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ABSTRACT The multiview low dynamic range images captured with sparse camera arrangement under
ill-lighting conditions contain highlighted and shadow regions due to over-exposed and under-exposed
regions. The processing of these images produces contrast distortion, and it is challenging tomaintain relative
brightness with color consistency. Moreover, the disparity map estimation faces the challenges of holes and
artifacts due to a wide baseline and poor visibility, with a shared view of vision. In this article, we propose
a multiview ghost-free image enhancement strategy for in-the-wild images with unknown exposure and
geometry. We address the complex geometric alignment problem for a wide variational baseline among
multiple sparsely arranged cameras. The features among multiple viewpoints are detected and matched for
the image restoration. The restored image contains highlighted and shadow regions with a color imbalance
problem. We synthesize virtual images following the intensity mapping function, which compensates for the
relative brightness and color distortions. Finally, we fuse all the images to obtain high-quality images. The
proposed method is more frequent and feasible for future multiview systems with varying baselines without
relying on disparity maps. The experimental results demonstrate that the proposed method outperformed the
state-of-the-art approaches.

INDEX TERMS Multi-view images, feature matching, virtual images, exposure fusion.

I. INTRODUCTION
High quality images are essential for many applications in
image processing and computer vision. The advancement in
display technology has paved the path for multiview captur-
ing devices, and recent imaging system involves more than
one cameras, comprising stereo (two cameras) and multiview
camera systems (MVCs). In the case of monitoring, surveil-
lance, or even capturing a social event, the multiple cameras
are pointed towards a common point, and the quality of the
captured image varies due to the in-the-wild environmental
illumination conditions. The shared view of vision and non-
uniform illumination gives rise to backlit conditions with exi-
gent glitches, where over-and-under-exposed regions coexist
in the same scene.
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The images captured with multiview cameras system
(MVCs) suffer back-lighting issues, and non-uniform illumi-
nation distributions cause highlighted and shadow regions.
Capturing the entire dynamic range of a scene under ill-lit
(weaklit and backlit) conditions is almost impossible through
ordinary digital cameras. The high dynamic range [1] (HDR)
methods require multiple images with additional information
(e.g., exposure time, ISO values) and prone to tone mapping
artifacts. The alternative exposure fusion [2] methods also
require more than one image. In the case of multiple sparsely
arranged cameras, the disparity map estimation is another
challenge, where wide baseline and complex geometric align-
ment in dim illumination give rise to holes and artifacts.
Classic HDR and exposure fusion methods are susceptible
to motion artifacts that give rise to additional challenges
of deghosting. It limits the performance of the associated
systems, and challenges arise from the special visual and
display applications.
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Capturing high-quality images in low lighting conditions
is challenging and defies the camera setting. The direct
amplification through histogram equalization [3] and gamma
corrections [4] distort the global structure of image. These
methods work without considering the illumination and pro-
duce vulnerable results with over-and under-exposures. The
illumination aware strategies are proposed to manipulate
the illumination following retinex (RT) decomposition prin-
ciple [5]. The key assumption is of RT is to divide the
input image into reflection and illumination components
[6], [7]. The network-based methods [8]–[10] relies on
image pairs or large scale training datasets [11], [12].
However, acquiring large scale datasets and image pairs of the
same scene is challenging. Various learning-based methods
[13]–[16] and high dynamic range and super-resolution imag-
ing (SR-HDR) methods [17] have been proposed to solve
the problem. Trocoli et al. proposed the multi-exposure
stereo method [18], which is extended to the multiview HDR
method [19], but inaccurate disparity estimation results in
holes and artifacts. Extensive optical flow algorithms are
available to solve the alignment problems [20], [21], but opti-
cal flow are unreliable when images are captured with vary-
ing exposures [15], [22]. The traditional HDR technique [1]
require more than one images and fail in the case of robust
exposure variations [23]. Exposure fusion-based methods
[2], [24] plays a key role to increase the dynamic range of
the output images [25]. But the direct fusion of ill-lit images
with over-and-under-exposed regions results in the undesired
highlight and shadow artifacts. Multiple exposure fusion
methods and traditional HDR methods are also susceptible
to motion artifacts. The general restoration based methods
[11], [26], [27] are designed to enhance the contrast for under-
exposed regions and maintain the over-exposed regions at the
same level. These methods handle the single image and adap-
tive towardsmultiview low dynamic range imaging problems.
In the case of a multiple-camera system, the scene’s complex
geometry gives rise to an alignment problem for the complex
non-rigid motions. When outdoor and in-the-wild scenarios
are considered, where both exposure time and geometric rela-
tionship among multiview cameras are unknown, no previous
works have been proposed for this challenge to the best of our
knowledge.

In this article, we focus on the above challenge of ill-
lit image enhancement for the in-the-wild multiview (MV)
backlit images with unknown exposure time and geometry.
The input images are captured with a sparse camera arrange-
ment, so we enclose the geometric characteristic of input
images and detect and match the accurate feature points.
We use these matched feature points to estimate the image
restoration function to obtain multiview LDR images. The
restored MVLDR images contain highlighted and shadow
regions. Therefore, we generate virtual images with interme-
diate exposure using an intensity mapping function, merged
the input, virtual, and restored low dynamic range (LDR)
images to acquire the high-quality output. In ourmethod, only
one image is required for each viewpoint, where we solve the

problem for standard photography to be more beneficial for
future interactive visual application.

II. RELATED WORK
The restoration of ill-lit images in an active research area
and many enhancement schemes have been proposed in the
past few decades. We briefly overview the state of the art
approaches in this domain.

A. DIRECT ENHANCEMENT AND ILLUMINATION
AWARE METHODS
The visibility of the low light images can be enhanced
directly using histogram equalization (HE) methods [3], [28],
which amplify the pixels energy directly. The contrast lim-
ited adaptive enhancement methods [29], [30] has been pro-
posed to encounter the problem of unnatural transitions, and
methods are classified as global and local methods [31].
The HE methods and its follow-ups [32]–[36], [36] aims to
enhance the contrast of the image, and map the histogram
to avoid truncation problem. The gamma correction methods
[4], [37], [38] also tries to map the pixel values individually
in a non linear manner and promote the brightness to the
dark pixels. These methods enhance the contrast of the low
light images and work irrespective of the neighboring pixels’
energy and frequently produce over-and under-enhancement
with color and contrast distortions. The main limitation of
the direct enhancement methods is that these methods work
irrespective of considering the illumination and produce vul-
nerable results in real-world in-the-wild scenarios.

The illumination awareness plays a key role in the contrast
enhancement of the low light LDR images. The key assump-
tion of these methods is the Retinex based decomposition of
the input images into reflection and illumination [39]. The
Retinex methods, such as single scale retinex [5] and multi-
scale retinex [40]. manipulate the illumination and reflection
of the input images to handle the structure and texture distor-
tion. The output of these methods looks over enhance with
unnatural transformations. The non-uniform illumination in
the image requires an illumination dependent robust mecha-
nism. The variational energymodels [41], [42] have also been
proposed for the he non-uniform illumination distribution in
the images. The algorithm known as NPE [43] is proposed to
preserve the naturalness and contrast. The author in [27] pro-
posed an illumination based feature fusion strategy for weak
lit images (FEW) to adjust the initial illuminations, but it scar-
ifies the details in the extremely short exposure and rich tex-
ture regions. The non-uniform illumination in the real world
environments distorts the quality of the image [44] where
some statistical prior plays a vital role. Guo et al. propose an
illumination aware method [7] to estimate the illumination
map to initialize the enhancement following total variation
prior. The noise also exists in its worst form in the under-
exposed regions, and inaccurate illumination smoothness
amplifies the noise. The authors in [26] presented joint image
denoising and enhancement (JED) approach working on the
sequential decomposition. The order of denoising operation
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limits many algorithms’ performance because the denois-
ing before enhancement produces blurry output. In contrast,
the denoising after the enhancement removes the useful fea-
tures along with noise. The structure revealing low light
image enhancement (SLIME) [6] method solve the noise
problem with robust retinex model but produce an inconsis-
tent reflection.

B. LEARNING BASED AND HDR IMAGING METHODS
A large number of methods have been proposed in the
literature for the low level vision tasks [45]–[47], super-
resolution [48], enhancement and denoising [49], [50] tasks.
A learning base restoration (LBR) method is proposed in [11]
to enhance backlit images. It is a classifier based approach
based on image division into front-and-back-lit regions. The
general deep learning-based methods for the enhancement of
low light images mainly follow the retinex decomposition
principle. A deep retinex method [8] is proposed to enhance
the low light images which suffer artificial texture transfor-
mations. A follow up of this method famous as KinD [9]
is proposed to kindle the darkness with a denoising oper-
ation but fails to maintain the contrast and color balance
in-the-wild non-uniform illumination conditions. The author
in [14] proposes amethod for the enhancement of undesirably
illuminated images and propose to generate HDR by using
a single image. But it produces an undesired noisy effect
while compensating for the illumination, which sacrifices
the realistic appearance. Relatively less work is devoted to
multiview HDR, especially for the cameras’ wide baseline.

The high dynamic range methods capture the same scene’s
exposures to recover the radiance map [1], [51]. The tech-
nique proposed by Debevec et al. is considered the most
widely used technique for recovering radiance maps from
multiple LDR images captured with an ascending exposure
time. However, it is not suitable for robust exposure varia-
tions and fails to estimate the true weighting for extremely
bright and dark regions; for details, readers are referred to
O’Malley et al. [23]. Moreover, the traditional HDR pipeline
involves complex steps to estimate camera response function
(CRF), require exposure time, and ISO information, unknown
to ordinary users in advance. This HDR approach is extended
to stereo HDR [52]–[55] and multiview HDR [19], [56]–[58]
with small baseline and a linear camera arrangement.
Kalantari. et al. utilized optical flow algorithms to generate
multiview HDR images, but the output suffers noise and
artifacts [22]. The optical flow algorithms are not reliable
when the images are captured with varying exposures [15].
The extant HDR approaches mainly rely on the estimation of
disparity map and are suitable for small baseline among the
cameras. Moreover, these methods are susceptible to motion,
and tone mapping artifacts because they merge multiple
frames and construct an intermediate HDR image, which is
tone-mapped for LDR display.

Mertens et al. proposed an algorithm for multi-exposure
fusion using three quality aggregates (color, contrast, and
saturation) for weight maps estimation [2]. Exposure fusion

methods provide an alternative to the traditional HDR
pipeline, produce a high-quality image without relying on
CRF, and avoid tone mapping artifacts [24], [25]. These
methods create a final high dynamic range image by fusing
the best-exposed areas in the bracketed input sequence based
on Laplacian pyramids. After that, Laplacian and Gaussian
pyramids are decomposed, and finally, multiple exposures are
blended to obtain the fused images. Quite often, capturing
multiple exposures under robust light variations is also chal-
lenging due to shaking and motion effects. It gives rise to
misalignment, ghosting, halos, and artifacts in the resulting
image. It is also challenging to acquire multiple frames of
the weakly and non-uniformly illuminated scene. The sit-
uation becomes worse if the images are captured by using
an ordinary mobile camera or CCTV devices. Moreover,
the direct fusion of the ill-lit images with over-and-under-
exposed regions results in the undesired highlight and shadow
artifacts.

Deep learning-based exposure fusion method is proposed
in [59], but it has limited practical implication due to image
resizing. HDR from a single LDR image [13] and con-
trast enhancement methods are also proposed using learn-
ing approaches [60]. The end to end trained deep Retinex
network [8] and HDR-Net [10] relies on the paired training
dataset, whereas adversity of obtaining training pairs limit
the practical implication of these methods. A recent zero-
reference deep curve estimation (Zero-DCE) method [12] is
also proposed to formulates light enhancement as a task of
image-specific curve estimation with a deep network, without
relying on the image pairs. Although these methods produce
high-quality images by utilizing low-contrast multi-exposure
images with high-quality reference images, the preparation
of large-scale datasets is challenging. Whereas, this method
can’t preserve details for over-exposed or large exposure
areas in the image. In the case of multiple available exposures
of the same scene, frame averaging is also a frequent blur-
free method for registered frames without object motion.
This restriction makes the frame averaging a problematic
approach. Most of the proposed techniques produce unde-
sired artifacts in the case of dark and short-exposure images.
Multi-exposure-fusion and traditional HDR techniques work
for bracketed exposures or a sequence of images with a small
difference of exposure. Although researchers have proposed
multiview HDR imaging techniques, halos and artifacts’
problem due to disparity and pixel mismatch in low lighting
conditions remained a challenge among the camera’s wide
baseline. On the other fusion of multiple frames produce
ghosting artifacts.

The proposed method utilizes a single image per view-
point instead of capturing bracketed exposures and produce
a ghost-free image with a higher dynamic range. Our method
involves the restoration of multiview low dynamic range
images captured with unknown exposure time and geometry,
using multiple sparsely arranged cameras. In our methods,
we detect and match accurate feature points among the adja-
cent viewpoints and remove the color and contrast distortion
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FIGURE 1. Architecture of the proposed scenario. Images are captured with multiview camera system. The geometric features are enclosed for
accurate feature matching. The virtual images are produced and fused with the input and restored multiview low dynamic range images to acquire a
high dynamic range.

by generating intermediate virtual views and dispense the
challenge of disparity map estimation.

III. THE PROCESSING PIPELINE
A. THE PROPOSED METHOD
The proposed method combines the corresponding weighted
illumination information gathered from the neighbouring
viewpoints to preserve the relative brightness for the lowlight
input images. In this regard, we first improve the feature
points (FPs) detection and matching for accurate exposure
gain (φg) estimation, amongst the adjacent input images.
A weighted reference value (<) updates the exposure gain

among corresponding views based on the matched feature
points. The framework of our method is presented in Fig. (1).
The color distortions arise due to varying exposures in the
restored MVLDR images. In order to solve this problem,
we produce virtual views via the intensity mapping func-
tion by utilizing input views and restored MVLDR images.
Finally, the images per viewpoint Zivi (i = 3) include input
images, restored MVLDR images per viewpoint, and final
virtual views are merged via exposure fusion. Gaussian pyra-
mid of the l-th level luminance component is G

{
Y li (p)

}
and

weight map Gaussian pyramid for each view is defined as
G
{
Pli(p)

}
with the l-th level Laplacian pyramid L

{
Z li (p)

}
.
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FIGURE 2. The alignment of a multicamera system with the proposed
scenario.

In order to acquire the final weight W (l)
i(p) for input images

at the l-th level, the guided image GGIF smooths these weight
maps for input images, and fusion produces a refined output
image following Eq. (1), with a higher dynamic range.

W (l)
i(p) = GG(G{P(l)i(p)},G{Y (l)

i(p)}) (1)

B. THE PROPOSED MULTIVIEW SCENARIO
In this work, we propose a scenario to enhance MVLDR
images captured under ill-lighting conditions with multiple
sparse camera arrangement, as shown in Fig. (2). The multi-
ple non-linearly arranged cameras (Ci; i = 1, 2 . . .N ), cap-
ture multi-exposure input images (Zi; i = 1 . . . . . .N ), with
exposure times ti for exposures Xs = e1 . . . . . . eN , across
multiple viewpoints (V = Vi; i = 0 . . . . . .N ), with a variable
baseline among the cameras. The proposed scenario doesn’t
impose any binding on the multi-camera system. Our method
enhances the low light images with robust exposure variation
and produces a high dynamic range image from these images
by using a single image per viewpoint. We demonstrate the
scenario with three sparsely arranged cameras C1, C2, C3
to capture three images from three viewpoints, as shown
in Fig. (2).

C. RESTORATION OF MULTIVIEW-LDR IMAGES
The restoration and enhancement of MV-LDR images
demand optimal weighting strategy. The coexisting over-
and-under-exposed regions in the same scene results in
objectionable artifacts and fusion of these images produce
highlighted and shadow regions. The difference threshold
can be estimated as a ratio between constraint stimulus δL
to background Luminance L, (C = δL/L) [61]. This work
mainly focuses on suitable input images to accomplish fusion
requirements to maintain exposedness, contrast, and color
consistency. We utilize the input exposure-gain to handle
the target problem in an organized manner to restore the

MVLDR images. It is important to note that our scenario
involves multiple non-linearly arranged cameras; hence we
require a geometric alignment. First, we enclose the geo-
metric characteristics of the multiview input images cap-
tured frommultiple viewpoints for accurate feature detection.
We utilize the FPs in the estimation of our image restoration
function (IRF) among the multiple viewpoints. We intro-
duce a weighted exposure-gain-based IRF to restore the LDR
images for each viewpoint. In the case of multiple camera
systems and ill-illumination conditions, robust exposure vari-
ation appears in the images because cameras are sparsely
arranged. One light source appears in multiple images due
to a shared view of vision among multiple views. In order to
achieve the desired dynamic range, the proposed framework
is elaborated in the following key-points.
• Input images are captured with sparsely arranged mul-
tiple cameras as shown in Fig. (3.a), where the geomet-
ric characteristics improve the matching and detection
of the feature points among viewpoints. First of all,
we calibrate and rectify multiview low exposure and
low dynamic range (LDR) input images to get geomet-
ric alignment. The calibration and rectification process
results in correspondence among all of the viewpoints
for the reference viewpoint with respect to the adjacent
viewpoints. A large number of outliers may contribute
to the false matches as shown in Fig. (3.b). In order
to acquire the exact feature point matching, we have
matched the projection of the ideal image plane by
rectification process as shown in Fig. (2). We determine
the matched feature points for the viewpoints Vi across
the images. In order to minimize the faulty matching,
we utilized the reference base image adjustment tech-
niques, andmultiview geometric alignment process [62].
A reference image is selected for ideal plane adjustment
concerning the horizontal and vertical alignments for
multiple viewpoints. The rectification process limits the
faulty matches and outliers are removed significantly,
as shown in Fig. (3.c). After that, we restrict the range of
horizontal and vertical boundaries to remove the outliers
to achievemeticulous feature points, shown in Fig. (3.d).
We employ a scale-invariant feature transform (SIFT)
technique [63] for feature detection and matching. Now,
we can utilize these matched FPs to estimate our image
restoration function. The process of IRF is expressed and
summarized in the following key-points.

• In order to estimate IRF, first we calculate brightness
value (ψv,m) of all pixels (%) in matched feature points
(m) for viewpoints (Vi) with a corresponding view point
(Vi±1) and calculate the mean value with respect to each
pixel (ϒ) in all matched feature points (M ), whereas
{ϒ ∈ %}.

ψv,m =
∑
ϒ∈%

ψϒv,m

M
(2)

• Now, we determine exposure-gain (φg) as a mean value
difference (φg−min), based on illumination of matched
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FIGURE 3. (a) Three viewpoints capturing scenario for an outdoor scene boy & moto. The comparison (b) and (c) without proposed strategy with a large
number of outliers; (d) shows the accurate matching with the proposed strategy.

FPs in viewpoints Vi.

φg =

∑M
m=1(ψv,m − ψv±1,m)

M
(3)

Themanipulation of input exposure levels provides quite
a practical demonstration to understand the luminance of
input images. It can be seen through Eq. (2), where the
value of brightness provides an estimate for the input
exposure gain in Eq. (3). The optimal increment pro-
vides continuous up-gradation and manipulation based
on input exposure gain to facilitate image luminance
trade-off. Our scenario involves multiple images from
multiple viewpoints, and the estimated gain depends on
the feature points in the adjacent views. The feature
points among each of the two viewpoints vary due to
the non-uniform illumination distribution. To avoid pos-
sible distortion in the restored MV images, we design a
reference value function <. This value depends on the
exposure gain and the total value of brightness intensity,
i.e., termed as luminosity flux φs.

φs =

∑M
m=1(ψv,m + ψv±1)

M
(4)

In order to fully utilized the impact of the brightness
intensity, our reference value function provides a supple-
mental consistency. The exposure gain value in Eq. (3)
and luminosity flux value in Eq. (4) provides the mid-
points (pφg ) and (pφs ) respectively, based on the corre-
spondingmaxima andminima.<, is expressed as below:

< = M−1

√
pφg
pφs

(5)

The product of this weighted reference value and expo-
sure gain regulate the image restoration function ϕ,
which is utilized to restore MVLDR images.

ϕ = φg< (6)

Exposure levels are dependent onmultiple camera parameters
sensor quality, zoom level, lens aperture, and shutter speed,
including various other camera features. In theory, change
in exposure time may have advantages and disadvantages

for the image’s amount of noise. By observing a sequence
of exposures, we analyzed that short exposures are more
vulnerable to fluctuations in the number of photons with
respect to long exposures. In order to create HDR, the darkest
frame is captured with an exposure of 1/8000 of a second,
pretending that its noise is also amplified 8000 times [64].
A combination of these noisy frames will result in a more
noisy image. At the same time, other problems such as halos
and artifacts will also be more prominent in the case of multi-
ple images due to the camera or object motion. Thus, to avoid
the unrealistic condition of static image acquisition, which
is required to avoid ghosting artifacts, we utilized a single
input image strategy for each viewpoint. We have estimated
the exposure gain in Eq. (3), which enables us to restore the
MVLDR images. Considering the variational exposures in
the same image, we utilized learning base restoration [11],
which better handles the segmentation by utilizing the SVM
classifier. This process results in the restoration of the output
MVLDR-images with highlighted and shadow regions due
to the robust and non-uniform illumination distribution. The
unwanted artifacts and distortions in the structure and texture
degrade the quality of the restored MVLDR images. In order
to limit these artifacts, we produce virtual images and fuse
them to achieve the desired quality.

D. VIRTUAL IMAGE GENERATION
The under-exposed, intermediate, and over-exposed images
are required with known exposure time to acquire the com-
plete dynamic range of the images. Recovery of MVHDRI
fromMVLDRI generally requires a camera response function
(CRF) estimated through information acquired from these
available multiple exposures. In the case of multiple images
with multiple exposures (Xs), a global alignment is required
to fulfil image registration requirements.

It is important to note that our scenario involves input
images with unknown variational exposure and geometry.
So far, we have solved the problem of geometric alignment
and restored the MVLDR images for each viewpoint based
on our IRF function. Now, in order to complete our fusion
process, we synthesize virtual images with an intermediate
exposure to remove color imbalances. It solves the problem
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FIGURE 4. The generation of virtual views: (a) input model’s images (b) restored images, (c) and (d) are two intermediate virtual images and (e) is the
final virtual image, and (f) is the final output.

of highlighted and shadow regions for the large exposure
ratio [65].We use amodel view-3, shown in Fig. (4) in the first
row and another example S-model image in the second row
with a partial lit condition in Fig. (4) to generate the virtual
views (c) and (d) in the first and second row for these two
images respectively. The final virtual image (e) is acquired as
a weighted fusion of these two virtual images. The restored
views (b) in the first and second row contain an over-exposure
effect, which saturates the color and black-lining on the cloth.
In contrast, the final image (f) represents a vivid color with
complete details.

We utilized input images and restored MVLDRI to pro-
duce two intermediate exposure virtual images from higher
exposure to a lower one and from lower exposure to a higher
one following the intensity mapping function (IMF) [66].
There exist one-to-many mapping correspondences for dark
to bright images for all over-exposed pixels, and similarly,
a one-to-many mapping from bright to dark images for all
under-exposed pixels [65], [67]. Our two images of exposure
e1 and e2 with an exposure ratio k := e2/e1 are expressed
for the respective irradiance E1 and E2 with the relationship,
E2 = k(E1) [66]. Intensity measure different exposures for
the same scene is the constrained information used to recover
the response function [65]. The IMF recovery through a cross
histogram analysis is called a compagram [68]. Intensity
values are also associated with many other factors, such as
noise, spatial quantization, and saturated pixels. Currently
by ignoring these factors we calculate IMF and elaborate it
with a multiview input image for the proposed three views
represented as Z1 to Z̃1, Z2 to Z̃2, and Z3 to Z̃3 and expressed
for n-view points (Zi to Z̃i) as follows.

Zi(p) = ∨i(Z̃1); whereas : i = 1 . . .N , (7)

In order to produce the desired virtual image per view
with an intermediate exposure, we utilized the input images

along-with restored MVLDR images. We require two IMFs,
which are produced from Zi and Z̃i for each viewpoint. Con-
sider ∨vi to be the virtual images per view with ∨i, i = 1, 2
representing two intermediate virtual images, generated via
IMF to avoid color distortions. A washout appears by averag-
ing the over-exposed pixels, which results in a loss in dynamic
range and image details. An effective weighting strategy is
utilized following the scheme presented in [64] with weights
w1(z) → w̃1(z) of two virtual images adjusted for our sce-
nario. The ∨i(.) represents virtual images with ∨1(.),∨2(.),
which are two intermediate virtual images acquired via IMF
calculated for an intermediate exposure time by using input
and restored multiview images of each view point. Consider
the MV-system IMF per view points (vi, for i= 1. . .N) for Zvi
to Z̃vi is ∨vi,13 and ∨vi,23 with exposure time 1ti with values
t1, t2, t3, for the three viewpoints for each corresponding
input to the restored image exposures t̃1, t̃2, t̃3. For every two
images per view for Zvi to Z̃vi exposure time for intermediate
virtual image is estimated as1t ′3Vi =

√
1t1.1t2, whereas for

proposed scenario1t ′3v1 , it depicts corresponding intermedi-
ate exposures for view points vi ranges for v1, v2 v3, extend-
able for vn. If camera response function (CRF) is F(.) IMF can
be estimated by utilizing F(.), whereas it is a monotonically
increasing function. The IMF from Z v1 to an intermediate
image 3 and from Z̃v1 to intermediate image 3 is ∨13 and
∨23 respectively [66].{

∨13(z) = F(1t3/1t1F−1(z))
∨23(z) = F(1t3/1t2F−1(z))

(8)

IMF is one to many mapping from dark to bright and bright to
dark images [68] for the underexposed pixels, hence in order
to avoid the color distortions two intermediate virtual images
are generated and fused following the weighting function in
the [64] with the tradeoff parameter ξU = 250 and ξL = 50
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for our weight adjustments.

w1(z) =


0; if 0 ≤ z < ξL
1− 3h12(z)+ 2h13(z); if ξL ≤ z < 128
1; otherwise.

(9)

w̃1(z) =


1; if 0 ≤ z < 255
1− 3h12(z)+ 2h13(z); if 200 ≤ z < ξU
0; otherwise

(10)

h1(z) =
128− z
128− ξL

, h2(z) =
z− 200
ξU − 200

(11)

The desired intermediate exposure virtual image is pro-
duced by fusing these weights as follows;

3(p)|vi =

∑2
i=1 w̃i(Zi(p))Z̃i(p)∑2

i=1 w̃i(Zi(p))
(12)

The virtual images in Fig. (4) illustrate our scenario for one
viewpoint to produce the final image. Every viewpoint in
the scenario produces two virtual views, whereas the final
intermediate exposure virtual image is obtained as a fusion
of these two images. It is also important to note that our work
in this article demonstrates the scenario for three viewpoints
only, whereas our method is applicable for N-view points
with N-cameras.

E. MULTI EXPOSURE FUSION
Recalling the whole process, we now have three images
for each viewpoint, including MV-input, MV-restored, and
MV-final virtual images. We utilize the fusion process men-
tioned in Eq. (1) to estimate the weights based on contrast,
color, and saturation [2]. Our method uses the guided filter to
refine the initial noisyweights and adopt pyramid decomposi-
tion to acquire the final image. After acquiring the l-th level of
the Laplacian pyramid for each view input image L

{
Z li (p)

}
and weight map W l

i (p), the l-level of the fused pyramid for
fused image Ri is acquired for each level and each view.

L{R(l)i (p)}|3vi=1 =
3∑

i = 1

W (l)
i(p)L{Z (l)

i(p)} (13)

The L
{
Z li (p)

}
is collapsed finally to acquire the resultant

fused image Ri following Eq. (12). It is of immense impor-
tance to note that our method is applicable for N-viewpoints
for the multi-camera system.

IV. DATASETS, EXPERIMENTS AND EVALUATIONS
A. THE PROPOSED DATASETS
The target problem involves multiview images captured with
a large variational baseline among the sparsely arranged
cameras. In order to prove the reliability of the proposed
approach, we performed extensive experiments on indoor and
outdoor datasets. We simulate the scenario mentioned in the
subsection. III-B, to captured indoor and outdoor datasets.
The capturing architecture considers the setting of practical
scenarios of close-circuit-television-cameras (CCTVs) used
for surveillance and monitoring purposes and illustrates the

FIGURE 5. The architecture of the multiple camera and lighting system
utilized in capturing the indoor datasets.

scenarios for daily life standard photography. In the outdoor
dataset, we capture the scene from three different viewpoints
by using three mobile phone cameras. In this case, the view of
vision and light source is shared among multiple non-linearly
arranged cameras. The four datasets named as ‘boy&moto’
and ‘boy’ are captured with a baseline of 100 cm among
cameras with an approximate angle deviation of 300.
In order to capture the indoor dataset, we utilize the state

of the art multiview camera system (MVCs), with an LED
lighting control system shown in Fig. (5). The MVCs consist
of two trigger lines to control the lighting-system and cam-
era system. These trigger lines are independently controlled
with an external computer system’s help to avoid spatial
misalignment. We lower the lighting projection behind the
scene and create the aforementioned weaklit environment.
The scene consists of a backlit model, captured from three
different viewpoints with extremely short-unknown-exposure
time. Firstly, we capture the three sets of ‘‘model-images’’
scenes with a baseline distance of 40 cm and an angle devia-
tion of 30 degrees among three cameras. Secondly, we capture
three ‘‘emo’’ scenes with a baseline of 60 cm, among the
cameras with an angle deviation of 30 degrees. We utilized
three MV-CS30G, CREVIS-CAMERAS with 8mm-lens in a
controlled indoor environment. Taking advantage of the con-
trolled environmental setting in our MVCs, we also gener-
ate the reference ground truth images (GT) for the indoor
datasets. We capture three input exposures, i.e., low, inter-
mediate, and high-exposure, and fuse these exposures via
the exposure fusion method [2] to obtain the respective GTs
for the model and emo images. The data-sets with prelimi-
nary implementation guideline are available at our github1

repository.

B. EXPERIMENTS AND COMPARED METHODS
We perform the experiments using the images captured
with multiple sparsely arranged cameras for controlled and
uncontrolled scenarios, with variational baseline and angle
deviations. The proposed approach utilizes a single input
image per viewpoint and relies on the accurate feature points
matching. The extant stereo and multiview high dynamic
range reconstruction methods rely on disparity map esti-
mation. In contrast, in the target problem, wide baseline
and low lighting conditions make the disparity map highly
unreliable. Moreover, the methods following traditional HDR

1https://github.com/imrizvankhan/MV-EFU
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FIGURE 6. Subjective comparison of three views of outdoor boy&moto dataset. (a) Shows original multiview-LDR input images, (b) shows results for
SLIMER [6], (c) FEW [27], (d) JED [26], (e) Deep Retinex [8] and (f) Shows results for the proposed method.

FIGURE 7. (a) shows HSV map for the luminance distribution before processing, (b) shows HSV map for the luminance distribution after processing.
(c) Controlling gain among multiple views.

pipelines require more than one input image and require
additional exposure time information. The single image base
restoration techniques enhance the contrast for the under-
exposed images and work for single view enhancement,
and are adaptive towards the multiview image enhancement
scenarios. We compare our method with state-of-the-art,
SLIME [6], JED [26], Deep Retinex [8] and LBR [11],

generation of high dynamic range illumination from a sin-
gle image (GHDRI) [14] and a super-resolution and high
dynamic range (SR-HDR) [17], KinD [9], HDR-Net [10], and
Zero-DCE [12] methods. The proposed strategy effectively
mitigates the irregularities associated with color and contrast
distortions and produces a decent balance of smoothness.
The HSV maps in Fig. (7 a & b), shows the luminance
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distribution for view1 and view2 of boy & moto multiview
LDR input images before and after the proposed strategy.
The control over the intensity shown in Fig. (7. c) is obtained
via exposure gain, based on the matched feature points. The
overall experimental evaluation proves the significance and
superiority of the proposed approach.

C. SUBJECTIVE AND OBJECTIVE EVALUATIONS
In this section, we demonstrate the performance of the pro-
posed method through subjective and objective comparison
on our indoor and outdoor datasets. The extant stereo and
multiview HDR methods can hardly estimate the disparity
map for the large angle and baseline among the cameras;
therefore, these methods fail in the target problem. We com-
pare our method with FEW [27], SLIMER [6], JED [26],
GHDRI [14], Retinex [8], KinD [9] and SR-HDR [17]
methods. We evaluate the performance of the proposed
method in controlled and uncontrolled conditions by using
indoor and outdoor datasets respectively. In the case of
indoor scenario we design the reference GTs, therefore we
relies on the reference image based quality assessment met-
rics, i.e., structure similarity index measure (SSIM) and
peak signal to noise ratio (PSNR) [69]. We also utilized
no reference image quality assessment metric for contrast
distorted images (NQAC) [70] and a completely blind non-
reference image quality estimation metric (NIQE) [71]. The
lower value of NIQE ranks higher, whereas higher values
of NQAC, PSNR, and SSIM ranks higher and vice versa.
In the case of outdoor scenario we utilize two datasets,
i.e., boy&moto and boy, and present the subjective com-
parison with SLIME [6], FEW [27] and JED [26] meth-
ods in Fig. (6) and Fig. (8). The corresponding objective
quality metrics are shown in Tab. (1). In the case of indoor
scenarios, we utilized the datasets model and emo captured
by our MVCs. The comparison for corresponding subjec-
tive evaluation for our indoor MVCs model-images dataset
is shown in Fig. (9) with respective objective evaluation
metrics shown in Table. (2). Moreover, we illustrate the sub-
jective quality by showing zoomed in fragments for view-3
of model-image in Fig. (10). We generalize our approach
by using nine publicly available off-the-shelf datasets form
Middlebury.2 The datasets of Middlebury contain images
captured from seven viewpoints (view0 to view6) with dif-
ferent illumination conditions (Illum), and exposures (Exp).
The target problem is designed to handle the large baseline;
therefore we select the possible distant views (i.e., view0,
view3, view6). We select the images with lowest available
exposure which include Art Illum1/Exp0;(view0,view3 and
view6), Dwarves Illum1/Exp0;(view0,view3 and view6) and
Drumsticks Illum1/Exp0;(view0,view3 and view6). The com-
parison with state of the art approaches, FEW [27], JED [26],
SLIMER [6] and SR-HDR [17], is presented in term of
subjective and objective metrics. The subjective analysis on
Art , Dwarves and Drumstick images is shown in Fig. (13),

2https://vision.middlebury.edu/stereo/data

FIGURE 8. Comparison of outdoor scene boy with various other methods.

and the respective objective evaluation metrics are shown
in Tab. (3). In order to generalize the efficiency of the pro-
posed approach, we provide a quantitative comparison for
the objective quality metrics in Fig. (12). The graph depicts
the robustness of the proposed approach for reference and
non-reference based assessments metrics. Furthermore we
conduct extensive experiments to compare ours method with
deep learning-based methods and present the average objec-
tive evaluation metrics in Table. (4) for KinD [9], HDR-
Net [10], Retinex [8] and Zero-DCE [12] and ours method.
The overall analysis shown in Fig. (12) and quantitative
analysis for deep learning-based methods in Fig. (15) on
indoor datasets demonstrate the superiority of the proposed
approach. Additionally, the subjective comparison of the pro-
posed approach with deep learning-based methods on two
model images is shown in Fig. (14), demonstrating that the
proposed method outperformed the others. The proposed
methodmaintains the balance of color and contrast and recov-
ers most details in the dark regions in term of brightness and
visibility.

D. DISCUSSION
The overall comparison demonstrates that the proposed
method outperformed state-of-the-art approaches in terms of
subjective and objective evaluations. Our method preserves
the spatial details with pleasant visual quality. In general,
in the case of coexisting over-exposed and under-exposed
regions, the over-exposed pixel saturates, and the under-
exposed one suffers under enhancement. The resulting image
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FIGURE 9. Comparison on model image views, first three images are three multiview low-dynamic-range input images. Next shows the comparison of
JED, LBR, SLIMER, FEW and Ours.

TABLE 1. Comparison of Objective Quality Metrics, NIQE and NQAC for FEW, JED, SLIMER and Ours for Multiview Input Images (View1, View2, View3).

TABLE 2. Average Values of the Objective Quality Evaluation Metrics for the Indoor Dataset Sample Input model views and emo Images.

contains highlight and shadow regions with contrast distor-
tion. In contrast, we generate intermediate virtual views to
handle these challenges. The traditional HDR methods and

exposure fusion methods require multiple images of the same
scene with the static acquisition’s strict conditions, other-
wise ghosting artifacts appear.Multiview image enhancement
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FIGURE 10. Subjective comparison of ours method with zoomed-in fragments of model with various other methods.

FIGURE 11. Subjective comparison of the indoor dataset, the input emo images results showing JED [26], FEW [27], SLIMER [6], a deep learning
method KinD [9] and Ours.

FIGURE 12. Quantitative analysis: showing the robustness of the proposed approach on all dataset images compared with state-of-the arts, (a) overall
PSNR (b) SSIM (c) NIQE.

methods, whether traditional or deep learning base recent
methods, all failed when it comes to estimating the disparity
map for a wide varitaional baseline among the cameras.

Moreover, the ill-lighting condition contributes to the holes
and artifacts, which distort the final image’s quality. The com-
petitor methods are the enhancement methods, which either
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FIGURE 13. Subjective comparison on the input Dwarve images from Middleburry datasets. Results shows, FEW method [27], SLIMER [6], JED [26] and
proposed.

TABLE 3. Comparison of Objective Quality Metrics. Average PSNR and SSIM Evaluations for FEW, JED, SLIMER and Ours for Multi-View Input Images
(View0, View3, View6) Using Middlebury Datasets.

TABLE 4. Comparison of Objective Quality Metrics on Indoor Datasets,
Using Deep Learning Based KinD [9], HDR-Net [10], Retinex [8]
Zero-DCE [12] and Ours.

suffer under enhancement or produce saturated regions for
over-exposure. For example, the comparison on boy&moto
in Fig. (6) demonstrates that SLIMER [6], FEW [27], and
JED [26] are almost unable to preserve the image details for
the outdoor low light scenario. On the other hand, the first
three images in the third row in Fig. (6) show the deep
learning-based deep-retinex method results. In this case,
the artificial texture transformation distorts the contrast, tex-
ture, and image structure. The retinex approaches work on the

principle of image decomposition and split input image into
reflection and illumination. It is a quite reasonable approach
to handle the illumination and reflection independently,
but inaccurate illumination smoothness diverts the noises on
reflection. The author in [6] propose a robust retinex model
to handle the low lighting conditions but produce inconsistent
reflection, limiting the quality of the final image. Therefore
in the case of Retinex approaches, the contrast of the final
image is distorted completely where the resulting images
are over-textured with artificial effects. To better understand
the color and contrast preservation, we utilize the color
chart with our model image. The proposed method’s vivid
color preservation demonstrates that our method is capable
of handling the color and contrast distortion effectively for
the ill-illumination conditions, with largely varying expo-
sures in the same scene. The comparison on the second
indoor scene emo shows a back-lighting condition, where
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FIGURE 14. Subjective comparison on the model images. Results shown on deep-learning based methods, KinD [9], HDR-Net [10], Retinex [8],
Zero-DCE [12] and Ours.

FIGURE 15. Quantitative analysis; comparison of objective metrics using various deep learning based methods, showing the
robustness of the proposed approach on various indoor datasets.

the sharp point illumination source produces a large expo-
sure region. The traditional enhancement methods fail in this
scenario, and our method preserves the details without any
over or under enhancement. The comparison on the input
emo-image in Fig. (11) demonstrates that the competitors,
JED, FEW, and SLIMER, and kinD hardly restore the image
details. The deep learning-based method KinD [9] causes
some imbalance in the background and washout in some
pixels of the emo image, whereas our method preserves
the details efficiently. Similarly, in the case of Middlebury
datasets, the JED, FEW, and SLIMER, and the SR-HDR
methods fails to preserve the details for the under-exposed
regions. The subjective and objective results on the indoor
and outdoor datasets demonstrate that the proposed method
outperformed state-of-the-art approaches. Furthermore, dur-
ing extensive experiments we noticed that the network based
approaches hardly preserve the color and contrast for the
robust exposure variations in the same scene. For example,
the HDR-Net is designed in a heuristic manner and learn to

enhance from synthesized training data. The Retinex model
follows a decomposition approach but produces unnatural
results, whereas HDR-Net seems unable to recover the dark
regions. The proposed method recover the details in the
under-exposed regions and maintain a balance of color and
contrast for the robust exposure variations. Although the
time complexity of the deep learning-based methods is less,
but unfortunately the adversity of obtaining large scale and
even paired training datasets limits the practical implication
of these methods. We proposed a multiview enhancement
method that is more adaptive to variational exposures and
utilizes one image per viewpoint to produce a refined out-
put image. The comparison demonstrates that the proposed
method achieves a decent and pleasing visual quality more
natural than the state-of-the-art approaches.

V. CONCLUSION
In this article, we proposed a method for the enhance-
ment of ill-lit images captured with multiple sparsely
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arranged cameras. The input images are captured with an
unknown short exposure time and geometry. We produce
multiview images with a higher dynamic range by using
multiview low dynamic range ill-illuminated images. The tra-
ditional stereo and multiview methods rely on disparity map
estimation, suspected to be almost impossible for wide base-
line, large-angle deviations, and ill-lit conditions. We handle
the complex geometric alignment of multiview cameras with
rectification and calibration of the multiview low dynamic
range images to acquire accurate features. We detect and
match accurate feature points and estimate exposure gain to
design an image restoration function. We dispense the chal-
lenges of color and contrast distortions via generating virtual
views and follow exposure fusion strategy to obtain the final
image. The proposed method can handle the challenges of
multiple views captured with variational baselines and angle
deviations without relying on disparity maps. We perform
various experiments in controlled and uncontrolled scenarios
on indoor and outdoor datasets. The comparison with state-
of-the-art approaches demonstrates that our method outper-
formed and is more suitable for future high dynamic range
capturing and interactive visual display applications.
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