decreasing the number of
generated ASIQHs features. The reduction in features’
size is performed by employing principal component
analysis (PCA) method to extract the most important

features of (2D-ASIQHs)-based images before input
them to the SVMs tool.

The remainder of this manuscript is outlined as follows.
Section II illustrates the concept of the proposed features.
Section III explains the system model. Section IV manifests
the operating mechanism. Section V demonstrates the
simulation results and finally Section VI concludes the entire
framework.

II. CONCEPT OF TWO-DIMENSIONAL ASYNCHRONOUS
IN-PHASE-QUADRATURE HISTOGRAMS (2D-ASIQHS)
In this paper, new asynchronous sampling-based images
which reflect statistical features are proposed. These
images are made of two dimensional histograms that
were constructed by asynchronously sampling the In-
phase-Quadrature components and then calculating the
occurrences of their captured samples. The 2D-ASIQHs
images reveal distinct signatures of digitally modulated
signals. The presented ASIQHs-based technique offers cost-
effectiveness, flexibility, and simplicity in its implementation
as it exploits the existing structure of the coherent receiver
without any costly modifications. Fig. 1 illustrates the
concept of generating 2D-ASIQHs-based images.

FIGURE 1. Fundamental of 2D-ASIQHs by utilizing asynchronous-IQ
signals sampling. Tsymbol & Tsampling refer to symbol period and sampling
period respectively.

The stages of generating 2D-ASIQHs-based images can
be summarized as follows: foremost, the in-phase-quadrature
components captured from a detected signal are arbitrarily
sampled by a low-speed asynchronous sampling unit at a
lower value of sampling rate than its symbol rate. It is worth to
mention here that the sampling rate value is uncorrelated with
the symbol rate. More specifically, the symbol period Tsymbol
is much shorter than the sampling period Tsampling. Next,
the samples Si = {bi, di} ∈S= {Si|i= 1, 2, . . . ,N } are ranked
based on their voltage magnitude values. Mathematically, Si
can be represented as a group of two values Si = {bi, di}
or in the complex domain Si = bi + jdi. Let’s consider a
2D plane consists of M × M of arrays of bins. Then, each
sample Si is mapped into its corresponding bin’s subgroups
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as shown in (1):

S(r,c) = {Si|Si ∈ Vr,c, i = 1, 2, . . . ,N } (1)

where N is the number of samples, r and c denote rows and
columns indices respectively, and Vr,c denotes the complex
sub-range of the bin located at (r, c) in the 2D-plane as shown
in (2) below:

V =


V0,0 V0,1 . . . V0,M−1
V1,0 V1,1 . . . V1,M−1
...

...
...

...

VM−1,0 VM−1,1 . . . VM−1,M−1

 (2)

The bins’ subgroups S(r,c) ⊂ S,S(r,c) ∈ Vr,c can be
easily assembled by simply processing the real and imaginary
components of the samples Si separately as follows:

<

(
S(r,c)

)
=
{
< (Si)| < (Si) ∈ <

(
V0,c

)
, i = 1, 2, . . . ,N

}
(3)

=
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)
=
{
= (Si)| = (Si) ∈ =(V r,0), i = 1, 2, . . . ,N

}
(4)

where <(V0,c) and =
(
Vr,0

)
are the real and imaginary

components of the cth and r th sub-range of Vr,c respectively
and they are defined as follows:
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where
[
V I
LOWV

I
HIGH

]
and

[
VQ
LOWV

Q
HIGH

]
are the samples’ full

ranges of real and imaginary components respectively, that is:
< (Si) ∈

[
V I
LOWV

I
HIGH

]
and = (Si) ∈

[
VQ
LOWV

Q
HIGH

]
.

On the other hand, the sub-ranges component Vm is given
by:

V I
m = V I

LOW +
m
(
V I
HIGH − V

I
LOW

)
M

(7)

VQ
m = VQ

LOW +
m
(
VQ
HIGH − V

Q
LOW

)
M

(8)

Finally, the total number of occurrences of the amplitude
samples that lie within each of the bins’ range is calculated
for 2D plane as

N =


n
(
S(0,0)

)
n
(
S(0,1)

)
. . . n

(
S(0,M−1)

)
n
(
S(1,0)

)
n
(
S(1,1)

)
. . . n

(
S(1,M−1)

)
...

...
...

...

n
(
S(M−1,0)

)
n
(
S(M−1,1)

)
. . . n

(
S(M−1,M−1)

)

(9)

where N represents the number of occurrences matrix
and n

(
S(r,c)

)
denotes the number of elements/samples in

the subgroup S(r,c). Eventually, by pinning the number of
occurrences on two dimensional plane, the 2D-ASIQHs
images are produced, where the value of each bin will create
another dimension that can be represented as colour.

FIGURE 2. System model employed in the simulations.

III. SYSTEM MODEL
Figure 2 illustrates the system model and the parameters
utilized in this model are presented in Table 1.

TABLE 1. Values of Parameters Used in the Simulations

The values given in Table 1 present different parameters
employed in the simulations. The transmission rate of
symbols and the carrier frequency are 250× 106 symbols per
second and 2.5 GHz respectively, assuming that the carrier
frequency is known at the receiver. The Raised-cosine pulse
shaper is utilized for shaping the considered signals which are
impaired byAWGN and three-path Rayleigh fading channels.
Rayleigh fading parameters are set to be varied where all
paths’ gains Gi and delays τi are randomly altered and
uniformly distributed in the ranges of −200 dB and 0−1µs,
respectively.

The delay for each path between transmitter and receiver
is given as follows

τi = TLoS + αiTs (10)
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where i ∈ {1, 2, 3}, TLoS is the delay of the direct path, Ts
is the symbol period and αi is uniformly distributed random
variable in the range between 0 and 0.5.

A coherent receiver-based detection is executed at the
receiver side where the detected signal is multiplied by
a carrier signal to obtain the in-phase and quadrature
components. Subsequently, the resultant components are
asynchronously sampled both simultaneously at a sampling
rate lower than a symbol rate. The term ‘‘asynchronously’’
here means that the sampling process is not necessarily to
be at the center of the symbol period, that is, the receiver
does not require a tight-synchronization\timing algorithm to
detect the peaks’ centers of the symbols. This reduces the
hardware implementation complexity, cost and increases the
speed of constructing the features. A total of 110,000 sample
pairs (bi, di) are acquired to be utilized afterwards to construct
the 2D-ASIQ histograms with dimensions 30 × 30 bins of
each image.

In order to decrease the computational complexity of
the presented mechanism, an extraction of most significant
2D-ASIQHs features is performed through the execution
of the PCA algorithm. Next, the extracted features are
fed to the SVMs for the training process in order to
generate the trained SVM model. In order to investigate the
signal parameters-determination capabilities of the proposed
mechanism, nine formats of diverse modulation types which
are descended from different grades of amplitudes and
phases based modulations, are adopted to form the pool of
modulation classes (BPSK, 2-ASK, QPSK, 4-ASK, 8-PSK,
4-QAM, 16-QAM, 32-QAM, 64-QAM).

Multipath fading phenomena usually describe the statis-
tical changes in the received signal which arrives at the
receiver through multiple spreading paths Pi with various
path gains Gi and delays τ i. Let m(t) is the baseband signal,
the equivalent transmitting passband signal is described as
follows [68]:

m̃(t) = Re[m(t)e2jπ fct ] (11)

where Re [.] is the real component of the modulated signal.
Given the signal will arrive at the receiver over a fading
channel with three propagation paths Pi, the detected
passband signal can be given as

x̃ (t) = Re

Pi=3∑
i=1

Gie2jπ fc(t−τi)m (t − τi)


= Re

[
xs(t)e2jπ fct

]
(12)

where Gi, fc and τi refer to the path gain (dB), carrier
frequency (Hz) and path delay respectively, while the
baseband signal xs(t) is described as

xs(t) =
Pi=3∑
i=1

Gie−j∅i(t)m (t − τi) (13)

where ∅i (t) = 2π fcτ i. Based on (13), the corresponding
channel can be represented as liner time-varying filter, and

the impulse response of the channel is given by

h (t, τ ) =
Pi=3∑
i=1

Gie−j∅i(t)δ (t − τi) (14)

where δ(·) is the Dirac delta function. Equation (14) can be
modelled and described as

h (t, τ ) = h (t) δ (t − τi) (15)

where h (t) =
∑Pi=3

i=1 Gie−j∅i(t). The detected passband x̃ (t)
signal can be represented as follows:

x̃ (t) = Re
[
xs (t) e2jπ fct

]
= Re

[{
hI (t)+ jhQ (t)

}
e2jπ fct

]
= hI (t) cos2π fct − hQ (t) sin2π fct (16)

where hI (t) is the in-phase component given in (17), and
hQ (t) is the quadrature component expressed in (18)

hI (t) =
Pi=3∑
i=1

Gicos∅i (t) (17)

hQ (t) =
Pi=3∑
i=1

Gisin∅i (t) (18)

By simultaneously performing an asynchronous sampling
of the signals represented by (17) and (18), the 2D-ASIQ
histograms are thus constructed.

Figure 3 portrays an example of 2D-ASIQHs for the nine
modulation types considered in the presented scheme at two
different values of SNRs. From the figure, it can be evidently
observed that the features, reflected in the two-dimensional
histograms (i.e., image) pertaining to various modulation
types, SNRs, different path gains and delays, produce
unique signatures. This uniqueness enables accurate signal
parameters recognition. Besides, the patterns in 2D-ASIQHs
images also vary when the SNR values are changed. It can
be observed that these proposed features are sensitive to
the variations of modulation type, SNR, path gains and
delays all at the same time. Hence, these features enable a
simultaneous determination of modulation types and SNRs
with the employment of SVMs.

IV. THE OPERATING MECHANISM
These 2D-ASIQHs images reflect distinctive features that
subsequently can be exploited for joint determination of
modulation types and SNRs. This dual determination of the
aforementioned parameters can be achieved through an auto-
mated system based on machine learning techniques such as
SVMs. In the presented mechanism, two different SVMs are
utilized, namely support vector classifier (SVC) to determine
the modulation type and support vector regressor (SVR) to
determine the signal’s quality measures (i.e., SNRs).

A large dataset {ẌASIQH , ĔASIQH} is constructed from
6390 ASIQHs correspond to permutations of 9 types of
wireless signals, 71 SNRs and 10 random alterations of
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FIGURE 3. 2D-ASIQHs for various modulation types, different SNRs, path
gains and delays. The first column illustrates ASIQHs at SNR=7dB, and
the second column portrays ASIQHs at SNR= 19 dB, where τi is the path
delay and Gi is the path gain.

channel gains and delays that is, 6390 = 9 × 71 × 10. The
constructed dataset is split into training and testing sub-sets
by using 5-folds cross-validation technique.

The 5-fold cross validation method splits randomly the
entire 2D-ASIQHs dataset (i.e., 6390 observations\samples)
into five subsets with equal size. Then four subsets (i.e.,
5112 observations) are exploited for the training stage
of SVM whereas one subset (i.e., 1278 observations) of
total 2D-ASIQHs is employed for the testing stage. This
procedure is repeated five times (the recognition accuracies
are calculated every time) and finally the average recognition
accuracy is calculated by taking the mean of all accuracies in
the entire five rounds. The recognition accuracy is given as

Aci =
Cs
Es
× 100% (19)

where Es is the size of entire testing data set and Cs is the
number of successfully determined samples. It is worth to
mention that in the training phase, a 5-fold cross validation
method is also carried out over the training subset (4 subsets
for training and 1 subset for validation) in order to produce
the optimized-trained model [69].

A. FEATURES EXTRACTION VIA PRINCIPAL
COMPONENTS ANALYSIS
One target of the proposed scheme is to diminish the process-
ing complexity. This is attained by decreasing the number of
generated ASIQHs features and extract the most useful ones
without losing additional considerable data. The reduction
of features’ size in this work is performed by engaging
a well-known technique namely the principal component
analysis (PCA) method. Recently, PCA has gained a notable
interest as a beneficial strategy in representing a dataset
in a new form and reducing the size of features. It finds
applications in many research areas such as learning algo-
rithms, patterns recognition and feature extraction [70]–[72].
It drastically decreases the dataset dimensionality and
extracts the most important features of (2D-ASIQHs)-based
images with preserving the data distribution. The new
reduced-dimensional subspace contains uncorrelated and
descriptive variables what so-called principal components
(PCs). These PCs are then ranked in descending order
based on their highest to the lowest variance values before
inputting them to the SVMs tool. The PCs can be efficiently
obtained by calculating the eigenvectors of the dataset. The
steps towards the implementation of PCA algorithm can be
summarized as follows

1. Assume a matrix Ẍ represents a training subset, has S
ASIQHs-images. Let every ASIQHs-image has a size of
V × V (i.e., 30× 30 pixels).

2. The ASIQHs-images can be handled as vectors by
performing a concatenation process on the rows
(or columns) of these images before input them to SVM.
Hence, it can be described as a one-dimensional vector
xi of length V 2.Therefore, the large matrix Ẍ of size
V 2
× S is established where Ẍ = [x1, x2, . . . , xS ]. Each

2D-ASIQH in the dataset is represented by a V 2
× 1

vector xi.
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3. Calculate the mean ASIQHs vector γ of matrix Ẍ by:

γ =
1
S

S∑
i=1

xi (20)

4. Calculate the zero mean matrix Z by subtracting the
mean vector γ from every column in Ẍ, we obtain Z =
[z1, z2, . . . , zS ] where zi = xi − γ .

5. Obtain the covariance matrix C of Z with size V 2
× V 2

as

C =
1
S

S∑
i=1

zizTi =
1
S
Z ∗ Z

T
(21)

where C is diagonalizable matrix (i.e., symmetric).
6. Calculate the eigenvectors and eigenvalues: The covari-

ance matrix C possess V 2 eigenvectors (pi) and eigen-
values (ξi). Next, the principal components (PCs) i.e.,
eigenvectors pi, can be determined by solving (22):

Cpi = ξipi, i = 1, 2, . . . ,V 2 (22)

7. Sort the eigenvectors pi in a descending rank based on
their corresponding eigenvalues ξi (i.e., variances)

8. Select the desired quantity of PCs having highly-ranked
variances: chosen number (R � V 2) of the sorted
eigenvectors is decided. The decision of R is made that
the following condition is fulfilled:

∇ =

R∑
i=1

ξi/

V 2∑
i=1

ξi > Mc (23)

where typical value of Mc is chosen to be larger
than 0.9 [72], [73]. The selected PCs construct
R–dimensional eigenspace, which is a subset of the
original V 2–dimensional space of matrix Ẍ.

9. In this subspace, a weighted-sum of the chosen eigen-
vectors can approximate any vector zi as:

zi ≈
R∑
r=1

hrpr H⇒ hr = pTr zi, r = 1, 2, . . . ,R (24)

The feature vector HT of the ASIQHs-image is com-
prised of weights hr , where HT = [h1, h2, . . . , hR]T .
Based on (24), feature vectors for all ASIQHs images
can be calculated for the training subset.

10. To obtain the feature vectors for the testing subset,
assume a matrix ẌE has SE ASIQHs-images with size
of V × V for each observation. Similar to step 1,
we obtain matrix ẌE of size V 2

× SE where ẌE =[
xE1, xE2, . . . , xSe

]
.

11. As in online identification process, only one observation
(i.e., one ASIQHs image) will instantly be detected at the
receiver, therefore, the mean ASIQHs vector γ obtained
in step 3 using (20) will be used to calculate the zero
mean matrix ZE for the testing subset, therefore, ZE =
[zE1, zE2, . . . , zSe ], zEi ∈ ZE , where zEi = xEi − γ .

Finally, the weights hr of the feature vector HE can be
derived as:

hr = pTr zEi (25)

The symbol H will hereafter denote a feature vector in
general, which will be used as an input to the machine
learning tool.

On the other hand, for every ASIQHs in the training and
testing subsets, we generated a 9 × 1 label vector e and a
scalar target e‘. The label vector e will be compared with
the SVM output vector containing eight ‘-1’ elements and
a single ‘+1’ element whose location signifies the actual
modulation type pertains to that ASIQHs. The scalar target
e‘ represents the actual SNR target pertaining to that ASIQHs
too.

The outputs O and O‘ are anticipated to resemble the
corresponding label e and the actual value e‘ respectively.
As the supervised learning manner of the machine learning
technique is adopted here, both SVC and SVR are trained by
employing vectorH as input while label e (with size of 9×1)
and scalar e‘ as actual targets depicted in Fig. 4.

FIGURE 4. SVC and SVR with ASIQHs vector H as input and identified
modulation type and estimated SNR as outputs. O is the output vector
which holds a single ‘+1’ element and ‘−1s’ elsewhere.

In the presented scheme, one-against-all-based SVM
approach is adopted which is a common strategy in handling
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TABLE 2. Recognition Accuracies for Different Modulation Types by Employing the Proposed Mechanism (for AWGN and Rayleigh Fading Channel)

multi-class SVMs to generate the SVC models. In this
approach, a polynomial kernel function is used to assist
every SVC to discern a modulation type (‘+1’) from the
remaining classes (‘-1s’) in the training phase. This function
will map the training observations to a higher dimensional
space and optimize a hyperplane that maximally separates up
observations (i.e., training samples) of each class from the
residual types.

Furthermore, in order to fulfill the simultaneous determina-
tion, the proposedmechanism also offers, besides modulation
recognition, to simultaneously estimate the SNR value by
employing Gaussian-based SVR. The goal is to acquire a
function that diverges from the target e‘ by not exceeding a
threshold ε for each training observation.
Eventually, the performance of employed trained-SVMs

will be assessed using the testing subset. A vector H which
belongs to the testing subset is concurrently fed to SVC and
SVR, and the pertaining outputs O and O′ are attained. The
output vector O will contain a sole ‘+1’ element and ‘−1s’
elements elsewhere due to the binary classification tendency
of SVC. As a result, the location of ‘+1’ will refer to the
determined modulation type. In addition, SVR will directly
yield an output scalar O′ which returns SNR estimate.

Both the determined and actual signal types and SNR
values are compared, and determination accuracies are subse-
quently calculated. The entire simulation is iterated 50 times
and the mean determination accuracies are obtained.

V. SIMULATION RESULTS
To validate the performance of the presented mechanism,
various simulations have been conducted. A broad range
of SNR values (71 values) is considered in the conducted
simulations i.e., 0–35 dB with a step of 0.5 dB.

First, the relation between the selected R significant-PCs
and parameter∇ is demonstrated by the curve given in Fig. 5.
The parameter∇ in (23) increases proportionally according to
the quantities of the R-selected PCs (more specifically to their
pertaining eigenvalues as manifested in the aforementioned
equation). In this figure, the criterion in (23) is satisfied

FIGURE 5. The relation between parameter ∇ and the selected R principal
components PCs (features).

when minimum selected PCs is 12% of the entire features
(i.e., 108 features). Consequently, it signifies the efficient
exploitation of choosing a few PCs rather than processing
the overall features. In fact, this essentially leads to less
computational complexity and quicker processing for the
presented determination mechanism.

Table 2 describes the identification accuracies for nine
modulation types when exploiting the entire features. The
overall identification accuracy for modulation recognition is
determined by calculating the average of the nine individual
recognition accuracies placed in the diagonal of Table 2
(shaded cells). The achievable overall identification accuracy
of all modulation types is 99.06% notwithstanding the
deterioration over the modulated signals caused by both
AWGN and Rayleigh fading channels.

The effect of choosing a percentage of features on the
overall modulation identification accuracy of the proposed
scheme is portrayed in Fig. 6. It is evident from the figure
that the determination accuracies exponentially improved
with the increment of the chosen percentage of features.
Furthermore, it is apparent that opting 8% of the entire
number of features yields recognition accuracy approaching
70%. On the other hand, when considering 12% features
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FIGURE 6. Effect of selected percentage of features (PCs) against the
overall identification accuracy when splitting the dataset by 5-fold cross
validation method.

and above, this accuracy attains values more than 91%. But,
from 16% features selected onwards, the improvement of
the recognition accuracies is slightly visible. It is notable
to mention that all the aforementioned accuracy values have
been achieved in the presence of AWGN and Rayleigh fading
channels.

FIGURE 7. Mean estimation error of SNR as a function of the percentage
of selected features.

On the other hand, the impact of tuning the percentage
of optimum features on the mean SNR prediction error is
manifested in Fig. 7. It is noticeably observed that selecting a
higher percentage of optimum features leads to a proportional
decrease in mean SNR estimation error. That is to say,
when the percentage of chosen features rises, the mean
prediction error of SNR declines, and conversely. Besides,
when the percentage 16% (out of 900) of optimum features is
considered, the resultant mean SNR prediction error is 1.81
dB. Furthermore, the mean prediction error values of SNR

are 1.51 dB, 1.38 dB and 1.25 dB when the percentages
of selected features are 17%, 18%, and 19% respectively.
Additionally, selecting 20% of optimum features yields less
than 1.2 dB average SNR estimation error. Nevertheless, the
impact of increasing the percentage of chosen features on
the decrement of SNR estimation error is slightly noticeable
from 16% of selected features onwards. Table 3 numerically
interprets the results illustrated in Fig. 6 and Fig. 7 for the
determination of both modulation types and SNRs.

TABLE 3. Percentage of Features With Identification Accuracies and
Regression Errors

As noticed in Table 3, considering a percentage of selected
features of 16%, the determination values for both parameters
(i.e. modulation type and SNR) are good. But going beyond
16%, the determination values approach a near plateau. This
again demonstrates the advantage of exploiting PCA method
to extract the most optimum features reflected by ASIQHs
images, and to minimize their dimensions. Figure 8 portrays
the outcomes of SNR predictions for nine signals namely
BPSK, 2-ASK, 4-ASK, QPSK, 8-PSK, 4-QAM, 16-QAM,
32-QAM and 64-QAM using all features. Their individual
mean SNR estimation errors are given in the Table 4.

TABLE 4. Mean SNR Estimation Errors and Their Corresponding Signals

As illustrated in Fig. 8, the presented scheme estimates
the SNR with values quite close to the actual SNRs with an
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FIGURE 8. Actual versus estimated SNRs for BPSK, 2-ASK 4-ASK, QPSK, 8-PSK, 4-QAM, 16-QAM, 32-QAM, and 64-QAM signals using the
proposed mechanism.

average estimation error 1.10 dB for all considered signals
despite the deterioration effects of both Rayleigh fading and
AWGN channels. However, from Fig. 8 and Table 4, when the
modulation type 64-QAM is utilized to transmit the signal,
the support vector regressor (SVR) in the receiver looks like
experiencing some challenge to estimate the SNR of the
transmitted 64-QAM-based signal.

This is mostly because of the extracted 64-QAM signatures
nearly resemble each other at different SNR values, due to the
severe Rayleigh fading impact as it can be observed in Fig. 9.

FromFig. 9 (a and b), the 64-QAM-based signatures (or the
colored circles including the faded blue ones) show less
sensitivity to the SNR variations as their patterns remain
almost same. Thus, it becomes more challenging for the
SVM to determine the SNR of the signal when high-order
M -QAM (i.e. M = 64 and above) is used. Therefore, further
enhancement of SNR estimation capabilities is required when
advanced modulation schemes are utilized such as 64-QAM
and beyond. Nevertheless, the density in pixels (i.e. the
colored pixels including the faded blue ones) of these images
is still slightly different. The sensitivity to SNR variations
in these images gets much better after 3 dB onwards as the

FIGURE 9. (64-QAM) signal at different low values of SNR, a) 64-QAM at
SNR = 1dB, b) 64-QAM at SNR = 3dB, c) 64-QAM at SNR = 5dB, d)
64-QAM at SNR = 7dB, under Rayleigh fading channels.

colored circles become slightly bigger and distinct from the
signatures at 1 dB and 3 dB.
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FIGURE 10. Modulation identification accuracies of the proposed scheme
against SNRs in the presence of AWGN and Rayleigh fading channels.

Figure 10 reflects how the proposed scheme performs over
different values of SNRs. It manifests that the recognition
accuracies achieved good values even at low SNR ranges.
For instance, it is almost 84% and higher than 93% at SNR
values 0 dB and 1 dB respectively, while it is above 97% at
SNR= 3 dB. From 5 dB onwards, the recognition accuracies
remain high at 98% and above.

The results of joint classification and regression indicate
the capability of the presented mechanism for simultaneous
determination of modulation formats and SNRs and offer
high accuracies despite the impact of AWGN and Rayleigh
fading channels on the transmitted signals considered in
this work. Credits are given to the robustness of the
proposed 2D-ASIQHs features in combination with SVMs
tool.

The proposed scheme provides simplicity in hardware
implementation. That can be attributed to: 1) the simulta-
neous determination of multiple signal parameters which
removed the necessity of utilizing a separate algorithm for
every signal parameter, 2) the exploitation of ASIQHs which
eliminates the need of timing knowledge as the scheme
involves an asynchronous sampling process, 3) The scheme
enables a generic receiver which is capable of detecting
various signals impaired with multipath fading, an intelligent
receiver that can estimate and track any fluctuations related
to modulations and SNRs at the transmitter side and the
channel, respectively, 4) simple structure of the receiver as
the developed scheme exploited the existing structure of
a coherent receiver circuit featuring built-in asynchronous
low-speed samplers (i.e. sampling rate much less than
symbol rate) without requiring any extra sampler compo-
nents., 5) almost 85% reduction in the size of the utilized
ASIQHs-based features using PCAmethod, which in practice
leads to lowering the processing time, and computational and
hardware complexity. Therefore, it is a promising low-cost
alternative for several-parameters determination in future
generations of wireless communication systems.

TABLE 5. A Comparison Between the Proposed Scheme and Existing
Work

Table 5 presents a compression between state-of-the-art
related methods and the proposed scheme and highlights how
the proposed work outperforms its peers despite the realistic
impairments of frequency selective fading scenario.

VI. CONCLUSION
A novel scheme for simultaneous automatic determination of
modulation types and SNR for 5G and beyond is proposed
in this paper. The proposed mechanism is a new approach
utilizing 2D-ASIQHs features to simultaneously recognize
modulation types and estimate SNRs values by exploiting
SVMs tool. In addition, the paper has proposed a scheme
that enjoys a low implementation complexity. The scheme
demonstrates robustness against AWGN and Rayleigh fading
environments, attaining very good identification accuracy
of 99.06% and reasonable mean estimation error of 1.10
dB for various modulation types and wide range of SNRs,
respectively. Hence, the presented scheme can be an attractive
and cost-effective option for future generations of wireless
communication systems.
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