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ABSTRACT It has become a trend in recent years to use deep neural networks for colorization. However,
previous methods often encounter problems with edge color leakage and difficulties in obtaining a plausible
color output from the Euclidean distance. To solve these problems, we propose a new adversarial edge-
aware image colorization method with multitask output combined with semantic segmentation. The system
uses a generator with a deep semantic fusion structure to infer semantic clues in a given grayscale
image under chroma conditions and learns colorization by simultaneously predicting color information and
semantic information. In addition, we also use a specific color difference loss with characteristics of human
visual observation that is combined with semantic segmentation loss and adversarial loss for training. The
experimental results show that our method is superior to existingmethods in terms of different quality metrics
and achieves good results in image colorization.

INDEX TERMS Colorization, semantic segmentation, multitask training, generative adversarial networks.

I. INTRODUCTION
In regard to coloring black and white photos, the first thought
that comes to mind is the work of an artist named Marina
Amaral. She used postprocessing to fill in the color of many
famous historical photos, and the works were realistic and
did not contain any holes. Most people do not have such
skills, and it is very difficult to achieve color image. However,
in recent years, a large number of automatic coloringmethods
have emerged, allowing people to easily add color to black
and white pictures that provides a unique and strong visual
experience.

From an aesthetic and artificial intelligence point of view,
automatic coloring has a wide range of practical applications,
and colorization is a promising approach in the field of self-
supervised visual learning. Image colorization is the mapping
of a real value gray image to a three-dimensional color image.
In the early stage, users marked colors on the gray image
in different areas and then colored the image through local
diffusion. These methods [1]–[4] require the user to draw
colored strokes on a grayscale image. Then, an optimization
program generates a color image to match the user’s scribble.
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The colored result can largely depend on how the color is cho-
sen, so the result depends on the user’s skills and experience.
To reduce the complexity of use, the latter method [5] was
subsequently designed with a better similarity measure, and
then methods based on learning mechanisms, such as boost-
ing [6], local linear embedding [8], feature extraction [7], etc.,
were employed. In recent years, some user-guided methods
combined with deep neural networks have emerged, such as
[9], [10]. These methods can achieve impressive results but
often require intensive user interaction because each method
has a different color and requires precise labeling.

To remove these limitations, researchers have explored
more automated colorization methods from a data-driven per-
spective. The model of data-driven method involves learning
the parametric mapping relation from a gray image to a
color image through large-scale data. In this respect, the most
mentioned methods are [11]–[17], [35]. Although these data-
driven methods all have good performance, we find that the
existing models do not substantively take into account the
effective colorization of the object edge in the image and are
limited in the selection of the loss function.

In this paper, we propose a new framework of an edge-
aware colorized deep neural network with semantic segmen-
tation to solve the above problems. Our main focus is to make
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FIGURE 1. Adversarial edge-aware image colorization with semantic segmentation. We propose an object
edge-aware coloring method that can produce natural and colorful results in scenes with multiple objects.

the different objects in the colored image have clear coloring
boundaries, which can effectively achieve the image coloriza-
tion of edge perception. The above effect can be achieved
in our work mainly because of the following three reasons.
First, our network is based on the architecture of a generative
adversarial network, and the generator of the network has the
structure of deep semantic fusion. The addition of adversarial
loss can generate more vivid results. Second, image coloriza-
tion is the first task of our network, and the other task is
semantic segmentation. That is, our work realizes multitask
output [22] and constrains the network output by adding a
semantic segmentation task. Basically, the two tasks share
the same goal, which is to acquire as many image features as
possible, so in addition to obtaining more information about
the edge of the object, the color task can also be assisted.
Third, we adopted a new color difference loss LCMC , that
makes the color difference calculation more in line with the
characteristics of human visual observation. We trained and
verified the proposed method on two public datasets, namely,
the PASCALVOC 2012 augmented dataset and the ADE20K
dataset [23]. Figure 1 shows the results of image colorization
using our method.

Our major contributions are as follows:

• A new automatic image colorization method combined
with the semantic segmentation task is presented.

• A novel generative adversarial network with a deep
semantic fusion structure and multitask output is pro-
posed.

• We use a specific color difference loss with human
visual observation characteristics and combine semantic

segmentation loss and adversarial loss to form a multi-
variate loss function.

II. RELATED RESEARCH
At present, image colorization methods are mainly divided
into two categories: user-guided colorization methods that
require user participation, and data-driven automatic col-
orization methods that are completely end-to-end without
human intervention.
User-guided colorization: Due to the multimodal problem

of image colorization, early approaches relied on additional
advanced user doodles (for example, dots or strokes) to guide
the coloring process. Levin et al. [1] suggested assigning
similar colors to adjacent pixels with similar brightness.
Horiuchi and Kotera [4] proposed a new texture colorization
algorithm based on mixed seed color that can accurately
color the image with texture. Huang et al. [2] proposed a
general fast coloring method based on adaptive edge detec-
tion to prevent the coloring process from overflowing the
target edge. Yatziv and Sapiro [3] proposed a luminance-
weighted chromaticity blend to reduce the dependence on
the position of the scribble. Because strokes are propagated
using low-level similarity measures, such as spatial offset and
strength differences, it usually takes substantial user editing
to obtain the real results. To reduce the workload of users, the
latter methods use boosting [6], local linear embedding [8],
feature extraction [7] and other learning mechanism meth-
ods to design better similarity measurements. These methods
can yield convincing results when the user provides detailed
guidance hints. However, this process requires a large amount
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of human intervention (labor-intensive). Zhang et al. [9] par-
tially alleviate the manual workload by combining color hints
with deep neural networks.
Data-driven automatic colorization: In the existing work,

deep neural network-based methods have become the main-
stream learning methods, learning color prediction from
large-scale datasets (such as ImageNet [24]). In this method,
a large number of gray/color images are used to train the
neural network, and the mapping relationship between the
gray image and color channel is modeled. In terms of network
structure, some approaches choose generative nonadversarial
networks to predict the color channel of the image, such as
Iizuka et al. [13] and Zhao et al. [25], all of which propose
local image characteristics and global fusion prior informa-
tion of the double branch network architecture, presuming
that the color is the best way to consider details of gray
images on many levels of abstraction. Zhang et al. [15]
adopted a cross-channel coding scheme to provide semantic
interpretability, learned the color distribution of each pixel
and the network’s training and polynomial cross-entropy loss,
and allowed unusual colors to appear by rebalancing the
rare class. Larsson et al. [14] also achieved this by pre-
training their network for a classification task and working
on a system that could learn the color histogram (distri-
bution) of a given grayscale pixel. There are also methods
based on generative adversarial networks(GANs), which take
advantage of GANs’ ability to learn the probability dis-
tribution of higher-dimensional spatial data (such as color
images) to produce very good color results. For example,
Isola et al. [16] proposed the use of conditional generative
adversarial networks [26] (cGans) based on the generator of
U-Net [33] to map the input image to the output image and
combined L1 loss and adversarial loss to train the network.
Nazeri et al. [35] extended the method of Isola et al. [16]
by extending the coloring process to high-resolution images
and proposed training strategies to speed up the process
and greatly stabilize it. Cao et al. [27] also used cGANs
and obtained various possible colors by sampling the input
noise several times. Deoldify [28] used the NoGAN training
method to enable the network to generate realistic color
transformation, and Vitoria et al. [17] proposed an auto-
matic end-to-end adversarial method combining GANs and
semantic class distribution learning. It is worth noting that
none of these GAN-based approaches use additional infor-
mation such as semantic segmentation, while our colorization
approach based on the generative adversarial network com-
bines the distribution of semantic segmentation with color
regression.

III. OVERVIEW
Our work is carried out in CIELAB color space. The network
uses a 256 × 256 × 1 gray image X ∈ RH×W×1 as input
(L channel in CIELAB color space) and then predicts two
color channels Ŷ ∈ RH×W×2 corresponding to the gray
image (AB channels in CIELAB color space). In our work,
the network is based on GANs, which enhances the effect

of colorization by adding the semantic segmentation task
(Section IV-A). The network architecture consists of three
parts (Section IV-B), which are the feature extraction module
(Section IV-B2), the reconstruction module (Section IV-B1),
and the multitask output module (Section IV-B3). In addi-
tion to combining semantic segmentation loss, we also use
a chromatic aberration calculation that is more consistent
with human visual observation, enhancing the consistency
between visual assessment and measurement of chromatic
aberrations (Section IV-C).

IV. METHOD
A. SEMANTIC SEGMENTATION
Numerous works [18]–[20] in computer vision exist that
integrate semantic segmentation tasks with great results. The
task of image colorization has a strong correlation with
semantic segmentation. Essentially, they all achieve pixel-
level classification. Our backbone network adopts the U-Net-
like network, which was originally used for medical image
segmentation. Inspired by these works, we use the semantic
segmentation task to enhance the shading ability of the net-
work. On the one hand, the network is constrained to extract
object contours; on the other hand, intensive prediction and
fine-grained reasoning are developed for each pixel to assist
the network to extract features. We accomplish these goals by
adding a module to the output layer of the network to output
semantic labels.

B. NETWORK ARCHITECTURE
Referring to our previous work [21], we use PatchGAN|
[16] as a discriminator, which is based on the Markov dis-
criminator architecture. Different from the common GAN
discriminator that maps the input to a real number, PatchGAN
maps the input to the N × N patch (we output a 16 × 16
patch). The final result is the average value of the patch,
which can take into account the influence of different parts
of the image. As shown in Figure 2, our network consists
of three parts: a feature extraction module (green and blue),
a reconstruction module (purple), and finally a multitask
output module (yellow).

1) FEATURE EXTRACTION MODULE
The main network of the generator takes our previous work
and uses a U-Net-like network to extract the local features
(colored dark green in Figure 2). Then, a network pretrained
on ImageNet is used to extract global features; however, any
feature extraction network can be used, such as VGG16 [34],
ResNet [29], ResNeXt [30], etc. We choose the ResNeXt50
network with the SE [31] module as the branch network (the
light green part in Figure 2). In contrast to previous work,
we fully utilize the pretrained branch network, which not only
extracts high-level features but also contributes low-level fea-
tures with higher resolution, including more location details,
and then integrates features of the same size that are extracted
from the trunk network to improve the network’s perception
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FIGURE 2. Overview of the generator. All the green and blue parts belong to the feature extraction module, the purple part
belongs to the reconstruction module, and the yellow part belongs to the multitask output module. The input of the model is a
gray image with a size of 256× 256× 1, and the output of the prediction result of the AB channel has a size of 256× 256× 2 and a
semantic label with a size of 256× 256× C . The right side of the figure shows the specific structure of the corresponding color
block. The content in the solid line box is required, and the content in the dotted line box is optional.

of details. The grayscale image X with the size of 256×256×
1 is taken as the input of both feature extraction networks at
the same time. In the local feature extraction network, the size
of the image is reduced to 1

2 of the input every time it passes
through a downsampling module. After 8 downsampling
operations, features with a size of 1× 1× 512 are obtained.
The final output of the pretrained global feature extraction
network is 1× 1× 1000. In addition, we extract the features
of the middle layer whose two feature sizes are 64×64×256
and 16 × 16 × 512. After the feature refining block (FRB,
colored blue in Figure 2), the number of channels is unified
to 512.

2) RECONSTRUCTION MODULE
After the features of the low and high levels are extracted, the
multilayer features are fused through early fusion, as shown
in the purple part of Figure 2. We used deconvolution to
carry out upsampling of features with an upsampling factor
of 2. In particular, before the fifth and seventh upsampling
modules were carried out, features passing through FRBwere
fused with trunk features of the same size through the concat
operation. This structure, which integrates more low-level
semantic features, contributes more spatial information and
object details to the network and provides support for network
prediction.
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3) MULTITASK OUTPUT MODULE
Our generator has two kinds of outputs, so there are two
branches in the output module (colored yellow in Figure 2).
The first output branch outputs the prediction results of the
AB channel of 256 × 256 × 2, which calculates the color
difference loss with the GT’s AB channels. The second output
branch outputs the prediction of the semantic label with the
size of 265×256×C (C refers to the number of categories of
semantic labels), and this part obtains the segmentation loss
from the semantic label.

C. LOSS FUNCTION
The color difference can be calculated by the Euclidean
distance in color space; however, different colors are in fact
not linearly separable. In other words, in our visual sys-
tem, the color difference is very large, when, in fact, the
Euclidean distance between colors may be very small. There-
fore, we cannot simply use the Euclidean distance to judge
the color difference. In addition, the sensitivity of human
eyes to hue, saturation and lightness is different. We first
observe the difference of hue, then saturation, and finally
the difference of lightness. Consequently, the true visually
acceptable tolerance is not equal to the hue, saturation and
lightness. The CMC(l:c) color difference loss can achieve bet-
ter consistency between visual evaluation and the measured
color difference. Therefore, according to this characteristic,
we adopt a color difference loss LCMC that is closer to human
visual observation, as follows:

LCMC =

√
(
L∗2 − L

∗

1

lSL
)2 + (

C∗2 − C
∗

1

cSC
)2 + (

H∗2 − H
∗

1

SH
). (1)

SL =

{
0.511, L∗1 ≤ 16,
0.040975L∗1
1+0.01765L∗1

, L∗1 ≥ 16.
(2)

SC =
0.0638C∗1

1+ 0.0131C∗1
+ 0.638. (3)

SH = SC (FT + 1− F). (4)

F =

√
C∗41

C∗41 + 1900
. (5)

T =

{
0.56+|0.2 cos(h1+168◦)| , 164◦≤h1≤345◦,
0.36+ |0.4 cos(h1 + 35◦)| , otherwise.

(6)

The CMC(l:c) color difference formula [32] defines the
ellipsoid mathematically around the half-axis of the standard
color and luminance (L∗), chromaticity (C∗) and hue (H∗).
In the above formula, L∗1 , C

∗

1 , and H
∗

1 are the chromaticity
parameters of the standard color, but in the image colorization
task, the chromaticity parameters of the standard color refer
to the chromaticity parameters of the GT. SL , SC and SH are
the half-axis of the ellipse, and l : c is the ratio of lightness
to saturation. The larger the ratio is, the larger the tolerance
range. The length of the relative half-axis can be changed by

two parameters l and c (we set l : c as 2 : 1), and then the
relative tolerance of 1L∗, 1C∗, and 1H∗.
In our network, semantic segmentation task is used to

improve the ability of edge division of the object on the
network. At the same time, it can assist the network to learn
the color and contour of objects. The loss function of semantic
segmentation is Lseg as follows (where p represents the seg-
mentation label and q represents the network segmentation
result):

Lseg = −
∑
C

pi log qi. (7)

The general objective function of a GAN is as follows:

Lg(G,D) = Ey∼pdata[logD(y)]+ Ex∼pg [log(1− D(G(x))].
(8)

The generator G tries to minimize Lg(G,D), and the dis-
criminator D iterates to maximize Lg(G,D). However, con-
sidering that our network follows multi-output and multitask
forms, the final objective is as follows:

G∗ = (1−λ) argmin
G

max
D

Lg(G,D)+ λLCMC + Lseg. (9)

λ is the weighted hyperparameter and set to 0.99 in the
experiment to ensure the two losses of Lg(G,D) and LCMC
have a consistent order of magnitude.

V. EXPERIMENT
In this part, wewill show the experimental results to verify the
effectiveness of the proposed edge-aware image colorization
method. In Section V-A, the datasets and evaluation metrics
used in the experiment and some details of model training are
described. In Section V-B, the color images obtained by our
method and other methods are compared and analyzed quan-
titatively. Finally, the effectiveness of the model is studied in
Section V-C, and qualitative analysis is carried out.

A. EXPERIMENTAL SETTING
1) DATASETS
We used two kinds of data to train and verify the model,
namely, the segmented PASCAL VOC 2012 augmented
dataset and the ADE20K dataset.
PASCAL VOC 2012 Augmented Dataset: the object cate-

gories in the dataset are divided into 21 categories, including
background. There are 11,355 images, with 10,582 for train-
ing, 1449 for evaluation and 1456 for testing.
ADE20K Dataset: this is a scene dataset contain-

ing 150 categories and a total of 22,210 images, of which
20,120 are the training set and 2000 are the validation set.

2) EVALUATION METRICS
We use a variety of comprehensive evaluation indicators
to evaluate the prediction results. The selected indicators
are peak signal-to-noise ratio (PSNR), structural similar-
ity (SSIM) and Image Entropy.
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TABLE 1. Quantitative comparison on two datasets.

3) TRAINING DETAILS
In our experiment, one single GTX 1080ti GPU was used to
train the model, and when the input size was set to 256×256,
the FLOPs of the network was 37.596GFLOPS, the parame-
ters consumed 328.29MB of memory, and forward/backward
pass consumed 919.02MB of memory. Before inputting a
single-channel image, we enhance the data, including his-
togram equalization and random flipping. Histogram equal-
ization can enhance the contrast of the image and compensate
for the difference of gray levels which is difficult to distin-
guish by visual entropy. In all the training processes, we use
the ADAM optimizer with β1=0.5 and β2=0.999.

B. QUANTITATIVE COMPARISONS
In this section, the proposed method is evaluated quanti-
tatively. In Table 1, we report the quantitative comparison
of the methods in the experiments on the two datasets.
The table shows the average values of all test images on
each evaluation metric. On the PASCAL VOC 2012 aug-
mented dataset, our model achieves better values than the
latest methods [13]–[15], [17], [28], [35]. However, we can
observe that our method does not achieve the highest score
of the three indicators on the ADE20K dataset, but com-
pared to the method of Zhang et al. [15], which obtains the
PSNR highest score, our method exceeds its corresponding
scores in the other two indicators. Similarly, compared to
Nazeri et al. [35], which obtains the highest image entropy
score, our method exceeds its scores in the first two indi-
cators. This is not surprising, since our network not only
has a deep semantic fusion structure but also incorporates a
multitask design that enhances the ability of the network to
capture object boundaries and achieve a fine-grained reason-
ing ability. From the perspective of comparing the loss of this
work and the loss of other methods, the loss function LCMC
is close to human visual observation, reduces the tolerance
of color differences and gives more guidance for updating
parameters.

Figure 3 shows our colorization results compared to the
advancedmethods. By using a public online demo, our results
are compared to those obtained in [13]–[15], [17], [28], [35].
The first three row methods are the deep convolutional neural
network without adversarial training, and the last four row
methods are based on the generative adversarial network.

TABLE 2. Quantitative comparison of the images in Figure 4 that are
ordered from top to bottom.

It can be observed that the method in Iizuka et al. [13],
Larsson et al. [14] and Zhang et al. [15] can color the plants
with obvious texture features. For some artificial objects,
they tend to output soft colors. However, Zhang et al. [15]
trained with polynomial cross-entropy and used classification
to rebalance rare classes, especially allowing unusual colors
in color images, such as colors with high saturation in the
third image. DeOldify’s [28] overall tone is uniform but tends
to be desaturated. Compared to [13]–[15] in the test sample,
Nazeri et al. [35] produced more colorful images, but they
were uneven, while Deoldify’s [28] better coloring effect on
characters was not maintained in other aspects. ChromaGAN
[17] and our approach can achieve a more lively appearance
and are closer to the ground truth, especially in regard to
the colored drinks in the third row that look very tempting.
Nevertheless, ChromaGAN [17] has insufficiently dealt with
some details. For example, in the picture of the second row
of buses, the roadside signs are not accurately identified and
are confused with the surrounding objects. In the sixth row of
images, the outdoor scenery of the window is also given the
same light brown yellow color as the surrounding environ-
ment. In contrast, given the influence of multitask learning,
the generator with the deep multifeature fusion structure, and
the color difference loss in line with human visual perception,
our network can not only obtain rich semantic information
but also emphasize the edge of objects. In these test cases,
it shows excellent color ability. The helmets of motorcyclists
appear beautifully red, the buses and landmarks beside them
have natural and realistic colors, the overlapping drink bottles
also have rich colors, and the dinner plate on the table appears
very good with the meal while the table is different. The
birds standing on the branches are almost the same as the real
image, and the scenery outside the window has its own color.

C. ABLATION STUDY
We conduct ablation studies by evaluating a variant of our
method and different color difference loss choices. There
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FIGURE 3. From left to right are several qualitative results of the methods of Iizuka et al. [13], Larsson et al. [14], Zhang et al. [15],
Nazeri et al. [35], DeOldify [28], ChromaGAN [17] and our approach. The last column is the GT.

are two main components that are critical to our final per-
formance: the visual perception color difference loss and
the semantic segmentation edge-aware function. We con-
ducted ablation studies to assess the effectiveness of each
component.

In the first ablation experiment, the semantic segmentation
edge-aware functionwas disabled (we denote our approach as
Ours and its variants with +seg and −seg). We can observe
that the red chair in the first row (a) of Figure 4 has a certain
degree of color leakage without the constraint of the semantic
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TABLE 3. Quantitative comparison of the images in Figure 5 from top to bottom, where each image is represented by image-x (x = 1, 2, 3).

FIGURE 4. Visualization of the effectiveness of the semantic segmentation edge-aware function. Column (a) is the
colorization results of variant (−seg); column (b) is the colorization result of our proposed method (+seg); and
column (c) is the prediction result of the semantic label obtained simultaneously with column (b).

segmentation task. With the semantic segmentation module,
the color of the chair is changed so that the color range is
corrected, and the red chair in column (b) is the revised result.
The bicycle in column (a) of the second row also has problems
in color prediction. The body of the bicycle is not effectively
colored. It can be observed that our method of multitask
training enhances the network’s ability to recognize objects
and effectively segment the bicycles, people and traveling
cars, so that the bicycle bodies in column (b) can be col-
ored well. Therefore, we conclude that the combination that
includes the semantic segmentation edge-aware function can
effectively avoid the phenomena of unclear color and edge
color leakage of these objects. For the images in Figure 4,
we mainly focus on the reconstruction quality of the recon-
structed images when the color of the images obtained by the
two methods is very good. According to the data in Table 2,
the method with the semantic segmentation edge-aware func-
tion can reconstruct the image better. The PSNR value is
5.3% higher than that of themethod without the semantic seg-
mentation edge-aware function, and the SSIM value is 3.1%
higher.

In the second ablation experiment, Euclidean distance (L2
loss) and LCMC were used to calculate the color difference.
The experimental results are shown in Figure 4. We can
see that the colorization result using L2 loss is very poor in
predicting some bright colored objects, which is almost in the
middle value of the color, while LCMC predicts satisfactory
results. The objects are more evenly and naturally colored,
and the color difference was smaller than that using L2 loss.
Although there is still a slight difference in saturation with
the GT, compared to the L2 loss, it has been greatly improved
and can achieve effective colorization. The results of their
quantitative analyses are shown in Table 3. From the results
of the three evaluationmetrics, the evaluation results ofLCMC
are also better than that of Euclidean distance. Although the
value of Image Entropy in image-2 is lower than that of using
L2 loss, considering the other two metrics, LCMC can obtain
better results.

In general, LCMC achieves an improvement that addresses
the network’s difficulty of tending to average values when
the color is uncertain, which is caused by the traditional
Euclidean distance.
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FIGURE 5. Visualization of the results obtained by different color difference losses. Column (a) is the colorization
result of Euclidean distance L2 loss, column (b) is colorization result of CMC(l:c) color difference loss LCMC , and
column (c) is the real label image.

VI. CONCLUSION
In this paper, we propose a newmethod of image colorization
based on a generative adversarial network combined with
the semantic segmentation task. The network outputs color
images and semantic segmentation tags at the same time. Our
system can achieve better image colorization by using a color
difference calculation loss function, a semantic segmentation
loss function and a loss resistance loss function with the
characteristics of human visual observation. Therefore, with
the help of the semantic segmentation task, our method can
better realize the color of the image and effectively improve
the problem of graying color and color leakage. Compared
to the advanced methods, our method is superior to them in
PSNR, SSIM, and Image Entropy. At present, our system is
trained in cases with fewer semantic categories. To obtain
more accurate color results, semantic classification labels
with greater accuracy are necessary, but this also increases the

difficulty of semantic segmentation. In future work, we will
continue to study the balance between color tasks and seman-
tic segmentation/instance segmentation.
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