
Received January 7, 2021, accepted January 26, 2021, date of publication February 3, 2021, date of current version February 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3056613

2DSlicesNet: A 2D Slice-Based Convolutional
Neural Network for 3D Object Retrieval
and Classification
ILYASS OUAZZANI TAYBI 1, TAOUFIQ GADI1, AND RACHID ALAOUI2,3
1LIIMSC Laboratory, Faculty of Sciences and Techniques, Hassan First University, Settat 26000, Morocco
2LRIT Laboratory, Faculty of Sciences, Mohammed V University, Rabat 10000, Morocco
3LASTIMI Laboratory, Higher School of Technology—Sale, Mohammed V University, Rabat 10000, Morocco

Corresponding author: Ilyass Ouazzani Taybi (ilyass.ouazzani@gmail.com)

ABSTRACT 3D data can be instrumental to the computer vision field as it provides insightful information
about the full 3D models’ geometry. Recently, with easy access to both computational power and huge 3D
databases, it is feasible to apply convolutional neural networks to automatically extract the 3D models’
features. This paper presents a novel approach, called 2DSlicesNet, which deals with the issue of 3D model
retrieval and classification using a 2D slice-based representation with a 3D convolutional neural network.
The assumption in this context is that similar 3D models will be composed of almost identical 2D slices.
Therefore, we first transform each normalized 3D model into a set of 2D slices corresponding to its first
main axis, and then use them as input data to our 3D convolutional neural network. Experimental results and
comparison with state-of-the-art approaches, using ModelNet10 and ModelNet40 datasets, prove that our
proposed 2DSlicesNet approach can reach notable rates of accuracy in classification and retrieval.

INDEX TERMS Deep learning, 2D slices, 3D convolutional neural network, 3D object classification, 3D
object retrieval.

I. INTRODUCTION
With the rapid advancement of 3D object capturing instru-
ments and computing power, there is a growing number of 3D
models in different areas [1], such as medical simulation,
computer vision, computer graphics, computer-aided design
and architectural design. As opposed to model recognition
and retrieval on 2D data, classifying and retrieving models
from 3D information is a progressively viable and sensible
errand. In that capacity, addressing 3D model classification
and retrieval is a pertinent research subject. As a result, it has
lately drawn considerable attention from researchers [2].

Early works of 3D model retrieval and classification
are generally founded on 3D objects, where low-level
characteristic-based approaches [3], [4] and high-level
structure-based approaches [5], [6] have been utilized.
Recently, the effectiveness of deep learning approaches [7],
particularly convolutional neural network (CNN), has
speeded the development of 3D model recognition and
retrieval, and have demonstrated their predominance com-
pared to traditional approaches.
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Among the existing deep learning approaches, using 2D
slices as the input data to a CNN has recently demonstrated
to be an effective approach that has accomplished state of
the art 3D model recognition in Gomez-Donoso et al. [8]
paper. In fact, the authors proposed LonchaNet, a 3D model
classification approach based on 2D slices. They extracted
three 2D slices for each 3D model corresponding to XY,
XZ, and YZ planes. After, they used the drawn 2D slices
as the input to three independent GoogLeNet networks for
learning and extracting 2D slices features, which are joined
in a layer prior to the classification layer. The authors tested
their method in the ModelNet10, which is both a 3D database
and a challenge. The suggested approach obtained a 94.37%
classification accuracy, outperforming most existing methods
that participated in the challenge. However, the LonchaNet
approach extracts only one 2D slice for each 3D object’s axis,
which can, sometimes, lead to 2D slices being completely
different for some 3Dmodels of the same category, or similar
2D slices for 3Dmodels of distinct classes. In addition, to pull
out the 3D model’s slices, the authors make cross-sections
with a width of 5% of the 3Dmodel size, and then they project
the points that fall inside these sections in their planes, which
could cause loss of information due to the projection.
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To address all these limitations, a novel approach called
2DSlicesNet is posited, which combines successive 2D slices
for 3D characteristic learning by using 3D convolutional
neural network (3DCNN). In our approach, we produce 2D
slices directly from the intersection of each normalized 3D
model with 64 planes equally spaced and orthogonal to the
Ox axis, which aims to avert the 2D slice loss of information
due to projection. We also represent each 3D model by a set
of successive 2D slices. In this way, we assure that similar 3D
models will be represented by almost identical 2D slices, and
the order of 2D slices is preserved by using 3DCNN. Indeed,
to raise the learned features’ discriminability, 2DSlicesNet
aggregates not only the information within all 2D slices but
also the successive spatiality amongst the 2D slices, which
makes 2DSlicesNet learn the complete features in the set
of 2D slices of each object.

To assess the performance of the proposed 2DSlicesNet
system, we have conducted experiments on ModelNet10 and
ModelNet40, which are both 3D databases and challenges.
The findings of our experiments demonstrate that our
proposed approach can generate comparable results, on both
3D model retrieval and classification tasks, in comparison
with the state-of-the-art methods, which show the efficiency
of the 2DSlicesNet.

The remainder of the paper is organized as follows.
In the second section, we shortly review some of the previous
works on 3D object recognition and retrieval. In the third
section, we briefly discuss Convolutional Neural Network.
Then, in the fourth section, we introduce our approach, which
is entitled 2DSlicesNet. In the fifth part, we present and
analyze the results of our experiments and draw conclusions.
Finally, in the last part, we conclude this paper.

II. RELATED WORK
In recent years, 3D object retrieval and classification have
been probed. In this section, we briefly shed light on
notable handcrafted feature-based approaches and deep
learning-based approaches.

A. HAND-CRAFTED FEATURE-BASED APPROACHES
The traditional hand-crafted feature-based approaches can be
broadly divided into two groups [9], [10]: 2D image-based
approaches [11], [12] [13], [14] and model-based approaches
[15], [16] [17].

2D image-based approaches use a set of images to
describe the 3D object. Light Field Descriptor (LFD) [18],
the first typical 3D object image-based descriptor, 3D
objects are represented by a set of ten images captured
from the vertices of a dodecahedron over a hemisphere.
In [19], the probabilistic corresponding was used to measure
the resemblance between 3D objects. In [20], the authors
generate an ensemble of 2D slices corresponding to specific
axes. The Apriori algorithm was used to pick out the most
distinctive ones. In [21], a set of panoramic images were
extracted from the 3D object to represent the surface of model
and the orientation.

One of the most commonly model-based approaches is the
statistical approach, which can be employed to characterize
the attributes’ distributions. In [22], the authors represent
the 3D object by a 3D closed curve, which is used to yield
feature vectors. They combine two novel descriptors; the dot
product and the area descriptors that typify the reconstructed
3D closed curve to portray the 3D curve analysis descriptor.
In [3], the authors used the shape distribution to compute the
similarity based on angle, distance, volume, and area between
random surface points. In [23], the Spherical Harmonic (SPH)
Representation is introduced, which is a rotation invariant
representation of spherical functions in terms of the energies
at different frequencies. The proposedmethod is the Gaussian
Euclidean Distance Transform’s volumetric representation of
a 3D model, symbolized by spherical harmonic frequencies’
norms. In [24] the Multi-Fourier Spectra approach was
proposed by increasing the feature vector with spectral
clustering. The proposed descriptor was composed of four
separate Fourier spectra with periphery enhancement. It was
capable of capturing the 3D object’s intrinsic characteristics
regardless of the 3D object’s position, orientation, and scale.
For 3D shape retrieval task, in [25] a probabilistic generative
signature of local shape properties was used by the authors.

B. DEEP LEARNING-BASED APPROACHES
Lately, deep learning methods have been broadly investigated
in 3D model retrieval and classification tasks. They are
applied on various 3D object representations, especially
points, voxels and 2D projections.

PointNet [26] is deemed the pioneer in utilizing the
point cloud, as an input data where each of its points
is characterized using the (x,y, z) coordinates. In the
pre-processing phase, feature transformation and inputs are
fed into the PointNet framework. PointNet consists of three
major modules: a ‘‘Spatial Transformer Network (STN)’’
module, a RNN module and a simple symmetric function
that combines all the information from each point in the
point cloud. For an accurate capturing of local structures,
the same authors posit a hierarchal PointNet which is named
PointNet++ [27]. Ng et al. [28] present RadialNet, a novel
deep neural network framework, which takes full advantage
of local structure representation of point cloud data by
applying radial basis function.

Wu et al. [29] introduced a pioneering method of using
volumetric CNN for 3D model classification. To characterize
a 3D geometric form as a probability distribution of binary
variables on a 3D voxel grid, the suggested 3D ShapeNets
makes use of a convolutional deep neural network. A similar
method was presented by Maturana and Scherer [30], called
VoxNet. The latter probed three different occupancy grid
models with 3D CNN for real-time and effective object
recognition. It significantly outperformed 3D ShapeNets
on the ModelNet database. Qi et al. [31] developed two
novel volumetric 3D convolutional neural networks by
joining anisotropic probing, auxiliary training, and network
in network structure.
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Su et al. [32] (MVCNN) characterize a 3D object by views
produced from the projection at twelve varying standpoints,
and then utilize VGG-M convolution neural network to learn
the characteristics of each view, finally, the characteristics
of the multi-view are joined and sent to the next CNN
network to generate the final shape descriptors. MVCNN
considerably outperforms any results that were previously
published. Johns et al. [33] implement CNN to generic
multi-view recognition by partitioning an image sequence
into an ensemble of image pairs, categorizing each pair, and
weighing its contribution. DeepPano [34] was introduced
to learn characteristics from panorama views making use
of CNN, where each panorama view can be considered
as the unified combination of many views captured on a
circle. Row-wise max pooling was proposed in DeepPano to
eradicate the impact of rotation about the up-orientation.With
pose normalization, Sfikas et al. [35] employed CNN to learn
3D global characteristics from many panorama views which
were piled together in a consistent order.

III. CONVOLUTIONAL NEURAL NETWORKS
To begin with, we review a few key features of CNNs which
were presented by LeCun et al. [36]. It is known that 2D
CNNs are commonly used in speech and image domains.
As such, we expand 2D convolution to 3D with depth axis
and utilize 3D convolution to build the engineering of our
2DSlicesNet.

A. BACKGROUND OF 2D CONVOLUTIONAL NEURAL
NETWORKS
To pull out features from the previous layer in 2D convolu-
tional neural networks, 2D convolution is effectuated at the
convolutional layers. The concept is that a filter, named local
receptive field, shifts over every unit from previous layer.
Every unit in the convolutional layer gets inputs from an
ensemble of units situated in the local receptive field and is
computed by the following equation.

fxy = σ (
∑
i,j

wijv(x+i)(y+j) + b) (1)

where fxy refers to a unit in feature map at location (x; y),
σ (•) symbolizes an activation function, wij signifies the
weight of filter, v(x+i)(y+j) designates an input unit at location
(x + i, y + j), and b refers to the bias of the feature map.
Parameters of filters are required to be the same for all
of the possible positions of precedent layer. This process
is named weight sharing. The weight sharing diminishes
the quantity of free variables and rises the generalization
ability of the network. The weights of filters are reproduced
over the input data, generating intrinsic insensibility to
translation in the input. In order to detect various features,
the convolutional layer commonly regroups many feature
maps. To improve the invariance to distortions on the inputs,
in the subsampling layers, the feature maps resolution is
decreased by pooling over local neighbourship on the feature
maps in the preceding layer. A CNN structure can be built

by assembling, in an alternating manner, several convolution
and subsampling layers. The habitual back propagation
gradient-descent technique is used to train the networks.

B. 3D CONVOLUTION
In 2D CNNS, the features are extracted from the two dimen-
sions only (length and height) by applying convolutions on
the 2D feature maps. When applied to 3D object recognition,
it is commonly aimed at extracting the features encoded in
three dimensions of the input data (length, height, and depth).
Consequently, we propose to perform 3D convolutions in
the convolution steps to capture information from the three
dimensions. In our approach, the 3D convolution is realized
by convolving a 3D filter to the cube made by stacking
a set of successive 2D slices together. By this structure,
in the convolution layer, the feature maps are associated with
several contiguous 2D slices in the preceding layer. Hence,
we extract features from both length, height, and depth. Like
the equation 1, 3D convolution is computed by:

fxyz = σ (
∑
i,j,k

wijkv(x+i)(y+j)(z+k) + b) (2)

Because 3D convolutional filter extracts only one kind
of features from the frame cube, the weights of filter are
reproduced across the whole cube. Generally, in late layers,
the number of feature maps should be increased by producing
multiple sorts of features based on the same set of previous
feature maps. Like the 2D convolution, we can apply several
3D convolutions with different filters to the same position in
the preceding layer.

IV. OUR APPROACH
Based on the 3D convolution mentioned above, a variety of
CNN structures can be developed. Hence, we present a 3D
CNN architecture based on 2D slices that we have devised
for 3D objects classification and retrieval. In our approach,
presented in Fig.1, we start by a normalization step, to assure
that similar models will be in the same orientation, position
and scale. Next, the 2D slices corresponding to the first main
axis of each 3Dmodel are extracted, resized, stacked and then
employed as input to our 3DCNN.

In order to compare 3D objects, we have to get their
characteristics. The last fully connected layer of our net-
work is used to obtain the 3D objects’ features. Finally,
the Euclidean distance is used to calculate the similarity
between 3D models. The details will be presented in the
following subsections.

A. 3D OBJECT PRETREATMENT
3D models obtained by diverse scanning and modeling
frameworks have various coordinate frames, because the
shapes of 3D models are always formed in a specific coordi-
nate system. For several applications, such as content-based
retrieval, visualization, thumbnail generation and modelling,
the coordinate frame normalization usually needs to be
completed at first. For example, numerous 3D object
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FIGURE 1. The overview of 2DSlicesNet. The 2D slices corresponding to the first main axis of the normalized 3D object are extracted, resized, stacked
and then used as the input data of our 3D CNN.

classification and retrieval approaches necessitate a prior
normalization step for a given request object and the 3D
objects of database, so all of the normalized 3D objects are
aligned into a usual coordinate framework before they are
treated.

In fact, the normalization step includes the normalization
of the scale, translation and rotation. In our approach,
the normalization step consists only of scaling and translating
each 3D model, in view of the fact that 3D objects of both
ModelNet10 and ModelNet40 are manually aligned by the
Princeton’s team. To accomplish the scale normalization,
the average distance of a 3D object’s surface from its centroid
is equal to 1. The translation normalization is achieved by
computing the 3D object’s center of mass and translates it to
coincide with the origin.

B. 2D SLICES EXTRACTION
In order to get the 3D objects’ slices, we extract the
intersection of the 3D triangle mesh with 64 planes equally
spaced and orthogonal to its first main axis. In fact, we move
the radius in the associated plane and we calculate, each
time, the distance D between the 3D triangle mesh and the
intersection with the radius’s origin O.

Let us consider I the intersection point of the radius
oriented by the vector −→v and a triangle mesh ABC . The
following equation defines the point I :

OI = D.−→v (3)

The following equation checked that the intersection point
I is in the surface delimited by the facet ABC :

−→
OA.−→n =

−→
OI .−→n (4)

With−→n referring to the normal vector to the triangle ABC ,
the following relation determines it:

−→n =
−→
AB ∧

−→
AC

||
−→
AB ∧

−→
AC||

(5)

To assure that the point of intersection I is not empty, it is
enough that it checks the following conditions:

(
−→
IA ∧
−→
IB).−→n > 0

(
−→
IB ∧
−→
IC).−→n > 0

(
−→
IC ∧

−→
IA).−→n > 0

(6)

All the extracted 2D slices are first resized into 64×64 and
then stacked into a matrix. At the end of this process, each 3D
object is represented by an ensemble of 64 slices, which we
will use as the input data of our 3D CNN. An example of a
3D object is shown in Fig.2 with its 2D slices corresponding
to its x-axis using 2DSlicesNet.

C. DATA AUGMENTATION
Data augmentation includes a set of practices that allow
us to meaningfully increase the variety of data existing for
training approaches, without actually assembling new data.
As a matter of fact, data augmentation techniques enable
us to increase the size and quality of training datasets and
to provide some variety as better deep learning approaches
can be constructed using them, which rise generalization
performance and reduce over-fitting.

Data rotation is one of the most commonly used techniques
of data augmentation in CNN. Thus, we made use of this
technique in order to better train our network. Actually, 3D
objects in the used databases are upright oriented. However,
they are not regularly oriented along the axis; they could
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FIGURE 2. Example of a 3D object (a) with its 2D slices (b) corresponding
to its x-axis using 2DSlicesNet.

be rotated randomly along the upright direction. Since our
approach relies on 2D slices of 3D objects, the input data
can profit from rotation augmentation on the upright axis
for training, and optionally, for testing. During training time,
we rotate the 2D slices of each 3D object by 11.25 degree,
and we consider each rotated version as different training
instance. At testing time, the 3D objects’ slices and all their
rotated versions are fed into our 3DCNN in one batch, and the
feature maps of the last fully connected layer are averaged.

D. 2DSlicesNet ARCHITECTURE
The 2DSlicesNet architecture is based on an ordinary scheme,
specifically an input layer, six convolution layers, three
pooling layers, two fully connected layers, and a Softmax
output layer.

For all convolutional layers, we use a convolutional filter
of size 3 × 3 × 3 followed by Sigmoid non-linearity
function, the correspondent feature maps are 64, 64, 128,
128, 256 and 256, respectively. To accelerate network
training, Batch-normalization [37] is employed after each
convolutional layer.

After each two convolutional layers, we integrate 2×2×2
max-pooling layer to make the feature maps insusceptible to
small translations and to reduce the resolution of the feature
maps. In order to improve the generalization capability and
avoid over-fitting, we add dropout after each pooling layer.

The choice of using small receptive fields (3× 3× 3), using
stride 1, instead of employing comparatively wide receptive
fields in the first convolutional layers, is supported by the
idea that a stack of two 3 × 3 × 3 convolutional layers,
without pooling layer in between, has a real receptive field
of 5 × 5 × 5. In fact, when we use, for example, a stack
of two 3 × 3 × 3 convolutional layers, rather than a single
5×5×5 convolutional layer; firstly we reduce the parameters’
number, secondly we integrate two nonlinear rectification
layers rather than only one, increasing the decision function’s
discriminability.

The output of our architecture includes two fully connected
layers, each has 512 output units. The two fully connected
layers are followed by ReLu function and dropout layer.
Finally, a Softmax layer is used at the end of our system
to allow for the parameter optimization by minimizing the
classification errors of 3D models. The class with the highest
probability is treated like the predicted class for the 3Dmodel.
The details of our architecture are shown in Fig.1.

E. FEATURE EXTRACTION FOR RETRIEVAL TASK
The descriptor for the retrieval task is the output of the last
fully connected layer after ReLU activation function of our
2DSlicesNet, which is a 512 dimensional vector. Each 3D
object descriptor is compared against the rest of the 3D object
descriptors using the Euclidean distance. For two 3D objects
Q andO, their descriptors are extracted from 2DSlicesNet Vq
and Vo, respectively. The Euclidean distance metric formula
is determined as:

d(Q,O) = ||Vq − Vo||2 (7)

V. EXPERIMENTS
In this section, we first introduce the datasets used to evaluate
our method. Then, a brief account of the implementation
details is provided. Next, we present the experiments on 3D
object classification and retrieval. Also, we discuss the results
of the experiments and compare them with well-known
approaches. It is worth mentioning that the scores of the
compared approaches are those declared by the authors in the
respective papers.

A. IMPLEMENTATION DETAILS
The 2DSlicesNet was evaluated on an Intel Xeon E5-
2670 CPU system, with 64 Go of RAM and a NVIDIA
QUADRO M6000 GPU with 12 GB RAM. The 2D slices
extraction approach was implemented in C++, while the
network architecture was developed in Python 3.7.7 using
Keras 2.3.1 and Tensorflow 2.1.0 via CUDA instruction set
on the GPU.

For hyperparameter optimization, we used Hyperas,
which chooses the best performing parameters out of
the options given. As far as the algorithm parameter is
concerned, Hyperas opted for Stochastic Gradient Descent
with 0,9 momentum [38], instead of Adam and RMSProp.
For the learning rate, it selected 0.001 out of 0.01 and 0.1. For
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the activation function, Hyperas chose Sigmoid function for
the six convolutional layers. However, it opted for the ReLu
function for the two fully connected layers. Also, we made
use of Hyperas to select the best value for the dropout layers
within [0, 0.9]. Finally, the batch size was 32. It is worth
noting that we trained our network for 200 epochs.

B. DATASETS
In our experiments, we tested our approach on the two
versions of the Princeton ModelNet dataset [29], Model-
Net10 and ModelNet40, which are two commonly used
subsets in ModelNet. The ModelNet10 contains 4,899 3D
objects from 10 classes, while the ModelNet40 is comprised
of 12,311 3D objects from 40 classes. All of the 3D objects in
both ModelNet10 andModelNet40 are cleaned and manually
aligned by the Princeton’s team. In our tests, the training
and testing databases are divided following the same setting,
outlined in [29].

C. 3D OBJECT CLASSIFICATION
We have first evaluated our 2DSlicesNet method in
classification task on the ModelNet10 and ModelNet40’s
test subset. We have compared our approach with recent
state-of-the-art approaches, including methods that do not
use machine learning; Spherical Harmonics (SPH) [23]
and Light Field (LFD) [18] descriptors, and those that use
machine learning, namely RadialNet [28], LonchaNet [8],
Primitive-GAN [39], VSL [40], BinVoxNetPlus [41],
DeepSets [42], 3D-DescriptorNet [43], the approach pro-
posed by Soltani et al. [44], the approach presented by Zanut-
tigh and Minto [45], ECC [46], FPNN [47], PointNet [26],
PointNet [48], LightNet [49], the approach proposed by Xu
and Todorovic [50], Geometry Image [51], 3D-GAN [52],
Pairwise [33], MVCNN [32], GIFT [53], VoxNet [30], Deep-
Pano [34] and 3DShapeNets [29]. Table.1 recapitulates the
classification accuracy of the abovementioned approaches.

Our 2DSlicesNet approach outperforms all compared
approaches in the ModelNet40 database. However, in Mod-
elNet10 database, it is only outperformed by the LonchaNet
approach [8] by a small margin (94.05% vs 94.37%). The
LonchaNet is only based on three 2D slices corresponding
to the 3D object’s main axes, which can cause it to represent
some 3D models of the same category by 2D slices that are
completely dissimilar, or the opposite, similar 2D slices for
3D models of different classes. The LonchaNet’s authors did
not test their method on a large databasewithmore categories,
because we think that, if we increase the number of objects
and classes, we risk falling into the problemmentioned above.

Fig.3 shows the confusion matrix for ModelNet10’s test
split. As we can observe, the approach precisely classifies
the 3D objects except a few, which seem similar from a
visual perspective. As we can see in Fig.3, the majority of
the misclassification originates from the similar class pairs
such as dresser versus night stand and desk versus table.

Fig.4 demonstrates the classification precision-recall plots
for the different classes of the ModelNet10’s test split.

TABLE 1. Classification accuracy results reached by our approach
(2DSlicesNet) and some state-of-the-art approaches on the
Modelnet10 and Modelnet40. Approaches that do not use machine
learning are indicated by (NON-ML). ’−’ means that no information is
presented for the corresponding method in the corresponding paper.

FIGURE 3. Confusion matrix of the classification results attained by our
2DSlicesNet using ModelNet10 database.

The shown precision-recall curves exhibit the strangeness
and stability of our approach in terms of 3D objects’
classification task. In fact, all the classes achieve 1.00 in
average precision (AP) except Desk (0.96), Table (0.97),
Dresser (0.98) and Night Stand (0.97), confirming the
outcomes found in Fig.3.
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FIGURE 4. Precision-recall curves of classification for each class of the
ModelNet10 database. ’AP’ means the micro average precision
corresponding to each ModelNet10’s class.

D. 3D OBJECT RETRIEVAL
In order to examine the performance of our approach on
the task of 3D object retrieval, we carried out additional
evaluation. The effectiveness of our 2DSlicesNet system to
retrieve 3D object was measured on the ModelNet10 and
ModelNet40 databases, by using the Precision-Recall curves
and the mean Average Precision (mAP) score, against some
well-known approaches that provide retrieval results. More
precisely, Spherical Harmonics (SPH) [23], Light Field
(LFD) [18], Geometry Image [51], PANORAMA [21] and
3DShapeNets [29]. The findings of the aforementioned
approaches are those stated by the researchers in their own
papers. Table.2 outlines the retrieval experiment’s results
in terms of mAP where our 2DSlicesNet outperforms the
compared approaches in both databases. As we can notice,
the proposed approach ranks number one followed by
Geometry Image [51].

TABLE 2. Comparison of retrieval results on the ModelNet10 and
ModelNet40 databases measured in mean Average Precision (mAP).
Approaches that do not use machine learning are indicated by (NON-ML).

Fig.5 and Fig.6 plot recall-precision curves for our
approach, 3D ShapeNets [29], PANORAMA [21], LFD [18]
and SPH [23] on ModelNet10 and ModelNet40, respectively.

FIGURE 5. Precision-recall curves for ModelNet10 subsets. Showed are
our proposed approach (2DSlicesNet) compared to four well-known
retrieval approaches.

FIGURE 6. Precision-recall curves for ModelNet40 subsets. Showed are
our proposed approach (2DSlicesNet) compared to four well-known
retrieval approaches.

As we can observe, the recall-precision curves exhibit the
efficacy of our proposed method in 3D objects retrieval task
by surpassing all the compared methods, and confirm the
mAP scores presented in Table.2. Moreover, compared to
the other approaches, our method’s whole curve decreases
slowly, when the recall increases in the two database, which
proves that the approach is more stable. Particularly on the
ModelNet40, the suggested approach keeps roughly the same
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FIGURE 7. Tier image visualizing nearest neighbor (white), first tier
(yellow), and second tier (orange) computed by matching every 3D
object (rows) with every other 3D object (columns) in the
ModelNet10 database using 2DSlicesNet.

curve,while the curve of the compared approaches regress
significantly, which means that our approach performs well
even if we increase the number of categories.

Fig.7 shows the tier image for the 3D objects of the
ModelNet10 database. White, yellow and orange visual-
ize nearest neighbor, first tier, and second tier matches,
respectively. A powerful retrieval method should have a set
of white-yellow pixels in the class-sized blocks along the
diagonal. It is noticeable that our approach has brighter
pixels, especially yellow pixels, in the diagonal class-sized
blocks. This demonstrates that the 3D objects belong
to the same category indicate higher similarity. We also
notice other orange blocks without the diagonals class-sized
blocks especially the desk and table classes. In fact, desk
and table categories generally have similar structure and
particularly some desks have minor visual characteristics
that differentiate them from table, which makes the system
confuse them.

VI. CONCLUSION
In this paper, we propose 2DSlicesNet, a 2D slice-based
CNN approach for 3D object retrieval and classification
tasks. We use 2D slices of 3D objects as input data to a 3D
CNN, which aggregates the information within 2D slices in
a robust and discriminative descriptor. The performance of
the 2DSlicesNet is reinforced with data augmentation and
network architecture. The usefulness and the effectiveness
of 2DSlicesNet was demonstrated on the ModelNet10 and
ModelNet40 datasets, achieving competitive performance
in a set of experiments. In our ongoing research, we will

continue to investigate 2D slice-based approaches by devel-
oping other deep learning architectures.
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