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ABSTRACT This paper proposes a basic taxonomy of image contours. Our goal is to classify smooth
curves into five categories, namely, circles, ellipses, line segments, arcs of circles and arcs of ellipses. These
geometrical structures have been chosen as they serve as input of many computer vision tasks. The proposed
strategy is applied on a set of initial disjoint contours, which are grouped together to form the aforementioned
structures. These, in turn, are validated using an a contrario approach that guarantees a reduced number of
false detections. The use of a multiscale strategy permits the detection at different resolution levels, which
makes the method robust to noise and blur.

INDEX TERMS Line segment detection, circle detection, ellipse detection, a contrario validation.

I. INTRODUCTION
The detection of line segments, circular arcs, elliptical arcs,
as well as complete circles and ellipses, is an important topic
in the fields of image processing and computer vision. Detect-
ing these structures in digital images is a challenging task
due to the variety of scenarios where they appear. An ideal
detector should be able to identify multiple instances of the
sought structure in the same image irrespective of their size,
work with synthetic, natural and noisy images, have high
detection rates and good accuracy, and produce few or no
false detections.

The detection of these geometrical structures is used as a
component in many other high-level tasks, such as iris and
pupil detection [1], [2], traffic sign detection [3], [4], 3D cal-
ibration [5], automatic inspection of manufactured products
[6] or autonomous driving in unknown environments [7]. The
degree of blur or noise may differ in each situation, hence,
designing a reliable fully automatic general-purpose detector
for a certain geometric primitive is a challenging task.

Algorithms for ellipses and circles detection can be
divided into twomain categories: pixel-basedmethods, where
edge pixels are grouped together using the Hough Trans-
form (HT) or other clustering method (e.g. RANSAC); and
contour-based methods, where edge curves are used as input
of the detection algorithm. The former are slow (since many
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edge pixels are present in the images) and depend on many
parameters, while the latter are faster and more accurate
since the validation of an ellipse/circle candidate requires that
several edge curves belong to its support, and not just a bunch
of (possibly spatially unconnected) edge points.

Our detector falls into this second category, but four
important aspects distinguish it from previously published
works: 1) It takes as input a set of smooth curves obtained
using a biologically-inspired model of good continuation
of the image edges [8], [9]. This avoids the need of edge-
linking or curve-parsing pre-processing steps. 2) The input
curves are grouped together to form circles or ellipses using
a RANSAC-like approach that permits the union of sparsely
located contours. 3) A multiscale strategy is used to combine
the detections obtained at different resolutions, which makes
the method robust to blur and noise. 4)We propose a common
strategy for the detection of several geometrical structures,
not only circles and ellipses, but also arcs of circles, line
segments and arcs of ellipses.

It must be noted that the three last features of the proposed
method could be applied on any set of input contours, pro-
vided that they have already been parsed into smooth curves.
In this sense, the use of the technique described in [8], [9]
for contour extraction may be considered as optional. How-
ever, the fact that the contours extracted with this technique
are already parsed into different curves depending on their
smoothness and connectivity makes them particularly useful
for our purposes. Fig. 1 compares the contours obtained by
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FIGURE 1. From left to right: original image, segments detected by LSD [10], contours detected by EDPF [11], which are the ones used by EDcircles
[12] and [13], the line segments from Kovesi’s algorithm [14] used as input by Mai et al. [15] or [16], among others and contours detected by [9]
which we take as input for our detector. Observe that the method in [9] directly provides a segmentation of the contours in circles, ellipses, line
segments and arcs of curves. However, the algorithm doesn’t classify the curves in such categories. The current paper does.

different edge detectors used by state-of-the art contour-based
methods for circle/ellipse detection: LSD [10] (used in [17]–
[20]), EDPF [11] (used in [12]), Kovesi method [14] (used
in [15] and [16], among others) and the one used by our
method [9]. Each extracted curve is displayed with a different
color.

Observe that smooth curves are split into several pieces
by LSD [10] and Kovesi [14], which implies that a merging
step is needed to group them. On the other hand, EDPF [11]
extracts as a single curve contours belonging to different
geometrical structures (arcs of circles and segments in the
example), which means that a splitting step is necessary to
parse them. The detector [9] represents entire regular con-
tours by a single curve, parsed at corners and T-junctions.
In very simple cases (see Fig. 1) a validation step is all
that is needed to classify the obtained contours as circles,
ellipses or line segments. The need for the combination of
partial detections into a few geometrical structures arises in
more complex situations (Fig. 2). The current paper describes
such strategy and shows that the obtained results are compet-
itive with respect to the state-of-the-art.

Fig. 2 illustrates the output of our geometry analysis for
a particular example. Some of the initial curves at different
scales are grouped into circles and ellipses, the rest are com-
bined to form line segments, circular arcs or elliptical arcs.
Curves that do not fall into any of these categories are not
displayed in the final output. Different colors are used to
represent each type of curve.

As mentioned above, an important contribution of the pro-
posed strategy for the obtention of ellipses, circles and line
segments, with respect to previously published works, is its
multiscale nature. Geometrical structures appear in natural
images with a certain degree of blur that depends on the
camera resolution and acquisition conditions. Most detection

methods extract the contours at a single image resolution,
which may lead to missed detections. By combining the
detection results obtained for contours extracted at different
resolutions we are able to detect geometrical structures even
if the contours are slightly blurred or noisy.

In the following sections the proposed method shall be
described in detail and its results compared with the state-of-
the-art. The paper is organized as follows: in Section II the
more relevant literature on circles, ellipses and line segments
detection is reviewed; in Section III a complete overview
of the proposed method is given, and a detailed description
of all its steps is provided in Sections IV and V; several
experimental results and comparisons with existing methods
are performed in Section VI; finally, the conclusions of our
work are presented in Section VII.

II. STATE-OF-THE-ART
Many methods have been proposed in the literature for
the detection of different geometrical structures in the
images. In this section we review the most relevant works
on circle detection, ellipse detection and line segments
detection. We shall classify these methods into two big cat-
egories, namely, pixel-based approaches and contour-based
approaches. The former take as input unconnected edge-
pixels (usually extracted using Canny’s edge detector or a
similar technique) and try to sort out which ones of these
pixels belong to the sought geometrical structure. The latter
use chained sets of pixels describing the image’s contours and
try to combine them to form the desired structures.

The most popular line segment detectors fall into the cat-
egory of pixel-based methods. The first algorithms used the
Hough Transform [21], [22], but theywere slow and produced
several false detections. A modified version of the algorithm,
KHT [23], achieved robust detections by using an improved
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FIGURE 2. Geometry analysis obtained with the proposed method. From left to right: original image, contours detected using the method in [8],
[9] (at a particular scale), detected circles (blue), ellipses (green) and joint detection including line segments (red), circular arcs (yellow) and
elliptical arcs (orange). The initial contours at different scales are grouped into circles and ellipses, the rest are combined to form line segments,
circular arcs or elliptical arcs. Curves that do not fall into any of these categories are not displayed in the final output. For simplicity only contours
at a particular scale are displayed even if the procedure is multi-scale. See Fig. 5 for a more complete version of the figure.

voting scheme. A shortcoming of these methods is that
they generate long lines, rather than segments. Etemadi [24]
proposed to chain adjacent edge-pixels from which straight
segments could be extracted, and Burns [25] linked pixels
having the same orientation, but both methods produced too
many segments and were very sensitive to noise. Grompone
proposed (LSD algorithm, [10]) to combine Burns’ idea with
the a contrario validation approach [26]. This approach, also
known as Helmholtz principle, states that no meaningful
structures shall be perceived in a white noise image, and
therefore the detection thresholds are automatically adjusted
to that effect. LSD produces good results in general and it
is used as the basis of other algorithms aiming at obtaining
polygonal approximations of the image contours, as we shall
see later in this section. EDLines [27] also reports good
results and is faster than LSD. This method uses the Edge
Drawing edge detector [28] to obtain chains of pixels from
which line segments are extracted and validated using the a
contrario principle.

Concerning circle detection, among the pixel-based
approaches, the first published methods were based on the
Circular Hough Transform (CHT) [29]–[32] adapting the
original technique used for detecting line segments [21]. For
circle detection, the method is as follows: first, a discrete
3D parameter space for the three parameters of the circle is
created, where each point has an accumulator bin; after that,
each edge pixel contributes to increase the accumulator of
the points in the parameter space corresponding to all the
circles centered at the pixel. At the end, when all the edge
pixels have been explored, the circles are detected as the local
peaks in the parameter space. This class of methods consume
excessive memory to store the 3D parameter space and need
a huge amount of time for voting and finding the local peaks.
Moreover, many parameters, such as the bin size, affect sig-
nificantly the final performance of the methods, and have
to be finely tuned. To overcome the limitation of memory
consumption, some authors tried an approach that uses a 2D
accumulator bin instead of 3D [33], but it still has some false
detections and low accuracy. After the first CHT variations
with only small changes, many other variants appeared trying
to overcome their drawbacks, such as probabilistic HT [34],
[35], randomized HT [36], [37], fuzzy HT [38], etc. The

probabilistic HT (PHT) methods [34], [35] randomly choose
a subset of the edge pixels to accelerate the Hough Transform
method. In [36], Xu et al. propose a randomized version of the
Hough transform (RHT) that successively samples subsets of
points from the set of edge pixels. The size of these subsets
depends on the model to detect, e.g. two points for detecting a
line and three for detecting a circle. The parameters estimated
from each subset are updated in the parameter space for later
finding the local peaks that correspond to detected figures.
This permits to remove the parameter space sampling, since
only those values estimated from the subsets are taken into
account. In addition, the parameters’ counters reflect the
times that those where proposed rather than the actual number
of edge pixels voting for them. In a theoretical framework,
Kiryati et al. [39] have shown that RHT is faster than PHT
in high quality images but PHT is more robust than RHT in
images contaminated by noise and errors.

For ellipses detection, a straightforward extension of the
Hough Transformmethodwould imply to increase the dimen-
sionality of the parameter space to five and find the peaks in
this new space [22]. However, as with circles, the increase
in dimensionality increases also the time and memory con-
sumption of the method. As before, to alleviate these issues,
many methods have appeared trying to overcome these limi-
tations, such as the probabilistic HT [40], the randomized HT
[41] or the method from Yuen et al. [42]. As an alternative
to the Hough Transform, recently other methods using his-
tograms of power ratios of points in circles and ellipses have
been proposed [43], [44]. However, they suffer from the same
drawbacks than the previously described methods in terms of
quantization of the parameter space and noise sensitivity.

Another group of methods belonging to the pixel-based
family comprises those based on the RANSAC algo-
rithm [45]–[48]. These approaches appear in an effort to
present an alternative to the HT algorithms and overcome
their limitations. Among all the methods in this family, one
of the most popular is the Random Circle Detection, RCD,
presented by Teh-Chuan Chen and Kuo-Liang Chung in [45].
In this paper, they propose to select sets of four edge pixels
and compute all the circles containing any three of them.
If one of the circles is close to the non-used point, it is con-
sidered as a good detection. Finally, the good detections are
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validated and only circles containing a large enough number
of edge pixels are kept. Since the number of sets of four
edge pixels in an image may be huge, RCD involves many
computations and leads to several initial good detections that
are finally discarded after the validation step, which makes
the algorithm inefficient.

Other approaches formalize the detection as an optimiza-
tion problem. Least-square fitting methods [49]–[51] fall into
this category, but also Bayesian methods [52] and Gaussian
mixture models [53] have been used to solve the problem.
The main drawback of these techniques is that they can only
fit one primitive at a time, and therefore the fitting process
must be repeated after removing all the edge pixels belonging
to one of the already detected structures.

Contour-based approaches, also called edge-following
methods, detect geometrical structures by taking advantage
of the connectivity between edge pixels. For circle and ellipse
detection the main strategy is to detect arcs of curves and
then to group them forming the desired structure. The main
differences between these methods reside in the criteria used
to extract the arcs, in the way these arcs are grouped together
and in how the parameters of the detected structures are
computed.

Some methods [16], [54]–[57] rely on curvature or close-
ness properties to link edge points and obtain arcs of curves.
Other methods resort to polygonal approximations of the
image contours, based on the detection and linking of short
line segments, computed using the LSD algorithm [10] as
in [17]–[20], EDLines [27] as in [12], Kovesi’s code [14]
as in [15], Leung’s method [58] as in [59] or the Ramer-
Douglas-Peucker algorithm [60], [61] as in [62]. Edge seg-
ments extracted with the EDPF algorithm [11] are used
in [13].

The extracted arcs of curves may be merged using different
strategies: in some cases an initial estimation of the cir-
cles or ellipses parameters is computed using a least-squares
fitting method and arcs supporting similar structures, or shar-
ing similar parameters, are grouped together [12], [13], [15],
[59]; in other cases arcs are combined based on convexity
and position constraints [18], [54], [55], [62] or on geometric
properties of ellipses or circles [20], [57].

With respect to the different strategies employed to com-
pute the parameters of the detected structures, RANSAC-
based approaches [15], [56] and voting schemes similar
to the Hough transform [16], [54], [55], [57], [62] have
been used for this purpose. However, these methods rely
on the accurate calculation of local geometric features (cur-
vature, tangent lines, etc.) and are sensitive to noise and
partial occlusions. As an alternative, different least-square
fitting methods applied on the extracted curves have been
proposed [12], [13], [17]–[20], [59], [63].

These methods depend on several parameters that must be
tuned in order to reduce the number of false detections. In
some cases [17], [18], [20], [62] a minimum angular cover-
age or edge-pixel support is required to validate a detection.
In other cases the parameters are learned using a ground-

truth dataset [54], [55], [57], or are computed from the image
itself using a saliency score [16]. In [12], [19] the a contrario
approach, already mentioned at the beginning of this section,
is used to automatically adjust the detection thresholds.

The method presented in this paper can be related to these
previous works in the sense that the final goals of the detector
are similar, but with the important novelty that the proposed
detector uses a unified methodology for the detection of all
such structures. The same procedure is applied progressively
to group the initial contours forming full circles, then full
ellipses, and finally the remaining contours are classified
into circular or elliptical arcs or line segments. Very few
published works aim at such a complete classification of the
image contours. Some of the earlier attempts at the joint
detection of straight lines and circular arcs in contours were
reported in [64] and [24]. In [65] West et al. proposed a
method for the segmentation of curves into line segments and
elliptical arcs. These methods used an edge map as input and
were very sensitive to noise. Recently, Pătrăucean et al. [19]
proposed to jointly detect ellipses, circles and line seg-
ments with a controlled number of false detections. Similarly,
the method in [12] can be used for the detection of both
circles and ellipses with small eccentricity, but doesn’t handle
the detection of line segments. Finally, Wolters and Koch
[63] proposed a method to extract the topology of an image,
by classifying the image edges points into lines or parabolic
arcs.

III. OVERVIEW OF THE PROPOSED METHOD
The proposed method is summarized in Algorithm 1. The
input of the algorithm is the set of curves extracted with the
method described in [8], [9], which we denoteSσ . Each curve
s ∈ Sσ is composed of a group of pixels with a continuity in
orientation (what we call a smooth contour). These contours
are either isolated or meet at T-junctions and corners. The
only parameter of the extraction method is σ , that determines
the spatial scale of the extracted contours: blurred contours
may be extracted by using large values of the parameter,
although the spatial location of the results is more accurate
when σ is small. Initially, the detection algorithm is applied
independently on the contours extracted at each scale, but in
a posterior step, the detections obtained at different scales are
combined.

The proposed method proceeds identically for the detec-
tion of circles and ellipses. For simplicity, we describe the
method for circle detection. The algorithm proceeds by find-
ing circles that fit the extracted contours. Starting with an
initial contour s ∈ Sσ , a least-squares method is used to
compute the parameters of the circle that best fits the pixels
in s. If the fitting error is small the rest of curves in Sσ are
examined using a RANSAC-like strategy to check if they
belong to the circle. If they do, the parameters of the circle
are recomputed using the additional curves and the process
is iterated until no more curves can be added to the group.
The curves belonging to this group are removed from Sσ
provided that the computed circle is validated by angular
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coverage and using an a contrario criterion. Therefore, only
(almost) full circles perceptually meaningful are considered
as valid detections. The whole process is repeated using the
next contour inSσ . The circles detector is applied for different
values of the scale parameter σ and the detections at different
scales are combined to obtain the final result. A complete
account of the circles detection stage is given in Section IV.

At this point of the algorithm, for each scale σ , Sσ contains
only the curves that do not belong to a circle with enough
image coverage. The previous process is repeated but com-
puting in this case the parameters of the ellipse that better fits
the pixels in each curve s ∈ Sσ . By using the same strategy
described above, at the end of this stage all the (almost)
full ellipses in the image have been detected by the method.
Section IV-G explains the details of how the circles detection
method may be adapted for the detection of ellipses. One
may think that the detection of circles and ellipses could
be done simultaneously, since circles are special cases of
ellipses. However, the validation of each detected structure
depends on an a contrario argument (see Section IV-D) that
assigns smaller ‘meaningfulness’ to those structures that have
the potential to appear more in an image. Ellipses, having a
higher number of degrees of freedom, can appear in more
configurations in the image than circles. Therefore, a circle
tested as a ‘ellipse’ gets a ‘meaningfulness’ score smaller than
the same circle tested as a ‘circle’, and could be missed by the
detector.

The search for global structures is limited to circles and
ellipses. We do not aim at joining small segments into lines,
since this is a non bounded structure, and this grouping
would prevent a subsequent grouping into polygonal struc-
tures (which shall be the subject of future research).

The remaining curves in Sσ , for the different values of σ ,
are fused into a single set S ′ and they are finally classified
as circular arcs, line segments, elliptical arcs or none of the
above. The process is described in Section V.

Algorithm 1 Overview of the Method
Input: Image: I
Input: Set of σ values (increasing order): Mσ =

{σ1, σ2, · · · , σM−1, σM }

Output: Set of circle detections: C
Output: Set of ellipse detections: E
Output: Set of segment detections: L
Output: Set of circular arcs detections: A
Output: Set of elliptical arcs detections: Q
1: for σ ∈ Mσ do
2: Sσ ← Contour detection(I , σ ){(Method from [9])}
3: end for
4: C,Sσ ←Multiscale circle detection(Sσ ) {Algorithm 2}
5: E,Sσ ← Multiscale ellipse detection(Sσ ) {Algo-

rithm 2}
6: L,A,Q ← Multiscale line segment, circular arc and

elliptical arc detection(Sσ ) {Algorithm 3}

IV. CIRCLES AND ELLIPSES DETECTION
The steps of the algorithm for circles and ellipses detection
are detailed in the following subsections. The complete pro-
cess is described in Algorithm 2. In the last subsection it is
explained how the algorithmmay be adapted for the detection
of ellipses.

Algorithm 2Multiscale Circles/Ellipses Detector
Input: Set of contours Sσ , extracted at scales σ ∈ Mσ =

{σ1, σ2, · · · , σM }, σ1 < σ2 < · · · < σM
Output: Set of circles/ellipses detections: C
Output: Set of image contours not belonging to detected

circles/ellipses: Sσ
1: //Single scale detection
2: for σ ∈ Mσ do
3: Cσ ← ∅{Set of detected circles/ellipses at scale σ}
4: for s ∈ Sσ do
5: c0← Initial_estimation(s){Section IV-A}
6: c∗ ← RANSAC_refinement(c0,Sσ ){Section IV-

B}
7: Validation(c∗,Sσ ){Sections IV-C and IV-D}
8: if Validation is OK then
9: Cσ ← c∗

10: Remove inliers from Sσ
11: end if
12: end for
13: end for
14: //Multiscale detection
15: C ← CσM
16: for σ ∈ {σM−1, · · · , σ2, σ1} do
17: if c ∈ Cσ is not repeated in C then
18: C = C ∪ {c}
19: end if
20: if c ∈ Cσ is tangent or equal to c′ ∈ C then
21: C = (C \ {c′}) ∪ {c}
22: end if
23: end for
24: //Remove contours in the support of detected cir-

cles/ellipses
25: for σ ∈ Mσ do
26: for s ∈ Sσ do
27: if s belongs to the support of some c ∈ C then
28: Sσ ← Sσ \ {s}
29: end if
30: end for
31: end for

A. INITIAL ESTIMATION
Given a set of curves Sσ extracted at a given scale σ , each
curve s in the set is checked to decide whether it belongs to a
circle or not. First, the parameters of the circle c0 (center and
radius) that better fits the points in s are estimated using a
least-squares algorithm [66]. In order to quickly reject wrong
detections, the estimated circle is kept only if two conditions
are satisfied:
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(i) At least a percentage pd of the circle is inside the domain
of the image, where pd is a parameter that we set to 80%
in all of our tests.

(ii) Most of the points of the contour s are well fitted by the
circular approximation. The fraction of contour points
that fit the circumference is computed as

fcs =
#{P ∈ s | d(P, c0) < Td (r)}

#{P ∈ s}
, (1)

where d(P, c0) is the distance from point P to the cir-
cumference and the threshold Td (r) is an increasing
function of the radius, thus allowing farther distances for
big circles than for smaller ones.1 In practice, we require
that fcs > Tpd , with Tpd = 87.5%.

B. COMPUTING THE CIRCLE SUPPORT
From the initial circle candidate c0 an iterative process is
started in order to group together all the curves in Sσ that
belong to the support of the circle. The support of a circle c
is composed of all those contours that satisfy condition (ii).
The process is as follows:
1) Consider k = 1, the index of the first step in the iterative

process.
2) Compute E ⊆ Sσ , the set of curves in Sσ that intersect

the circle c0, excluding s (the initial curve from which
c0 was computed). We consider that a curve s′ ∈ Sσ
intersects c0 if the distance between at least one of its
points to the circumference is not bigger than 1 pixel. If
E is empty then stop the refinement process and keep as
final result c0.

3) Randomly choose a subset of curvesR fromE and define
S = {s} ∪ R.

4) Use algorithm [66] to fit a circle ck to the curves in S and
compute nk , the number of contours in Sσ than are well
approximated by ck (using condition (ii)). These are the
inliers at iteration k .

5) Increase k and iterate steps 3 and 4 a maximum of
n times. The method requires few iterations, since the
maximum number of different tests is bounded by 2|E|,
where |E| is the number of curves in E , which is gen-
erally small. We set a maximum number of iterations,
n = 25, for exceptional cases.

6) Keep the circle ck with highest nk . Denote it as c∗.
In order to improve the robustness of the result, the above
process is repeated N times, using as initial circle c0 the
best estimation obtained from the previous repetition. In our
implementation we fix N to 4 repetitions.
Due to the random nature of the curve grouping process

(step 3), it can be regarded as a RANSAC algorithm. More-
over, the inliers are computed over the whole set of curves Sσ
instead of the set of intersecting curves E , as inspired by the
LO-RANSAC method [67].

1We use a logistic function Td (r) =
B

1+C ·e−D·r
, where C = B

A − 1. The
values A, B and D are set experimentally to 0.85, 5 and 0.025, respectively.
For small circles, the threshold has a value close to 0.85 while for large
circles, the parameter is close to 5

Fig. 3 illustrates our RANSAC method. In this example,
the circle has been split in several curves by the contour
detector. In Fig. 3d the starting contour s used to estimate
the circle is drawn in green, the initially estimated circle c0
is displayed in blue and the set of intersected contours E
is marked in red. It must be noticed that the initial circle
approximation does not fit perfectly the actual circle, and that
E contains a straight segment that is not part of the circle’s
boundary. After the first repetition of RANSAC (Fig. 3e), this
segment is discarded and only valid contours are kept. In the
following repetitions (Fig. 3f to 3i) the algorithm refines the
detection and the final set E is composed of all the contours
actually belonging to the circle’s boundary.

C. VALIDATION BY ANGULAR COVERAGE
The validation conditions applied so far ((i) and (ii)) guaran-
tee that the detected circle is (mostly) inside the image and
that most of the pixels in its support are well approximated
by it. However, very short circular arcs may satisfy these
conditions. In order to detect circles with enough contour
support, we proceed as follows.

Denote as Pc∗ the set of pixels belonging to the inliers of
the circle c∗, estimated in subsection IV-B, and let O denote
the center of the circle. For each pixel P in Pc∗ compute the
angle of the vector

−→
OPwith respect to the horizontal, and store

the results in a histogram. This histogram is built using L bins,
and each bin k (k ∈ {0, · · · ,L−1}) counts howmany contour
points have an angle in the range

[
2π
L k,

2π
L (k + 1)

)
. We use

L = 36 in the current implementation.
A circle is validated if the percentage of non-empty bins in

the histogram (i.e. its angular support) is high enough:

#{k ∈ {0, · · · ,L − 1}, bink is non-empty}
L

> Ta (2)

where Ta is a parameter that we set to 60%.

D. A CONTRARIO VALIDATION
The non-accidentalness principle of perception (or Helmholtz
principle) states that a geometric structure is perceptually
meaningful only when its expectation is low under random
conditions. Based on this premise, the a contrario frame-
work for the validation of geometric structures was intro-
duced in [68] and further developed in [69]. The goal of
this approach is to compute, for each structure, its expected
number of occurrences in a random situation. Only structures
having a low enough expected number of occurrences are
validated as meaningful. In order to perform this compu-
tation, a background model describing the statistics of the
data under the random hypothesis must be defined. The a
contrario approach has been used in many domains [70]–[74]
to control the number of false detections (also called number
of false alarms, or NFA) of a detector. By defining the NFA as
the expected number of occurrences of the detected structure
under the random hypothesis, the detection thresholds may
be adjusted in order to guarantee that this number is small.
We apply this approach to the validation of the detected
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FIGURE 3. Illustration of RANSAC algorithm for contours grouping. First row: (a) original image,
(b) contours detected, (c) final result. Other images: starting contour (green), estimated circle (blue)
and intersected contours (red) after each repetition of RANSAC.

circle in a way similar to the one described in [10], where
Grompone et al. present an algorithm to detect line segments
in a given image. A similar method was also used for the
validation of circles and ellipses in [12] and [75].

Given a detected circle c∗ and Pc∗ , the set of pixels
belonging to its inlier contours, we first count how many of
these pixels have a gradient vector aligned with the normal
vector of the circle at the pixel. By aligned we mean that
the angular difference between these two vectors is below a
given threshold τ . Since the direction of the gradient vector
is not reliable when its magnitude is too small, pixels whose
gradient magnitude is smaller than 1 are not considered in
the computations. That is, a pixel q ∈ Pc∗ is considered to be
aligned with the normal vector of the circle if

Angle(∇I (q), dir⊥(tanc∗ (q))) < τ and |∇I (q)| > 1 (3)

where ∇I (q) is the gradient of the image I at point q and
dir⊥(tanc∗ (q)) is the direction orthogonal to the tangent to the
circle c∗ at q.
Next, the probability of having such a quantity of pixels

aligned by chance is computed. For that, we use as back-
ground model the hypothesis that the angular differences
are uniformly distributed in [0, π] in a random situation.
Therefore, the probability of finding a pixel with an angular

difference smaller than τ is p = τ/π . If the circumference
is composed of n pixels, the probability of k of them being
aligned with the image gradient is computed using the bino-
mial probability distribution

B(n, k, p) =
n∑
j=k

(
n
j

)
pj(1− p)(n−j). (4)

Although this probability may be very small, this doesn’t
ensure that the detected circle is perceptually meaningful,
since, if many such circles are tested using the same approach,
it is possible that some of them appear in a random image
merely by chance. The correct way to assess the meaning-
fulness of the circle is to compute its NFA, by multiplying
its probability of occurrence by the number of potentially
tested circles, or Ntests. This number may be estimated using
the formula proposed in [75]: Ntests = Mdf/2, where M is
the number of image pixels and df the degrees of freedom of
the detected structure (three in the case of circles, two for its
center and one for its radius). To summarize, the NFA of the
detected circle, given an angular precision τ , is

NFA = Ntests · B(n, k, p). (5)

The detection is meaningful if NFA < ε, where ε is a
threshold usually set to 1 in most of the published works,
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which corresponds to allowing less than 1 false detection per
image. We use this value for the detection of circles.

In our implementation, instead of selecting a particu-
lar value for τ , we propose to test several values τi ∈
{0.1, 0.2, 0.3, 0.4, 0.5}. A detection will be declared valid if
its NFA is less than ε for any of the pi = τi/π, i = 1, . . . , 5.
Formally, this is equivalent to increase the number of tests to
5 Ntests. Hence, the final test is

5 · Ntests · B(n, k, pi) < ε, i = 1, . . . , 5. (6)

Fig. 4 shows some examples of how the two proposed val-
idation steps reduce the number of wrongly detected circles
in an image.

E. ITERATION OF THE DETECTOR
If the circle c∗ detected in subsection IV-B is deemed valid,
then the curves s ∈ Sσ than belong to its support (the
inliers computed in subsection IV-B) are removed from the
list of contours, and the process (subsections IV-A to IV-E) is
iterated until all the remaining curves have been tested.

F. MULTISCALE DETECTION
The above subsections describe how themeaningful circles of
the image may be detected given the set of contours obtained
at a given scale σ . The contours extracted at finer scales
(low values of σ ) are better located but more fragmented
than the ones obtained at coarser scales (higher values of
σ ). Moreover, blurred circles may only be detected for high
values of σ . For these reasons different sets of detections Sσ
are obtained at each scale. In this section we shall explain
how to combine these detections to obtain a single set C.
This final set cannot be a mere union of the different Cσ ’s,
since similar detections may appear at different scales, giving
raise to duplicated detections. We then follow the following
procedure:

1) We initialize C to the set of circle detections obtained
with the largest σ .

2) We proceed in descending order of σ and compare the
detections in Cσ to the ones in C:
• If the detection is not identical or tangent to an exist-
ing one in C, it is added to C. We consider that two cir-
cles are identical if the distance between their centers
and radii is smaller than Ts. Two circles are considered
tangent to each other if a certain percentage Pt of
points of the circle with the largest radius is at a
distance smaller than Tt pixels from the other circle.
We use Ts = 4.0 pixels, Pt = 15% and Tt = 2.0
pixels in our implementation.

• If the detections are identical or tangent, the one at
the finest resolution is kept and the existing one is
removed from C. This ensures that the better located
detections are kept in the final result.

3) Finally, at each scale σ we remove from each set Sσ
those contours belonging to the detected circles in C.

Condition (ii) in subsection IV-A is applied to decide
that a contour belongs to the support of a circle.

The pseudo-code of the multi-scale algorithm for circles is
provided in Algorithm 2. In our tests we have combined the
results obtained with σ ∈ {1.5, 2.0, 2.5, 3.0}.

G. DETECTION OF ELLIPSES
The detection of ellipses by the previous procedure needs
some minor adaptations:

1) In the initial estimation step (subsection IV-A) the
parameters of the ellipse e0 (center, semi-major and
semi-minor axes, and rotation with respect to the hori-
zontal) are estimated using the least-squares algorithm
from Halir et al. [76] which is a modification of the
widely used solution from Fitzgibbon et al. [77]. Both
methods provide a direct solution of the least-squares
problem for ellipses, but the first one is numerically
more stable. Moreover, in Equation (1), the parameter
r of function Td (r) is now the length of the minor axis
of the ellipse.

2) In many cases, the procedure described above is able
to provide good initial estimates of the image ellipses.
However, when the initial set of curves is excessively
fragmented, it is possible that the initial ellipse doesn’t
intersect curves of Sσ other that s, thus preventing the
refinement process. We therefore proceed by computing
the initial estimate using pairs of curves, instead of a
single curve.
After applying the algorithm with a single curve as
initialization, we create all possible pairs with curves
not belonging to any of the already detected ellipses.
We discard those pairs satisfying at least one the follow-
ing conditions:
(i) The pair of curves is non co-elliptical. This condition

was first introduced by Cakir et al. [13] and its goal
is to identify those pairs of curves whose concavities
are towards opposite directions, i.e. the two curves are
located back-to-back. To find if two curves are non
co-elliptical, we compute the segment between the
centers of the corresponding ellipses. If this segment
intersects one of the two curves, the pair of curves is
non-co-elliptical.

(ii) One of the curves of the pair is well-fitted by a line.
We apply the same validation used for segment detec-
tion presented in section V.

These two criteria permit to quickly discard many pairs
of contours, thus reducing the time of computation.
For each validated pair, we consider the union of the
two contours as initial curve and apply the procedure
proposed in Section IV-B to add to the detection all
the curves that belong to the support of the ellipse. If
an ellipse is detected, all pairs containing any of the
contours taking part of the ellipse are discarded.

3) The only modification in the a contrario validation (sub-
section IV-D) concerns the number of tests used to
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FIGURE 4. From left to right: circles detected by our algorithm before the validation step; remaining circles
after the validation by angle coverage; remaining circles after a contrario validation.

compute the NFA. Since the ellipse has five degrees
of freedom, now Ntests = M

5
2 . As commented in

Section III, an ellipse is a more flexible geometric shape
than a circle. Moreover, as it can be seen here, the value
ofNtests is higher for ellipses. Therefore, it will be harder
for a set of contours to pass the test for ellipses than
for circles, making it useful to independently detect both
types of structures.

4) Finally, for the combination of detections at multi-
ple scales (subsection IV-F), in order to consider two
ellipses to be identical, we need to additionally compare
their orientations.

V. DETECTION OF LINE SEGMENTS AND ELLIPTICAL AND
CIRCULAR ARCS
After the application of the algorithm described in Section IV,
the sets Sσ contain, for each σ , the image contours that do
not belong to the support of the detected structures. The final
step of the proposed method is aimed at classifying them
as circular arcs, line segments, elliptical arcs or none of the
above. As in previous sections, we decided to separate the
detection of circular and elliptical arcs.

The algorithm that we shall use for this classification is
similar to the one proposed in previous sections. The main
difference lies in how extracted features at different resolu-
tions are merged. In Section IV, the groups of contours are
classified as circles or ellipses before being combined at the
final stage. In the current case, contours belonging to different
scales are fused prior to classification. This permits to quickly
remove duplicates and to join fragmented contours.

Let us first comment the part analogous to the algorithm in
Section IV:

1) For each scale σ and for each contour in the set Sσ , the
parameters of the circle and the ellipse that better fits its
pixels are computed using a least-squares algorithm [66]
and [76], respectively, as in section IV. Also, the param-
eters of the line l0 passing through the two more distant
points of the contour are computed.

2) The validation criterion (ii) is used to remove, from
each set Sσ , the contours that are not well approximated
neither by the estimated circle or ellipse nor by the line.
In the case of lines, the parameter r in the distance
threshold function is taken as the distance between the
two more distant points in the contour.
The a contrario validation is also applied to eliminate
non meaningful contours. In the case of segments the
maximum number of tests is set to Ntests = M2.

Since the goal is to classify individual contours, the grouping
procedure described in subsection IV-B is skipped.

Let us now describe the fusion process which takes as
input the remaining curves at each scale after the previous
validation test, S ′σ . We denote by S the final set of detected
arcs and segments at the end of the process. This set is
initialized with the contours obtained at the coarsest scale
(largest value of σ ). We combine this set with the other sets of
contours in descending order of σ . We compare one contour
s1 from S with each contour s2 from S ′σ and we check if they
both could be part of a common circular arc, line segment or
elliptical arc:

1) We consider s∪, the union, and s∩, the intersection, of the
curves s1 and s2. One pixel may belong to s∩ if at least

25562 VOLUME 9, 2021



O. Martorell et al.: Multiscale Detection of Circles, Ellipses and Line Segments, Robust to Noise and Blur

one point from the other curve is spatially close and
shares a similar orientation. The orientation of the points
is obtained at the output of the contour detector [9]. The
curves are fused if the intersection is non empty.

2) Since the contours belong to different scales, the inter-
secting part of their union tends to be thick. In order to
reduce this thickness we filter the intersection s∩.
Let q ∈ s∩ the point to be filtered. For each point pi ∈
s∪, i = 1, . . . , n, we compute the weight

wi = e(q−pi)/σ
2
f , i = 1, . . . , n, (7)

with σf = 10. Then, we compute a line by minimizing
the weighted least-squares error

n∑
i=0

wi(axi + byi + c)2, (8)

where a, b and c are the parameters of the general form
of a line defined as ax+ by+ c = 0. Finally, the filtered
point, denoted by qf and belonging to s̃∩, is defined as
the orthogonal projection of q to the line minimizing 8.

qf =
(
b(bqx − aqy)− ac

a2 + b2
,
a(−bqx + aqy)− ac

a2 + b2

)
.

(9)

The use of a linear approximation, instead of the com-
monly used filtering technique consisting in replacing
the point by the barycenter of the points in its neighbor-
hood, permits to preserve the curvature, specially near
the end points of the contours. It could be shown that
the previous scheme is equivalent to a mean curvature
motion of the intersection set, provided that we could
parametrize s∩ as a curve.

3) At the end, the new curve sf is defined as

sf = s̃∩ ∪ (s∪ \ s∩) (10)

that is, the union of the filtered points and the points not
belonging to the intersection.

4) We check that the filtered contour sf may be approxi-
mated by a line, a circular arc or an elliptical arc using
the a contrario validation method described in previous
sections. If the test is positive then the filtered curve is
added to S.

5) The previous steps are iterated until all the curves in S
and Sσ have been checked.

Finally, since all the contours in S have been validated as
linear segments, circular arcs or elliptical arcs, we just need to
classify them. Contours that do not qualify as linear segments
are then tested as circulars arcs. If they fail the test, then they
are tested as elliptical arcs. We have chosen this classification
order because circular and elliptical arcs can be easily fitted
to almost any contour. Indeed, straight contours might be well
approximated by a large enough circle.

Algorithm 3 Multiscale Detection of Line Segments, Circu-
lar Arcs and Elliptical Arcs
Input: Set of contours Sσ , extracted at scales σ ∈ Mσ =

{σ1, σ2, · · · , σM }, σ1 < σ2 < · · · < σM
Output: Set of segment detections: L
Output: Set of circular arcs detections: A
Output: Set of elliptical arcs detections: Q
1: //Initial selection of valid contours
2: for σ ∈ Mσ do
3: S ′σ ← ∅
4: for s ∈ Sσ do
5: c, l ← Compute circle and line(s)
6: if s satisfies (ii) and (6) for c or l then
7: S ′σ ← S ′σ ∪ s
8: end if
9: end for

10: end for
11: //Multiscale fusion
12: S ← S ′σM
13: for σ ∈ {σM−1, · · · , σ2, σ1} do
14: for s′ ∈ S ′σ do
15: repeat
16: I ← ∅ {Set of contours in S than have intersec-

tion with s′ }
17: for s ∈ S do
18: if s′ and s have at least one close point then
19: I ← I ∪ {s}
20: end if
21: end for
22: if I = ∅ then
23: S ← S ∪ {s′}
24: else
25: s← first element in I
26: sf ← Filter(s′ ∪ s)
27: c, l, e← Compute circle, line and ellipse(sf )
28: if sf satisfies (ii) and (6) for l, c or e then
29: S ← S \ {s}
30: s′← sf
31: end if
32: end if
33: until I = ∅
34: end for
35: end for
36: //Classification
37: L,A,Q← ∅
38: for s ∈ S do
39: c, l, e← Compute circle, line and ellipse(s)
40: if s satisfies (ii) and (6) for l then
41: L← L ∪ s
42: else if s satisfies (ii) and (6) for c then
43: A← A ∪ s
44: else if s satisfies (ii) and (6) for e then
45: Q← Q ∪ s
46: end if
47: end for
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VI. EXPERIMENTATION
Most methods in the literature are aimed at the detection
of a specific type of geometrical structure, either circles,
ellipses or line segments. For this reason the experimenta-
tion section has been divided in several subsections, each
of them comparing one stage of our method with methods
in the literature that perform a similar detection. First, in
Section VI-A, we compare the proposed method with meth-
ods detecting circles. After that, in Section VI-B, we compare
our method against algorithms for ellipse detection. Next,
in Section VI-C, we compare our method with methods that
join edge points and classify them as segments or circular
and elliptical arcs. Finally, in Section VI-D we explore the
robustness of the detections under varying conditions of noise
and blur. For a better understanding of the text, methods
without an specific name, will be assigned a name according
to the first author and the object they detect.

In all the experiments, the results obtained with our method
will be displayed with the following color code: blue for
circles, green for ellipses, red for line segments, yellow for
circular arcs and orange for elliptical arcs. Fig. 5 shows a
complete example of detection. In the top row of this fig-
ure the original image and the result of the proposed method
are displayed. In the next four rows we can see the results of
the detector at different scales. From left to right we have:
extracted contours, detected circles, detected ellipses, and
remaining contours that do not belong to any of the structures
detected in the previous steps but that are partially fitted by
a line, a circle or an ellipse. The last row shows, from left to
right, the results of themultiscale procedure: fusion of circles,
fusion of ellipses, and fusion of the remaining contours.
The contours displayed in the last image are classified into
circular arcs, elliptical arcs or line segments.

A. CIRCLE DETECTION
We evaluate our circle detection algorithm by comparing it
with state-of-the-art methods: EDcircles [12], the algorithm
of Lu et al. [18] (Lu_circles), RCD [45] and the circular
Hough transform (CHT) (Matlab implementation [33], [78]).
The codes for [12], [18] and [19] are made accessible by
their authors234 and we implemented RCD [45] following the
corresponding article. All four methods have been evaluated
using their default parameters. The Matlab implementation
of CHT requires a minimum and maximum possible radius,
which have been set to 5 pixels and to half of the minimum
of the width and height of the image, respectively.

The evaluation has been carried out on three dif-
ferent datasets, some of them kindly provided by the
authors of the compared detection methods: Industrial
Printed Circuit Board (PCB)2 image dataset, Natural image
dataset (Natural)2 and AUCDB. The PCB dataset contains
100 images of printed circuit board with circles on it. The

2https://github.com/AlanLuSun/Circle-detection
3https://github.com/CihanTopal/ED_Lib
4https://github.com/viorik/ELSDc

Natural dataset contains 100 images, combining real images,
as well as some images from the PCB dataset. AUCDB
provides 225 images divided in several categories: Balls,
Circles, Satellite, Structure, Synthetic, TD and TS (Traf-
fic Signs), where each category contains images related to
its name. The ground truth is available for the datasets
AUCDB and PCB. We have built ourselves the ground
truth for the Natural dataset and made it available at
http://researchtami.uib.es/circles_groundtruths/.

In order to reliably compare all the previously mentioned
methods, we have computed both qualitative and quantitative
measures.

1) VISUAL COMPARISON
We evaluate the ability to correctly detect circles while
not producing false detections. In many cases, this may
be a subjective comparison, since every observer may
have a different idea of which structures should be
detected.

Fig. 6 compares the performance of all the methods with
images from the Natural dataset. We display the original
images as well as the detections by CHT [33], [78], EDcircles
[12], RCD [45], Lu_circles [18] and our method. All the
circles have been drawn in blue, overlayed onto the original
image. The first row presents an image with many concentric
circles. In this image, RCD has many false detections and
none of them corresponds to a real circle. CHT is not able
to detect any circle. Finally, Lu_circles, EDcircles and our
method produce results with no false detections, but our
method is the only one that detects all the circles correctly.
Lu_circles fails to detect two of the circles and EDcircles has
one circle that is not correctly detected, since it is tangent
to another circle. In the second row there are two kinds of
circles: the ones formed only by a contour line, and the filled
ones. RCD does not detect any of them, CHT misses many
and EDCircles fails at detecting the filled ones. Lu_circles
and our method are able to detect all of them. The basketball
in the third row just contains one circle, the outer one. All
the methods, except for CHT, are able to detect this circle.
EDcircles and CHT have false detections.

The examples in Fig. 7 correspond to the AUCDB
database. In the first row CHT is able to detect two circles
almost correctly, it only fails on the length of the radius, due
to the discretization of the parameter space. Moreover, it has
four false detections. In this image, EDcircles and Lu_circles
fail to detect one and two circles, respectively, and they do
not have any false detections. RCD has many false detections
due to the grass texture, which creates many edge points that
are considered as parts of a circle by this method. Finally,
our method detects the four balls without false detections.
In the second row none of the methods gets false detections.
However, they fail to detect some of the circles, except for our
method, which is able to detect all of them. In this example,
Lu_circles is the method that detects less circles. In the last
row our method fails to detect one of the five balls, while
EDcircles is able to detect all of them. This missed detection
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FIGURE 5. Illustration of the proposed detection process. First row: original image and final detection result.
Different colors are used to label the different structures: blue for circles, green for ellipses, red for line
segments, yellow for circular arcs and orange for elliptical arcs. Second to fifth rows: detection results for
different values of the scale parameter (σ = 1.5,2.0,2.5 and 3.0). From left to right we observe: initial contours,
detected circles, detected ellipses, remaining contours that can be fitted either by a line segment, a circular
arc or an elliptical arc. In the final row are displayed, from left to right, the results of the multiscale procedure:
fusion of circles, fusion of ellipses, fusion of remaining contours.

by our method is due to the fact that we are requiring a
validation by angle coverage too high for the visible portions
of this ball.

In order to summarize the qualitative results, let’s mention
that Lu_circles produces quite accurate results and no false
detections in the images from the Industrial and Natural
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FIGURE 6. Circle detection comparison for images from the Natural dataset. From left to right: original image, CHT [33], EDcircles [12], RCD [45],
Lu_circles [18] and our method. The detected circles are drawn in blue.

FIGURE 7. Circle detection comparison for images from the AUCDB dataset. From left to right: original image, CHT [33], EDcircles [12], RCD [45],
Lu_circles [18] and our method. The detected circles are drawn in blue.

datasets, which were taken from their repository. However,
this method has lower performance in the AUCDB dataset.
EDCircles has very good results in the AUCDB dataset which
they originally used for testing, but has a lower performance
in the Natural one. Our method gives the best compromise in
all datasets.

2) NUMERICAL COMPARISON
In order to quantitatively assess the results, we use the com-
mon precision and recall metrics, which are respectively

defined as

precision =
TP

TP+ FP
, recall =

TP
TP+ FN

(11)

where TP are true positive detections, FP false positive detec-
tions and FN false negative detections. We consider that a
detected circle is a true positive if there exists a circle in the
ground-truth set such that the distance between their centers
and radii is lower than T = 4. Since our method only con-
siders as detections those circles that are almost completely
contained in the image domain (condition (i)), to make a fair
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TABLE 1. Average precision and recall results on three image datasets for circle detection and the average of all the averages. In each case, the two best
results of precision and recall have been highlighted.

comparison we eliminated both from the detections of the
other methods and from the ground-truth all the circles that
do not satisfy this condition.

Quantitative results of precision and recall for the methods
under comparison can be found in Table 1, as well as the
average precision and recall for the three datasets.

In the PCB database, our method has the best recall and
Lu_circles the highest precision. Lu_circles has a very good
precision but a poor recall in all databases. Similarly, RCD
has high precision but a pretty low recall in PCB. Moreover,
EDcircles performs worse than our method in terms of preci-
sion and recall for this database.

Results in AUCDB are quite similar for EDcircles and
for our approach. Except for the precision of Lu_circles,
the results from the other methods are significantly infe-
rior. AUCDB is a very challenging dataset, since it contains
many different kinds of circles. For the Natural database, our
method presents the best precision and recall values, except
for the precision of Lu_circles.

The average precision and recall in all three databases
corroborates the previous observations. The proposedmethod
has the best average recall and average precision except for
the precision from Lu_circles which is slightly higher at the
cost of a much lower recall than our method. Regarding the
other methods, EDcircles seems to offer a good compromise
between precision and recall.

B. ELLIPSE DETECTION
We evaluate the ellipse detection algorithm by comparing
our results with the results of some of the state-of-the-art
methods: the algorithm of Mai et al. [15] (Mai_ellipses),
the algorithm of Fornaciari et al. [55] (Fornaciari_ellipses),
the algorithm of Jia et al. [57] (Jia_ellipses) and EDcir-
cles [12], which also computes ellipses. The codes for For-
naciari_ellipses and Jia_ellipses are made accesible by the
corresponding authors56 and we implemented Mai_ellipses,
following the corresponding article.

The evaluation has been carried out on three different
datasets provided by Fornaciari et al. [55]7: Dataset Prasad,

5https://sourceforge.net/projects/yaed/
6https://github.com/dlut-dimt/ellipse-detector
7http://www.imagelab.ing.unimore.it/imagelab2015/ellipse/ellipse_

dataset.zip

Random Images Dataset and Smartphone Images Dataset.
The first one was originally created by Prasad et al. [16] and
it had 400 images taken from the Caltech 256 dataset [79], but
due to a hardware problem, the authors lost part of the annota-
tions and now there are only 198 images, which are the ones
used in this experimentation and shared by Fornaciari et al.
The other two datasets were created by Fornaciari et al. The
first one consists of 400 real images collected from MIR-
Flickr and LabelMe repositories and the second one contains
629 images taken with an smartphone.

EDcircles and our method detect circles and ellipses sepa-
rately. Hence, to compare the results we will plot circles and
ellipses equally for the methods that detect both geometrical
structures.

1) VISUAL COMPARISON
Fig. 8 shows examples of our method applied to images
from Random and Prasad datasets and a comparison with the
other state-of-the-art methods. In the first row, Mai_ellipses
is unable to detect the two ellipses in the glasses, while
Jia_ellipses and Fornaciari_ellipses detect only the one on
the right side (Fornaciari_ellipses detects several instances).
EDcircles and our method detect both ellipses, although
EDcircles has a false detection.

In the second example there are two ellipses describ-
ing the silhouette of the frying pan and the boiling pot.
Mai_ellipses detects parts of both silhouettes, but the ellipses
detected are wrong. EDcircles and Jia_ellipses detect only
one of them. Finally, Fornaciari_ellipses and our method
detect both of them, but Fornaciari_ellipses has also two false
alarms.

In the third row all the methods find the ellipse at the
bottom of the image, but the one detected by Mai_ellipses
is not well located. Regarding the biggest ellipse, EDcircles,
Mai_ellipses and our method detect it, but, as in the previous
examples, the detection ofMai_ellipses is only partially well-
fitted. Finally, EDcircles detects one of the circles in the
microwave and our method detects both of them. Although
the two circles are valid detections, the ground-truth does not
include them. This reduces the precision of our method in the
posterior numerical comparison.

In the last row all the methods detect correctly a subset of
the observed ellipses. However, all the methods have some
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FIGURE 8. Ellipse detection comparison with images from Prasad and Random datasets. From left to right: original image, Jia_ellipses [57], Mai_ellipses
[15], Fornaciari_ellipses [55], EDcircles [12] and our method. The detected ellipses are drawn in green.

FIGURE 9. Ellipse detection comparison with images from the Smartphone dataset. From left to right: original image, Jia_ellipses [57], Mai_ellipses [15],
Fornaciari_ellipses [55], EDcircles [12] and our method. The detected ellipses are drawn in green.

false detections, generally due to duplicate detections of the
same ellipse, or caused by the union of contours belonging
to different ellipses. In our case, we detect two ellipses in the
bottom-right ellipse, but in fact, the boundary of the object
in that area is thick enough to consider it as two separate
detections.

Fig. 9 displays examples of detection on images from the
Smartphone dataset. The first example contains two ellipses,
although most methods only detect the one on the right hand
side. EDcircle fails to detect both of them, and Mai_ellipses
exhibits many false detections. The proposed method cor-
rectly detects both.
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FIGURE 10. Ellipse detection failures of our method. We selected particular examples where our method fails in detecting all the ellipses or detects
more than expected. From left to right: original image, Jia_ellipses [57], Mai_ellipses [15], Fornaciari_ellipses [55], EDcircles [12] and our method. The
detected ellipses are drawn in green.

In the second row most methods present false detections.
Jia_ellipses and Fornaciari_ellipses detect ellipses in the
two traffic signs but many of them are duplicated. All the
detections by Mai_ellipses are incorrect. EDcircles correctly
detects the ellipses but also produces two false detections,
while our method obtains correct results (although the inner
ellipse on the traffic sign on the right is detected as two
ellipses due to the thickness of the drawing line).

The example in the last row is challenging since several
circles and ellipses, some of them partially occluded, are
present in the image. With the exception of the proposed
method, the tested algorithms are unable to detect all of them.
Moreover, some of those detections are not well located.
This is the case of EDcircles and Mai_ellipses: the first
method detects only one of the wheels as an ellipse, but
with a small error in the location; Mai_ellipses is not able
to place well the ellipse in the center of the image. Moreover,
Mai_ellipses, Jia_ellipses and Fornaciari_ellipses have false
detections.

In Fig. 10 we display examples for which our method
presents a lower performance. We selected particular
examples where our method fails in detecting all the
ellipses or detects more than expected. For the first example,
we detect only one of the two wheels of the cannon. In
the second example we have a false detection, although its
shape is similar to an ellipse. In the last example, we fail to
detect some of the ellipses. The comparison with the other
methods shows that these are challenging examples, and that
even in our worst case scenario, the results are competitive
with the state-of-the-art.

To summarize the qualitative results on ellipse detec-
tion, let’s mention that all the methods produce quite
accurate results, but all of them have some drawback: For-
naciari_ellipses produces many false detections, due to the
inaccurate clustering of the detections in the final stage of
the method; Jia_ellipses sometimes misses detections and in
other occasions produces many duplicates of the true detec-
tions; EDcircles fails to detect some of the ellipses and has
some false circle detections. Finally, Mai_ellipses produces
many false detections and sometimes the actual ellipses are
only detected partially, as part of a bigger ellipse. Our method
exhibits a good performance in all the examples.

2) NUMERICAL COMPARISON
In this section we perform a numerical comparison of the
state-of-the-art methods on the three ellipse datasets pre-
sented at the beginning of the section. We use the same
measures as in section VI-A2, but in this case, an ellipse
is considered to be correctly detected if the common area
between the detection and the ground truth is larger than
0.75 times the area of the bigger ellipse.

Table 2 shows the results for state-of-the-art methods on
the three ellipse datasets. In all three datasets, and in average,
our method gets the best precision and the second recall.
Fornaciari_ellipses having the best recall, has the worst preci-
sion among all methods, which is corroborated in the visual
comparison section. In the Prasad dataset, EDcircles has a
better recall, but a significantly worse precision compared to
our method.
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TABLE 2. Average precision and recall results on three image datasets for ellipse detection and the average of all the averages. In each case, the two best
results of precision and recall have been highlighted.

FIGURE 11. Line segments and circular arc detections in images from the Natural dataset. From left to right: original image, ELSDc [19], Etemadi_arcs
[24], LSD [10], EDcircles [12] and our method. The detected ellipses are drawn in green, the circles in blue, the detected lines in red, the circular arcs in
yellow and the elliptical arcs in orange.

C. TAXONOMY OF IMAGE CONTOURS
In this section we shall evaluate the performance of our
whole detection chain compared with other detectors from
the literature. We compare against ELSDc [19], which
detects segments and arcs of ellipses; Etemadi’s method [24]
(Etemadi_arcs), which detects segments and circular arcs;
LSD [10], which detects segments; and EDcircles [12], which
detects circles and ellipses.

ELSDc is made available by their authors8; Etemadi_arcs
is part of a toolkit created by the author named Object

8https://github.com/viorik/ELSDc

Recognition Toolkit (ORT) and a more recent version can be
downloaded from a github repository9; LSD has an online
implementation at www.ipol.im [80], where the source code
is available for download. In this section, all the images
are taken from the Natural and Prasad datasets used in the
previous sections.

Fig. 11 displays the results obtained on images from the
Natural dataset. In all the examples the detected circles
are drawn in blue, ellipses in green, circular arcs in yel-
low, line segments in red and elliptical arcs in orange. The

9https://github.com/encuadro/encuadro/tree/master/c/ort/ORT-2.3
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FIGURE 12. Line segments and circular arc detections in images from the Prasad dataset. From left to right: original image, ELSDc [19], Etemadi_arcs
[24], LSD [10], EDcircles [12] and our method. The detected ellipses are drawn in green, the circles in blue, the detected lines in red, the circular arcs in
yellow and the elliptical arcs in orange.

first example contains several concentric circles, some short
curves close to the central circle and many segments belong-
ing to geometrical shapes. The two biggest circles in the
outer edge of the figure, and the smallest circle in the center,
are detected by all the methods, although LSD detects them
as several segments. The two middle sized circles are more
difficult to detect, since they result from the union of several
small dark and bright shapes. EDcircles does not detect the
smaller one, ELSDc and Etemadi_arcs detect parts of them
as segments, LSD detects them as several segments and our
method detects them both. Regarding the linear segments, all
the methods except EDcircles detect all of them correctly.
Finally, there are several small arcs close to the smallest
circle. All these shapes are well classified as arcs by our
method, while ELSDc and Etemadi_arcs classify some of
them as arcs and the rest as segments.

In the orange image of the second example all the methods
are able to detect the main shape correctly, although ELSDc

and Etemadi_arcs miss the areas close to the shadow of
the fruit and close to the leaves. Apart from that, ELDSc,
Etemadi_arcs and our method detect the leafs as contours,
but the first two methods fail to classify them as arcs. Finally,
ELSDc, LSD and our method detect the shadow of the object.

A complex circuit board is displayed in the third row.
In this example, ELSDc detects all the main contours on
the image, although it classifies incorrectly some of them as
segments or arcs. Etemadi_arcs classifies well all the detected
contours, but misses the low contrasted contours. EDcircles
finds all the circles in the image, but it has a false ellipse
detection. Our method detects most circles and classifies
correctly the other contours as circular arcs, segments or ellip-
tical arcs.

In the last example ELSDc and Etemadi_arcs detect parts
of the contour of the basketball as line segments. Also, some
of the curves inside the ball are incorrectly classified as line
segments by these methods. Our method correctly detects the
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FIGURE 13. Detection comparison with noise and varying blur conditions.

big circle and most of the inner contours are classified as arcs,
either circular or elliptical, except for some on the right side
of the ball, which are more straight and hence classified as
segments.

Fig. 12 shows examples of detection on images from the
Prasad dataset. The first example shows an image of a cartoon
character. ELSDc detects almost all the main contours, except
for the big one delimiting the person from the bike, but
classifies incorrectly some of them. Etemadi_arcs is not able
to find some of the contours belonging to the head and none
of the contours belonging to the eyes. EDcircles is not able to
find the ellipse in the head and the ellipse in the right wheel
is not perfectly aligned with the real one. Finally, our method
finds all circular and elliptical shapes, although one eye is
detected as a circle and the other as an ellipse.

The second example shows a music player and a pair of
headphones. In this example ELSDc detects most parts of
the circular shapes as arcs and the other contours are well
classified as segments. Etemadi_arcs is only able to detect
half of the big ellipse in the music player as an arc. Moreover,
it detects many small contours on the screen of the device,

which do not give relevant information about the image.
EDcircles is able to detect all the circular shapes, as well as
LSD. Finally, our method also detects all circular shapes and
correctly classifies other contours.

The third image consists of a megaphone inscribed in a
circle. All the methods are able to detect the outer circle and
they do it as a double detection, one for the interior boundary
and one for the exterior boundary. This is because the circle is
thick enough to provide two separate zones with high gradi-
ent, where each of them provides one of the detections. Apart
from that, EDcircles is not able to detect the ellipse in the
megaphone and it has a false detection. All the other methods
provide a good classification of the detected contours. Similar
comments apply to the next two examples.

For the last row, ELSDc only classifies part of the top and
bottom circular areas as arcs, and the other parts are classified
as segments. Moreover, it classifies the left boundary of the
object as an arc, when it is a segment. Etemadi_arcs has some
small and noisy contours close to the paperclips which do not
give any information about the image and classifies well the
large contours describing the shape of the object. EDcircles
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FIGURE 14. Detection comparison with blur and varying noise conditions.

FIGURE 15. Circle detection comparison. Original image and the results of our method with different values of the coverage threshold
Ta. We have set Ta = 60% as default value in order to avoid the detection of semi-circles (top row), although this might slightly
increase the rate of missed detections (bottom row).

is only able to detect the ellipse on the top of the object. Our
method detects one ellipse and an elliptical arc on the other
one, and, as well as LSD, is able to detect and classify well
the contours describing the shape of the object.

D. ROBUSTNESS TO BLUR AND NOISE
In this section we will explore the robustness to vary-
ing conditions of noise and blur of the methods achiev-

ing the highest performance in the previous sections.
More specifically, the methods used in this section are
Lu_circles [18], Jia_ellipses [57], EDcircles [12] and our
method.

We apply the methods to a set of noisy and blurred images.
Each of these test images is obtained by applying a Gaussian
convolution of standard deviation σg and adding a white
Gaussian noise of standard deviation σn to the original image.
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TABLE 3. Average precision and recall results on three image datasets for circle detection for different values of parameter Ta. The chosen parameter is a
good compromise for the recall and precision measures, which respectively decrease and increase when being more strict with the coverage criterion.

TABLE 4. Average precision and recall results on three image datasets for ellipse detection for different values of parameter Ta. The chosen parameter is
a good compromise for the recall and precision measures, which respectively decrease and increase when being more strict with the coverage criterion.

TABLE 5. Average precision and recall results on six image datasets for circle and ellipse detection and the average of all the averages for different
values of parameter Tpd .

FIGURE 16. Selected examples which clearly benefit from using pairs of curves as initialization for ellipse
detection. First row: results using only one curve for initialization. Second row: results using two curves for
initialization.

We consider the values σn ∈ {0.0, 5.0, 10.0, 15.0, 20.0} and
σg ∈ {0.0, 0.5, 0.8, 1.1}.
Fig. 13 and 14 compare some of the obtained detec-

tions. We fix for each figure either σn or σg, and vary the
other parameter. We display for all the methods the detec-

tions in green, regardless of whether they correspond to cir-
cles or ellipses.

In Fig. 13 we add a noise of σn = 20 and vary σg.
Lu_circles shows to be robust to noise since it detects almost
every circle without the presence of blur. However, as we
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TABLE 6. Average precision and recall results on three image datasets for circle detection and the average of all the averages. We compare the effect of
using one or two curves for the initial circle detection.

TABLE 7. Average precision and recall results on three image datasets for ellipse detection and the average of all the averages. We compare the effect of
using one or two curves for the initial ellipse detection.

TABLE 8. Average precision and recall results on six image datasets for circle and ellipse detection and the average of all the averages for different
values of parameter N , the number of refinements of the RANSAC-like contour grouping method.

increase the value of σg, this method detects less circles.
Jia_ellipses is less robust to noise since has many double
detections and the circles are not well located. Detections
also tend to disappear as σg increases. EDcircles has similar
detections when σg varies, although the central solid circles
are not identified. Our method detects the same structures in
all cases.

We fix σg = 1.1 in Fig. 14 and vary σn. The original
image for this experiment is a palette of makeup where the
perspective makes each circle to look as an ellipse. Since
Lu_circles is devoted to circle detection, it fails in this exam-
ple. Jia_ellipses gives a reasonable detection for the noise
free image, but quickly degrades as the image gets noisier.
EDcircles loses detections as noise increases, but it doesn’t
introduce false detections. Our result is stable, except for the
detection lost when increasing the noise. This ellipse is poorly
contrasted in the original image and becomes undetectable in
the image as noise increases, even for our eye.

E. PARAMETER ANALYSIS
In this section we analyze the parameters that have a higher
influence in the performance of the proposed method. The
values of the rest of the parameters can vary in a relatively
large range without producing meaningful changes in the
results. The main parameters are: Ta, the minimum angu-

lar coverage for the validation of circles and ellipses; Tpd ,
the minimum percentage of points in a contour needed to
decide that it fits a circle or an ellipse; the initial number of
contours used to compute the support of circles and ellipses;
and N , the number of refinements of the RANSAC-like con-
tour grouping method described in Section IV-B.

In Fig. 15 we display the results of applying our method to
the detection of circles with different values of Ta. The default
value is Ta = 60%, but for certain examples the use of Ta =
50% or 55% permits to detect more circles (bottom example).
However, it also implies the detection of semi-circles as the
ones in the top row, which we believe cannot be interpreted
as a circle. In Tables 3 and 4 we show the performance of
ourmethod for circle and ellipse detection, respectively, when
we modify threshold Ta. The results show that the precision
increases as we increase the value of the threshold Ta. At the
same time, the recall decreases, being the chosen parameter
a good compromise for both.

In Table 5 we show the performance of our method
when the parameter Tpd is modified. As it can be seen,
in all datasets the precision increases as we increase the
value of Tpd . However, the recall is lower with higher
values of Tpd . We have chosen as default value Tpd =
87.5% because it gives the best balance between precision
and recall.
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TABLE 9. For different datasets, this table shows the average computation time per pixel of the proposed method. The average percentage of time
devoted to the detection of circles, ellipses and other structures is also displayed.

We also evaluate the difference in the performance of our
methodwhen one or two curves are used as initial estimates of
a circle or ellipse contour. We have discussed in Section IV-G
that the use of two curves increases the performance in the
ellipse detection step, but the same setting can be used for the
detection of circles. We display in Fig. 16 selected examples
which clearly benefit from using pairs of curves as initializa-
tion. In Table 6 and 7 we can see the increase in performance
when using this option, for circles and ellipse detection. In
both cases, there is a significant increase in the recall, without
penalizing too much the precision.

Finally, in Table 8 we show the performance of our method
with different values of N . We observe that the precision and
the recall do not have a large variation when changing the
value of the parameter N . We did not include a table for the
number of iterations n of each refinement, set to n = 25,
because increasing its value does not modify the results.
Compared to classical RANSAC applications this parameter
is not critical for our procedure since the number of possible
combinations of the selected curves is often lower than n.

F. COMPUTATIONAL COMPLEXITY
It is difficult to bound the number of operations per pixel in
the proposed method. This is due to the several steps involved
in the detection process and the fact that this number might
actually depend on the number of initial contours detected,
as well as its length.

We run our algorithm on a 3.2GHz Intel Core i7-8700 pro-
cessor on an Ubuntu system. We measured the time of com-
putation for each image used in the experimentation and
normalized it by the number of pixels. This time accounts for
the multi-scale detection of circles, ellipses and identification
of segments and circular and elliptical arcs. Table 9 shows the
mean time per pixel on each dataset, as well as the percentage
of time devoted to circle detection, ellipse detection and con-
tour merging and classification. For example, for an image
of 512 × 512 pixels the detection takes on average 3.01 s.
20% of this time is devoted to circle detection, 28% to ellipse
detection and 52% to contour merging and classification.

VII. CONCLUSION
We have presented in this paper a unified framework for
the classification of the image contours into different geo-

metric structures, namely, circles, ellipses, line segments,
circular arcs and elliptical arcs. To the best of our knowl-
edge, this is the first work to propose such a complete
taxonomy of the image contours. The proposed technique
involves several algorithms but has a common methodology:
contours are detected at several scales, in a first step these
contours are grouped to form circles, the ones that do not
belong to the support of a circle are then grouped to form
ellipses and, finally, those that do neither belong to circles
nor ellipses are classified as line segments, circular arcs,
elliptical arcs or none of the above. In order to reduce the
number of false detections a validation step that assesses
the perceptual meaningfulness of the detected structures is
used. Among the technical novelties developed to fulfill the
classification task we may mention a RANSAC-like tech-
nique for the grouping of sparsely distributed contours into
circles or ellipses, a multiscale strategy for the combination of
detections obtained at different scales, and a contour filtering
method than permits the fusion of contours from different
scales.

Multiple experiments illustrate the performance of the pro-
posed methodology for the detection of the different geo-
metric structures. Our method shows superior performance
than state-of-the-art techniques in the tests performed on sev-
eral datasets. Moreover, its multiscale character endows the
method with robustness to noise and blur, as our experiments
corroborate. In future work, we shall investigate the grouping
of line segments into polygonal structures.
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