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ABSTRACT Stock market volatility has a significant impact on many economic and financial activities in
the world. Forecasting stock price movement plays an important role in setting an investment strategy or
determining the right timing for trading. However, stock price movements are noisy, nonlinear, and chaotic.
It is difficult to forecast stock trends for improving return on investment. Here, we proposed a novel improved
particle swarm optimization (IPSO) and long-short term memory (LSTM) hybrid model for stock price
forecasting. An adaptive mutation factor was used as a parameter for model optimization to avoid premature
convergence to a local optimum. Furthermore, we presented a nonlinear approach to improve the inertia
weight of the particle swarm optimization and then used the IPSO model to optimize the hyperparameters
of LSTM. The experimental results showed that the proposed model outperformed the other related baseline
models: support-vector regression, LSTM and PSO-LSTM on the Australian stock market index. These
results indicated the proposed model possesses high reliability and good forecasting capability.

INDEX TERMS Long-short termmemory network, time series forecasting, stock indices forecasting, hybrid
feature selection, deep learning.

I. INTRODUCTION
The stock market index is a reference indicator compiled by
the stock exchange or financial service institutions to show
movement in the stock market. It is an important financial
indicator for investors, as the stock index affects the sentiment
of investors regarding whether to buy, hold, or sell their
stocks. Due to the importance of the stock market to the
economy, researchers and investors always pay attention to
forecast stock market trends.

During the past decades, the development of machine
learning and deep learning methodologies for forecasting
stock price and trends, such as artificial neural network
(ANN), support vector machine (SVM), and long short-term
memory (LSTM) have gained popularity in the scientific and
commercial communities. These methodologies can provide
useful findings and insight about market trend, and have
caught the attention of researchers.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ramakrishnan Srinivasan .

Previous studies have demonstrated that ANN and SVM
are important models for financial time series forecasting.
Tay and Cao applied SVM to forecast future contract prices
that were selected from the Chicago Mercantile Exchange
(CME) datasets in 2001 [1]. Two years later, Kim utilized
SVM to forecast the trends of daily stock price in the Korea
Composite Stock Price Index (KOSPI) [2]. Huang et al.
used SVM to forecast the weekly movement direction of
the Nikkei 225 index [3]. Hossain and Nasser predicted
changes in the Nikkei 225 and S&P 500 stock indices by
the ARMA-GARCH and SVM models [4]. Sheta et al.
explored ANN, traditional multiple linear regression (MLR),
and SVM to establish prediction models for the S&P 500
stock index [5]. Hui and Zhang proposed a novel kernel
of support vector regression for forecasting high-frequency
equity returns in 2016 [6]. Chi-Yuan Yeh et al. applied
a multiple-kernel support vector regression approach to
forecasting stock market price [7]. Hung carried out a fuzzy
support vector regression model for forecasting stock market
volatility [8]. Two hybrid models named GA-SVR-GM and
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GABPNN-GM are proposed for improving the prediction
accuracy of the Composite Index in Shanghai and Shenzhen
Stock Exchanges [9].

The stock market is known for its high volatility and uncer-
tainty. Thus, traditional approaches are difficult to achieve
accurate prediction. However, in recent years, efforts have
been made to forecast stock prices by LSTM network that is
good at processing nonlinear financial time series. Chen et al.
forecasted Chinese stock returns by LSTM [10]. Nelson et al.
implemented LSTM to predict future stock movements by
stock price and technical analysis indicators [11]. Bao et al.
used a three-stage process to predict six market index
futures [12]. First, they used a wavelet transformation
to reduce the dimensionality of stock data. Second, they
reproduced these data by a stacked autoencoder. Finally, they
applied LSTM to predict stock price. They confirmed that
the prediction capability of the proposed model was better
than the other models, such as RNN, LSTM, and wavelet-
LSTM models. Fischer and Krauss in 2018 [13] deployed
LSTM networks to forecast the directional movement of
constituent stocks of the S&P 500 from 1992 to 2015. They
compared the simulation result with memory-free classifiers,
such as random forest (RF), deep neural network (DNN), and
logistic regression (LR) and found that LSTM significantly
outperformed the other comparative models.

LSTM network has memory cells and feedback connec-
tions. Many studies have found that LSTM network can
obtain valuable features from low volume data [10]–[13].
Furthermore, LSTM is a method especially suitable for
processing time series. Nevertheless, the parameters of
the LSTM network are usually determined by user’s
experience. The choice of these parameters will affect
the model’s forecasting capability. In order to address
the above problem, various meta-heuristics optimization
algorithms such as simulated annealing, genetic algorithm,
particle swarm optimization, and so on, have been proposed
for parameter optimization. Lu [14] constructed a hybrid
stock index prediction model by utilizing particle swarm
optimization (PSO) to optimize the parameters of the SVR
model. Shen et al. [15] used the artificial fish swarm
algorithm (AFSA) to optimize a radial basis function neural
network to forecast the Shanghai Security Exchange index.
Xia et al. [16] proposed an expanded PSO (XPSO) with
forgetting capability to improve the convergence rate of the
algorithm. Other researchers applied improved optimization
algorithms to numerical computing, feature selection, and
convergence improvement [17]–[22].

The contributions of this paper are as follows:
(1) To effectively resolve premature convergence issues

on the PSO algorithm, we propose novel inertia weight and
adaptive mutation factor to greatly improve the particles
global search capability and avoid the particles easily fall into
the local optimum. (2) The LSTM network hyperparameters
are updated adaptively by the IPSO model. Using the optimal
LSTM network, we can perform better forecast performance.
(3) A suitable look-back period is very important for the

LSTM forecast, which can affect the forecasting results
directly. The suitable values of look-back period are con-
firmed properly by analyzing experimental results. The rest
of the paper is organized as follows. The theories of SVR,
LSTM, PSO, PSO-LSTM are briefly explained in Section 2.
In Section 3, we improve the PSO algorithm and determine
the hyperparameters of LSTM with IPSO. In Section 4,
we compare the forecasting results of LSTM optimized by
IPSO, PSO, and the other algorithms, as well as forecasting
results of SVR and LSTM. Furthermore, the robustness of
IPSO-LSTM is verified by four well-known stock indices.
Finally, the conclusion and suggestions for further study are
given in Section 5.

II. PRELIMINARIES
A. SUPPORT VECTOR MACHINES FOR REGRESSION
Support Vector Machines is a classic supervised learning
technique proposed by V. N. Vapnik in 1995 [23]. A version
of the SVM for regression, called support-vector regression
(SVR), was developed in 1996 [24]. By using kernels, it is
possible to regress a non-linear function for solving nonlinear
problems by SVR. The SVR method can be expressed as
follows:

Given the training dataset of n elements,

{(x1, y1) , (x2, y2) , (x3, y3) , · · · , (xn, yn)} ,

where xi ∈ Rn represents the ith input data and yi ∈ Rn

represents the ith output data, i = 1, 2, 3, · · · , n.
In SVR, the training data xi is mapped to the high

n-dimensional feature space that formulates an optimized
hyperplane that also represents the non-linear relationship
between input and output data. The function is expressed as:

f (x) = wT · φ (x)+ b (1)

where w represents the weight vector; φ (x) represents a
kernel function; b represents the bias; x represents the input
vector.

The SVR model is designed to minimize the followings:

Min : 12w
Tw+ C

∑
i
(
ξi + ξ

∗
i

)
(2)

Subject to

 yi −
(
wT · φ (x)

)
− b ≤ ε + ξi

wT · φ (x)+ b− yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0, i = 1, 2, · · · ,m

 (3)

where C is the penalty factor, ξi, ξ∗i , are the empirical risk. ε
is the width of the band area, i = 1, 2, 3, · · · , n. is the number
of training data.

As shown in Equation (4), Cherkassky and Ma [25]
proposed the Radial basis function (RBF) kernel, defined as
follows:

φ(x) = exp
(
−γ ‖xi − yi‖2

)
, γ =

1
2δ2

(4)

where the γ parameter defines how far the influence of a
single training example reaches. Since the RBF is suitable for
solving forecast problems, we select the RBF as the kernel
function in this work.
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FIGURE 1. Basic structure of a long-short term memory network.

B. LONG SHORT-TERM MEMORY
Long short-term memory neural networks are a special type
of recurrent neural networks (RNNs) [26], which is specially
designed to solve the long-term dependence problem of
general RNN. Due to its structure (see Fig. 1), LSTM is
suitable for analyzing events with long delays in time series.

A LSTM unit consists of a memory cell and three gates.
The core of LSTMs is the cell state, which is represented by
a horizontal line running through the cell. The cell state is
like a conveyor belt. It runs through the entire cell; however,
it has only a few minor linear interactions, which ensure
that the information flowing through the entire RNNs does
not change. The memory cell state is carefully regulated by
three gates, i.e., the forget gate, input gate, and output gate.
It is composed of a sigmoid neural net layer and a pointwise
multiplication operation.

The sigmoid layer outputs a value between 0 and 1,
describing how much of each component should be let
through. The value ‘‘0’’ means ‘‘nothing can go through’’.
Additionally, the value ‘‘1’’ means ‘‘everything can go
through’’.

The LSTM unit has a forget gate that decides what
information is to be thrown away from the cell state.
As shown in Fig. 1, the forget gate is composed of a
hidden layer ht−1, an input of the current layer Xt , and a
cell state Ct−1. The latter outputs a value between 0 and
1 for each number in the cell state Ct−1. The value
‘‘0’’ indicates ‘‘completely forget it’’ while the value ‘‘1’’
indicates ‘‘completely retain it’’. The forget gate is given by:

ft = σ
(
Wf · [ht−1, xt ]+ bf

)
(5)

An important part of the LSTM unit is the input gate that
decides what information can be kept in the cell state. When
the input gate is closed, no more information can get into the
memory cell. Because of this unique function, the memory
cell can maintain data until they need to be updated. It has
two sections. The one, a sigmoid layer called the ‘‘input gate
layer’’ it decides which values can be updated. The other,
a hyperbolic tangent (tanh) layer creates a new candidate
vector value C̃t that could be added to the state. The input
gate updates the old cell state Ct−1 into the new cell state Ct

by forgetting the things that we decided to forget earlier, then
plus the things we decided to remain it ∗ C̃t . The input gate’s
Equations (6-8) are as follows:

it = σ (Wi · [ht−1, xt ]+ bi) (6)

C̃t = tanh (WC · [ht−1, xt ]+ bC ) (7)

Ct = ft ∗ Ct−1 + it ∗ C̃t (8)

Finally, the output gate of the LSTM unit decides which
information will be output. The sigmoid layer decides what
parts of the cell state need to be output. Then, the output Ot
comes from a product of the cell state and tanh. Therefore,
nothing else but the desired information could be transmitted
by the output gate. Their expressions are as follows:

Ot = σ (WO · [ht−1, xt ]+ bO) (9)

ht = Ot ∗ tanh (Ct) (10)

C. PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) is a population-based
metaheuristic optimization technology, proposed by Eberhart
and Kennedy in 1995 [27]. The PSO algorithm imitates the
swarm behavior of insects, animals, birds, fishes, and so on.
They cooperatively search for food. Each member of the
swarm constantly changes its search style by learning from
its own experience and the experience of other members.
PSO makes few or no assumptions about the problem being
optimized and can search very large spaces of candidate
solutions.

The PSO algorithm regards each individual as a ‘‘particle’’,
all particles in the swarm have a fitness value determined by
the fitness function f (x), and each particle also has a velocity
that determines the direction and distance of their flight.
Furthermore, particles follow the current optimal particle
and search in the solution space. The PSO is initialized as
a group of random particles, and then the optimal position
is found through iteration. In each iteration, the particle
updates itself by tracking two best values; the first one is
the particle’s own best position, for example, pbestij. All
particles in the swarm are able to share the information of
the best point achieved so that the second one is the global
best position called gbestij. Suppose a swarm with particles
M in dimension N , the ith particle is associated with two
vectors, Xij =

[
xi1, xi2, xi3, · · · , xij

]
is a position vector and

Vij =
[
vi1, vi2, vi3, · · · , vij

]
is a velocity vector. The velocity

vector is updated as:

V t+1
ij = ωV t

ij + c1r1
(
pbestij − X tij

)
+ c2r2

(
gbestij − X tij

)
(11)

where parameter i = 1, 2, 3, · · · ,M represents the ith
particle, parameter j = 1, 2, 3, · · · ,N represents the
dimension of the problem space, and parameter t represents
the number of iterations. In Equation (11), parameter ω
represents the inertia weight factor that is a constant between
0 and 1; c1, c2 represent the individual cognition and social
learning parameters, respectively. c1, c2 are set to 2 in
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standard PSO. r1 and r2 are random values in the range of
[0, 1]. The position of a particle will be updated by adding a
velocity vector V t+1

ij to the current position vector X tij, i.e.

X t+1ij = X tij + V
t+1
ij (12)

where X t+1ij , V t+1
ij represents the new position vector and the

velocity vector at the next iteration, respectively.

D. PSO-LSTM MODEL
As a metaheuristic optimization algorithm, PSO can be used
to optimize the performance of LSTM. Specifically, PSO
for parameter selection can reduce computation time and
increase forecast accuracy. In this paper, particles are defined
as a four-dimensional variable that represent the number of
iterations, the two hidden layer nodes of LSTM model, and
the learning rate, respectively. The first three parameters are
random integers in the range of [1, 200]. The last one is a
random value in the range of [0.001,0.01]. The parameters
c1, c2, r1, r2, ω are initialized as values 1.5, 1.5, 0.8, 0.3, 0.6,
respectively. PSO-LSTM algorithm ends once the maximum
number of iterations is reached.

III. PROPOSED ALGORITHM
A. IPSO-LSTM MODEL
As the parameters of LSTM are usually set heuristically, they
are unlikely to be optimal. Recent advances indicate that the
parameters of LSTM can be updated dynamically using PSO
algorithm [28], [29]. However, PSO algorithm often falls into
local optimum during iteration. To improve the diversity of
the swarm in the PSO, we propose a novel IPSO algorithm to
avoid premature convergence. Specifically, we improve the
inertia weight of the standard PSO algorithm and propose
an adaptive mutation factor. The IPSO is used to optimize
the parameters of the LSTM and decrease the subjective
influence of manually chosen parameters.

B. IMPROVED INERTIA WEIGHT
According to previous work, the inertia weight value is one
of the most important adjustable parameters of the PSO
model. A smaller inertia weight enhances exploitation while
a larger inertia weight enhances exploration. Although the
classical time-varying inertia weight is easy to implement,
it cannot offer outstanding performance since different
problems have their own distinctive characteristics. In this
paper, the non-linear hyperbolic tangent function is used to
balance the exploitation and exploration. The novel inertia
weight is given by:

ωt = ωmax − (ωmax − ωmin) ∗ tanh
(
π
4 ∗

t
max _iter

)
(13)

whereωt is the improved inertia weight,ωmin is the minimum
inertia weight, and ωmax is the maximum inertia weight,
respectively. t is the current iteration and max _iter is the
maximum number of iterations. ωt is used to replace ω in
Equation (11). Each particle inertia weight ωt is updated
independently according to Equation (13).

Since the inertial weight and the iteration time are
negatively correlated, the particles have a relatively large
inertial weight to promote the swarm diversity at the
beginning of the evolutionary process. As the number of
iterations increases, the inertia weight decreases non-linearly.
The decreasing inertia weight can significantly enhance the
swarm’s convergence. Additionally, all the swarm particles
have varying inertia weights since each inertia weight is
updated by itself. Therefore, some particles can search
locally, while the other particles are focused on global search.
The non-linearly decreasing inertial weight in our approach
is able to improve the performance of the PSO model by
balancing the local and global search abilities.

C. ADAPTIVE MUTATION FACTOR
Although the non-linearly decreasing inertial weight can
balance the local and global search capabilities of PSO, the
particles can still get caught in local optima. Since the value
of gbest is probably still a local optimum before the particles
lose diversity, it is difficult to achieve global convergence
only by using the above update strategy. Previous research has
demonstrated that a suitable mutation operator was conducive
to find global optimum. Zhang et al. [30] proposed a novel
method that employs adaptive disturbance to balance the
diversity and convergence speed of the swarm and to improve
the global convergence. In this subsection, to address the issue
of premature convergence and to increase the diversity of
the particles, a new adaptive mutation factor is designed to
enhance the optimization capability of PSO according to the
distance between each particle and the optimal particle.

The adaptive mutation factor αmf is closely related to the
iteration number, and is defined as

αmf = 0.3 ∗
t

max _iter
+ 0.7 (14)

where αmf represents the adaptive mutation factor that is set
to be between (0.7, 1]. t is the current iteration number and
max _iter is the maximum number of iterations. We see that
αmf increases as the iteration increases.

Mutation allows the position of a particle to be perturbed
to escape from a local optimum. As the number of iterations
increases, the probability of mutation should decrease.
The new method devises a random value α for mutation
operation. Let α be a random number generated from a [0,1]
uniform distribution for a particle. The mutation operation is
performed as follows:

1) When α > αmf
The particles mutate. This increases their chance to

escape from local optima. The IPSO-LSTMmodel randomly
generates new hyperparameters of the LSTM network: the
number of iterations, learning rate and two hidden layer nodes
of the LSTM network. The model is updated by iteration
optimization until the optimal values are found.

2) When α ≤ αmf
No mutation is performed on the particles and the

IPSO model continues to update the pbest and the gbest
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FIGURE 2. Flowchart of the IPSO-LSTM model for stock index forecasting.

through traditional PSO. The model is updated by iteration
optimization until the optimal values are found.

D. THE PROPOSED FRAMEWORK OF IPSO-LSTM
In this work, the LSTM neural network is optimized by
the improved PSO model, which is used to forecast the
stock indices’ movement. The overall process is shown
in Fig. 2. In the IPSO-LSTM model, the first stage is
data preprocessing that includes data splitting and data
normalization. In the second stage, the IPSO algorithm is
used to search for the optimal parameters of the LSTM
network. Finally, the LSTM network with the optimal
parameters is used to forecast the results of the stock index.
The steps are:
Step 1: Normalize the stock index from the daily closing

price into a real number in the range of [0, 1] using Min-Max
normalization method. The historical data are then split into
two groups: the training dataset and the test dataset.
Step 2: Initialize the IPSO parameters that include the

population size, particle dimension, number of iterations,

learning factor, particle position, particle velocity, inertia
weight. Initialize the LSTM parameters that include the
number of nodes in each hidden layer of the network, epoch,
batch size and values of the look-back period.
Step 3: Use the training dataset to train the LSTM model.

The right hyperparameters in the LSTMmodel are optimized
by the IPSO algorithm with improved inertia weight and
adaptive mutation factor.
Step 3.1: Train the LSTM network. The mean square

error (MSE) is selected as the loss function. Update the loss
function by training iterations.
Step 3.2: Evaluate fitness of each particle, determine the

individual optimal fitness value and the global optimal fitness
value.
Step 3.3: According to the Eq. (11) - (13), the velocity

and position of particles are updated, respectively. In the
iterative process, the velocity and position of the particle are
continuously updated according to the two optimal values.
When the adaptive mutation is applied, the particles will
mutate to increase the chance of searching new areas.
Step 3.4: The optimal LSTM hyperparameters are recorded

when the end conditions of the IPSO aremet. Otherwise, go to
Step 3.1 to continue the iteration.
Step 4: The trained model is tested by using the test dataset.
Step 5: Through above processing, the proposed method

can find the best hyperparameters for the LSTM model.
Step 6: The optimal LSTM model is used for stock

indices forecast. The forecasting results are evaluated by four
performance metrics.

The models are implemented on a PC (Intel Core i7-
10510U CPU at 1.8 GHz, 16Gbyte RAM, and GeForce
MX250 GPU). The development environment is Python 3.7,
PyCharm Edu 2020.1 IDE on a Windows 10 operating
system. Thesemodels are implemented under the TensorFlow
machine learning platform.

IV. EXPERIMENTS
A. DATASET
In this study, we select the Australian stock market (ASM)
as our main focus, where the S&P/ASX200 index (ASX200
or XJO) is considered the benchmark for ASM performance,
which is compiled based on the 200 largest ASX listed
stocks. The ASM is a mature, healthy, and high return market.
Since 1900, the ASM has returned an average over 13% per
annum [31]. The average return in investment is higher than
other well-known stock markets, such as New York Stock
Exchange, Nasdaq, Tokyo Stock Exchange. The experimental
dataset is comprised of the daily historical data in the
past 10 years from 1 September 2010 to 31 August 2020. All
data are derived from Yahoo! Finance, as shown in Fig. 3.

B. DATA PREPROCESSING
Data preprocessing is a crucial step in data analytics, high
quality data leads to better models and predictions. The
S&P/ASX200 index closing prices are normalized to real
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FIGURE 3. The S&P/ASX200 index from September 2010 to August 2020.

numbers in the range of [0, 1] by:

x ′ (t) =
x(t)− xmin

xmax − xmin
(15)

where t represents each trading day, x(t) represents raw input
data that is the closing price of the daily data, x ′ (t) represents
the normalized input data that is normalized from x(t), xmin
and xmax represent the smallest and largest value of the raw
data, respectively.

After data preprocessing, the raw dataset is split into two
separate sets in various ratios. As shown in Fig. 3, the blue line
represents the first 70% of daily historical data and they form
the training set. The orange line represents the remaining 30%
of the data that are used as the test set.

C. PERFORMANCE METRICS
Measuring forecast accuracy is not an easy task as there
is no one-size-fits-all metric. To appropriately evaluate the
forecasting capability of each method, the following four
common metrics are used to measure accuracy: root mean
square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and R2_score (R2). The
four performance metrics are expressed by the following
Equations (16-19):

RMSE =

√
1
N

N∑
t=1

(
ytest (t)− ŷtest (t)

)2 (16)

MAE = 1
N

N∑
t=1

∣∣ytest (t)− ŷtest (t)∣∣ (17)

MAPE = 100%
N

N∑
t=1

∣∣∣ ytest (t)−ŷtest (t)ytest (t)

∣∣∣ (18)

R2 = 1− MSE(ytest (t)−ŷtest (t))
Var(ytest (t))

(19)

whereN indicates the number of samples. ytest (t) and ŷtest (t)
represent the true value and the forecast value, respectively.
Var indicates the variance, MSE is the mean squared error.

To determine the LSTM model parameters, six widely
accepted settings are used. The epochs and the number of
nodes in each of the two hidden layers of the LSTM model

TABLE 1. Basic parameter settings of the four different models.

TABLE 2. Comparison of the forecasting results corresponding to the
different evaluation metrics.

are random integers sampled from the range [1, 200]. The
learning rate η is randomly generated within the range of
[0.001, 0.01]. Basic parameter settings are summarized in
Table 1.

D. S&P/ASX200 FORECASTING
The entire dataset includes 2523 records in the form of
S&P/ASX200 daily closing prices. The first 1767 data from
1 September 2010 to 5 September 2017 are used as the
training dataset. The last 756 data from 6 September 2017
to 31 August 2020 are used as the test dataset. To evaluate
the performance of each model, the forecasting results are
evaluated by the four performance metrics.

The value of the look-back period indicates the number of
previous days’ data to be used in the forecasting. The data are
the daily closing prices. The value of the look-back period is
critical for achieving good forecast accuracy in a time series
model.

To evaluate the performance of the four models under var-
ious look-back periods, we selected six different look-back
periods, i.e., 5, 10, 15, 20, 30, and 60. The experimental
results corresponding to different look-back periods are
shown in Table 2 and Fig. 4. Each model is evaluated by six
different look-back periods and four different performance
metrics. To highlight the best forecasting results, the optimal
values of each look-back period are identified in boldface.
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FIGURE 4. Evaluation results with the four metrics on the ASX200 index
(look-back = 20 days).

From Table 2 and Fig. 4, it can be observed that the
forecasting accuracy does not vary monotonically with
look-back periods. The proposed model performs the best
when look-back = 20 days. Hence, for subsequent
experiments a look-back of 20 days is used.

It can be seen that MAPE, RMSE, MAE, and R2 of
the IPSO-LSTM with 20 days look-back are better than
SVR by 61.78%, 57.90%, 62.07%, and 12.92%, respectively,
whereas they are better than PSO-LSTM by 29.90%, 20.54%,
30.71%, and 1.46%, respectively, and better than LSTM by
55.37%, 52.63%, 56.56%, and 9.28%, respectively. The R2

values for IPSO-LSTM are in the range of [0.9596, 0.9760],
for PSO-LSTM they are in the range of [0.9402, 0.9748],
and for LSTM they are in the range of [0.7756, 0.8791].
Table 2 also shows that although the LSTM forecasting can
be significantly improved by PSO (with an improvement
of MAPE, RMSE, MAE, and R2 by 36.33%, 40.38%,

37.31%, and 7.70%, respectively), the IPSO-LSTM model
can further improve the performance. These results show
that the parameters of LSTM can be optimized by PSO,
and furthermore by IPSO due to its ability to avoid getting
trapped in local optima, and the improved LSTM has better
forecasting performance on the short-term and medium-term
stock indices.

To verify the performance of the IPSO-LSTM model over
that of PSO-LSTM, the following experiments are performed:
the LSTM model with two hidden layers is optimized by (1)
IPSO, and (2) standard PSO (PSO). The changes in the
number of the hidden layer nodes and the learning rate vs
the number of training iteration of the LSTM network are
shown in Fig.5. The orange lines represent the IPSO-LSTM
model hyperparameters, whereas the green lines represent the
PSO-LSTM model hyperparameters. The X-axis represents
the number of iterations for IPSO and PSO. The Y-axis on
the left subgraph of Fig. 5 refers to the number of LSTM
iterations, the number of nodes in the first hidden layer
(Node1), and the number of nodes in the second hidden
layer (Node2). The Y-axis on the right subgraph of Fig. 5
refers to the learning rate of the LSTM networks. Although
PSO-LSTM shows faster convergence at the initial stage,
more accurate results cannot be produced in the later stage.
The use of an adaptive mutation factor allows IPSO-LSTM to
escape from local optimum, thereby allowing it to outperform
PSO-LSTM and other models.

Fig. 6 shows the forecasting of the ASX200 index by the
four models for a period of 90days (from 23 October 2018 to
3March 2019). Clearly, the forecasting given by IPSO-LSTM
is the closest to the true value.

The proposed IPSO-LSTM model is compared with the
four models for the ASX200 index from the period 6 Septem-
ber 2017 to 31 August 2020 and the results are shown
in Fig.7. The SVR performs the worst among all models.
The IPSO-LSTM significantly outperforms the other models.

FIGURE 5. Hyperparameters optimization with IPSO-LSTM and PSO-LSTM on the ASX200 index (look-back = 20 days).
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FIGURE 6. Forecasting results of different models on the S&P/ASX200 index for the 90 days test period (look-back = 20 days).

FIGURE 7. Forecasting results of different models on the S&P/ASX200 index for the whole test set (look-back = 20 days).

It can be seen from the partially enlarged subgraph in Fig.7
that the IPSO-LSTM forecasting is very close to the true
curve.

To further verify the forecasting capability of the IPSO-
LSTM model, we compare it with the PSO-LSTM and
the other improved variable inertia weight methods of
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TABLE 3. The basic parameter settings and experimental results corresponding to the different models.

FIGURE 8. Forecasting results of different deep learning models on the
S&P/ASX200 index.

Wang et al. [28] and Shao et al. [29]. Except for the
look-back period, the other parameter settings for those
models are inherited from the original papers. The forecasting
results are shown in Fig. 8. The comparison results are shown
in Table 3.

According to the performance metrics MAPE, RMSE,
MAE, and R2, the proposed model still achieves the best
performance among the four models. Table 3 shows that
Wang et al. [28] and Shao et al. [29] could improve
the forecasting results of LSTM. However, the proposed
IPSO-LSTM model still has the best performance over all
four models.

E. COMPARISON USING DIFFERENT STOCK INDICES
To further verify the robustness and reliability of the proposed
model, we run experiments on four well-known indices: DJI,
IXIC, HSI, and N225. The Dow Jones Industrial Average
Index (DJI) is the stock market index that measures the
stock performance of 30 large companies listed on the
stock exchange in the United States. Nasdaq Composite
Index (IXIC) is the index for the Nasdaq stock market. Hang
Seng Index (HSI) is the main stock market performance

FIGURE 9. The four major stock market indices daily closing price from
September 2010 to August 2020.

index in Hong Kong. Nikkei 225 Index (N225) measures
the performance of 225 large companies listed on Tokyo
Stock Exchange in Japan. The dataset time frame is
from 01 September 2010 to 31 August 2020 which is the
same as the selected ASX200 time frame. To conduct the
experiments, the first 70% of the samples are used to train
the model, and the remaining 30% are used to test the model.
Table 4 lists all five stock indices used in our experiment.

The daily closing price charts of the four stock indices are
shown in Fig. 9. The blue line on the left indicates the training
set. The orange line on the right indicates the test set. On each
subgraph, the x-axis indicates the date from 1 September
2010 to 31 August 2020. The y-axis indicates the daily
closing price of each index.

The parameter setting of the IPSO-LSTM model is the
same as those used in the previous ASX200 experiment. The
results of the four stock indices by IPSO-LSTM are shown in
Table 5 and Fig. 10.

Table 5 shows the forecasting results of various stock
indices based on the four evaluation criteria. As shown in
Fig. 10, the blue line represents the observed true value. The
orange line represents the forecasting value by IPSO-LSTM.
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TABLE 4. The details of the five selected stock indices.

FIGURE 10. Forecast capability of the IPSO-LSTM model on four different indices.

TABLE 5. Comparison of the experimental results corresponding to
different stock indices and evaluation metrics.

The experimental results show that the forecasting curve
is very close to the true value for all four major indices,
indicating the generality and robustness of the proposed
IPSO-LSTM algorithm to different stock markets.

Although we have seen that the LSTM model performs
well in forecasting stock indices, there are also some
limitations. LSTM model requires a lot of resources and

time to train, and these can be a barrier for real-world
applications. On the other hand, it is well-known that
there are other external factors that affect stock volatility.
Hence, sophisticated models that could take external factors
into consideration would be needed to further improve the
forecasting performance.

V. CONCLUSION
This study was concerned with a novel IPSO-LSTM hybrid
model to forecast stock market indices. We showed that
by using a novel inertia weight and an adaptive mutation
factor in the PSO optimization, we are able to search
for better hyperparameters for the LSTM network, which
contribute to improving forecast accuracy. We evaluated
the performance of the proposed IPSO-LSTM algorithm
on five major stock market indices (ASX200, DJI, IXIC,
HSI, N225) using four performance metrics (RMSE, MAE,
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MAPE, and R2), and compared with well-known algorithms
or SOTA deep-learning models, such as SVR and PSO
optimized LSTMs. The comparative study showed that the
proposed IPSO-LSTM model has the best performance
and it generalized well to different stock market indices.
Future study will involve using other heuristics, meta-
heuristics, or hybrid algorithms for feature selection and
parameter optimization. We will also explore the correlations
of different stock markets in index forecasting. Moreover,
forex, commodities, bonds, and futures are popular financial
products that attract hot money and their volatility may
have an effect on each other. Consequently, it would be
interesting to investigate whether and how they are correlated
with stock market movement or trend. We plan to develop a
novel model which has adaptive attention weights that can
be updated according to the impact of different financial
products on market volatility using some sort of attention
mechanism [32].
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