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ABSTRACT Energy-constrained sensor nodes are often deployed in remote, hilly, and hard-to-reach areas
for civilian and military purposes. In such wireless sensor networks (WSNs), an unmanned aerial vehicle
(UAV) can be used to collect data from the sensor nodes. Low-altitude UAVs can be utilized to reduce
the energy consumption of WSNs by optimizing the data collection position. In this study, we designed an
energy-efficient and fast data collection (EFDC) scheme inUAV-aidedWSNs for hilly areas with the help of a
UAV as a data mule. First, we proposed a central bias hybrid energy-efficient distributed clustering algorithm
for grouping the sensors. Then, we applied a modified tabu search algorithm to optimize the UAV position for
collecting data from a cluster. To achieve fast data collection, we developed the traveling salesman problem
with the derived data collection positions and solved it by applying a modified genetic algorithm. Based on
our simulation results, the proposed EFDC scheme outperforms the conventional ones in terms of energy
consumption, scalability, control overhead, delay, and load balancing.

INDEX TERMS Clustering, data collection, genetic algorithm, HEED, unmanned aerial vehicle, drone,
wireless sensor network.

I. INTRODUCTION
Wireless sensor networks (WSNs) are one of the most inves-
tigated research topics in the last two decades. They are
used in home and industry automation, forest monitoring,
scientific experiments, environmental observation, border
patrolling, machine and structure health monitoring, security
enhancement, plant monitoring, underwater world observa-
tion, air pollution examination, water quality monitoring,
natural disaster prevention, and landslide detection. Because
sensor nodes are mostly cheap and battery-powered, they are
highly energy-constrained [1]. Consequently, many studies
have been devoted to minimizing their energy consumption
by using various techniques such as clustering [2], efficient
routing [3], optimizing themedium access control (MAC) [4],
and optimal sink placing [5].

WSNs are often deployed in hard-to-reach areas. Data
collection from such areas can be challenging due to the
absence of any network communication center (NCC). The
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major disadvantage of NCC or any other infrastructure-based
solutions are to build and maintain the infrastructures in such
irregular and inaccessible terrains [6]. Ground robot-based
mobile sink solution can be used to collect WSN data from
such region.

The mobile sink-based solutions have triggered the inves-
tigation of the performance of unmanned aerial vehicles
(UAVs) as a data mule. UAVs can easily fly toward a guided
direction owing to their three-dimensional (3D) movement
capability [7]. Compared to ground robots, UAVs can travel
a greater distance within a shorter period of time [8]. Using
UAVs for data collection in WSNs opens a new horizon of
energy-efficient data collection from remote and inaccessible
terrains [9]. In the UAV-aided WSNs (UWSNs), interconnec-
tivity is not as important as in the conventional paradigms.
A line of sight (LOS) communication can also be obtained
by using the position optimization capability of the UAV.

Multi-rotor and fixed-wingUAVs are the two popular kinds
of UAVs. Multi-rotor UAVs usually require a lesser bending
angle for changing the moving direction compared to the
fixed-wing UAVs. This type of UAVs can also float steadily
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in the air. Thus, multi-rotor UAVs can be used to fine-tune the
data collection position from a group of sensors.

The deployment requirements of sensors do not confirm a
uniform distribution throughout the region of interest (ROI).
Therefore, sensor grouping by segmenting the geographic
location is not a good strategy. A better approach is to use
a distributed clustering technique and allow the sensor nodes
to decide the group themselves. In an infrastructure-less envi-
ronment, the UAV does not get any prior information on the
location of the CHs. In such cases, if the clustering algorithm
runs more than once, the UAV will have to discover the CH’s
location in every round. Furthermore, if a CH fails before
transmitting data to the UAV, then the data of cluster members
(CMs) and CHswill be lost. Thus, hierarchical data collection
is not a suitable option for infrastructure-less UWSNs.

The deployment of WSNs in the hilly or unreachable areas
include vital reasons like border monitoring [10], landslide
prediction [11], avalanche prediction [12], and important sci-
entific data collection. In such application scenarios, remote
monitoring is important as all of the scenarios raise a threat
against human life or national security. However, the tradi-
tional WSN data collection approach is a tough task in hilly
areas such as building, and maintaining static infrastructure is
time-consuming and needs more efforts. On the other hand,
traditional WSNs consume more energy due to relatively
long-distance transmission, which is the main reason behind
the decreased lifetime of sensor nodes. A mobile sink can
reduce the energy consumption by lessening the transmitter-
receiver distance but ground-based mobile sink is impossible
to deploy in the hilly areas [13]. A UAV-based WSN data
collection can be the solution of the given scenario. How-
ever, in the existing UAV-aided WSN research works, 3D
maneuvering and steady hovering capability are not exploited
yet. Our proposed EFDC exploits the quadcopters’ 3D move-
ment, steady hovering, and low-altitude flying capability to
enable energy-efficient data collection from WSNs in an
infrastructure-less scenario.

In this study, an energy-efficient and fast data collection
(EFDC) scheme is proposed for UWSNs deployed in hilly
terrains. Fig. 1 shows the graphical representation of the
EFDC operation, where a multi-rotor UAV is deployed to
collect WSN data from hilly terrain. The figure depicts the
direct data collection mechanism of the EFDC scheme from
the sensor nodes to the UAV. The suboptimal positions for
data collection along with the shortest trajectory of the UAV
are also shown in the figure to illustrate the main contribution
of EFDC framework.

The novelty of the proposed EFDC framework lies in the
heart of its infrastructure-less design. EFDC can operate with-
out any prior information about the WSN topology, so it does
not need the presence of any NCC. In the traditional schemes,
data is transmitted from CMs to their CH and from CHs to the
sink. In EFDC, the UAV collects the sensor’s data directly
from the nodes of a cluster. Using direct transmission from
the sensor nodes to the UAV reduces the transmission count.
As a result, the workloads and energy consumptions among

the CH and CMs are also balanced. The clustering algorithm
in EFDC also takes place only once. As a result, the exchange
of control packets reduces significantly. In EFDC, the UAV
acts as the searching agent. In such a design, the UAV changes
its position physically to examine the received signal strength
indicator (RSSI) value from the sensor nodes. The UAV
acting as a search agent is a well-known approach used for
UAV networks [14]. EFDC exploits 3D positioning capability
of the multi-rotor quadcopter and reduces the transmission
distance in a cluster by applying the tabu search mecha-
nism. Reducing the energy consumption of sensor nodes by
exploiting 3D positioning capability is also a novel idea in
our proposed EDC. Though EFDC is specially designed for
hilly/mountainous terrain, this data collection architecture
will have the same performance efficiency as in the flat and
urban terrain with the added facility of infrastructure-less
operation.

The contributions of this study can be summarized as
follows:
•We propose a center-biased hybrid energy-efficient dis-

tributed (CBHEED) clustering algorithm, in which the CHs
are selected based on the central bias of their geolocation.
The central bias of a node is calculated by forming a polygon
with the help of the monotone chain convex hull algorithm.
The proposed CBHEED is a distributed clustering algorithm,
which is especially applicable for infrastructure-less area.
The position of the elected CHs serves as the initial position
for the data collection position searching mechanism.
•We formulate an optimization problem for fine tuning the

data collection position in a cluster and propose a modified
tabu search algorithm to find the sub-optimal solution. The
optimization problem focuses on maximizing the RSSI value
among all the cluster members as well as balancing the
UAV-sensor distance in a cluster. We modify the tabu search
algorithm in order to find out the sub optimal position for
data collection within the minimum number of iterations by
searching the least number of spaces.
•Based on the derived data collection positions from the

aforementioned tabu search mechanism, we apply a modified
genetic algorithm (GA) to determine the optimized trajectory
to minimize the UAV travel time. The applied GA algorithm
ensures the avoidance of premature convergences. Finding
out the UAV trajectory enables the UAV to collect sensor data
within the minimum amount of time.
•According to our evaluation, the proposed EFDC scheme

outperforms the conventional schemes in terms of energy
consumption, scalability, control overhead, delay, and load
balancing.

The remainder of the article is organized as follows.
In Section II, the related works are reviewed and discussed.
The limitations of the existing studies and the motiva-
tions behind the research are also provided in Section II.
In Section III, the system model of the EFDC scheme is
introduced. In Section IV, we describe the working procedure
of the EFDC scheme. Then, we elaborate and discuss the
CBHEED clustering algorithm, initialization phase of the
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EFDC scheme, CH finding algorithm, modified tabu search
algorithm, and outline of the modified GA representing the
data collection phase in section IV. In Section V, the perfor-
mance of the proposed scheme is evaluated and compared
with the conventional schemes. Finally, the conclusion is
given in Section VI.

II. RELATED WORKS
Ali et al. [15] derived that an optimized constant speed
of a UAV in a fixed altitude can reduce the data drop
rate of WSN nodes. To formulate their design theoretically,
the authors used a tri-rotor UAV. However, the proposed
model is only applicable to linearly deployed wireless sen-
sor nodes with minimum width. The forward and backward
movement depiction of the UAV can only cover sensor nodes
that are inside the radio range of the UAV. Though the
UAV–CH distance in this scenario will be lower than the
CH–sink distance, the CH transmission count will remain
the same, resulting in an unbalanced network. Liu and Zhu
[16] proposed three different transmission modes, namely
waiting mode, sensor node–sink conventional transmission
mode, and sensor node–UAV transmission, to increase the
energy performance of the WSN. They utilized dynamic pro-
gramming to obtain an optimal transmission policy recursive
random search algorithm to optimize the trajectory of the
UAV. In addition, they assumed a static infrastructure while
trying to optimize the energy consumption by utilizing the
UAV. However, this data collection scheme is not suitable
for infrastructure-less scenarios whereas our proposed EFDC
is specially designed to be suitable for infrastructure-less
scenarios.

Ebrahimi et al. [17] formulated a joint optimization prob-
lem by considering node clustering and UAV trajectory opti-
mization for dense and large networks. The authors attempted
to reduce the energy consumption by using a compressive
data gathering method to aggregate the sensed data, thus
reducing the number of required transmissions. According
to their proposed solution, a forwarding tree was constructed
from the CMs to the CHs and the data were aggregated in
each level of the tree. However, by forming the tree, the
compressed data need to be retransmitted before reaching
the CH. Based on the sampling data, the performance of the
proposed system varied greatly. However, the data aggrega-
tion scheme will cause some extra energy consumption for
WSNs but, in EFDC, the data aggregation duty is given to
UAV. Zhan et al. [18] also considered a joint optimization
problem to optimize the energy consumption of a network.
The authors considered a wake-up schedule for the sen-
sor nodes and the UAV trajectory to define the joint opti-
mization problem. A block-fading channel was assumed to
design the ground–UAV communication. Though the wake-
up strategy in WSNs can save energy but this architecture
is infrastructure-dependent unlike EFDC. An interesting read
for the researchers working on optimal UAV trajectory with
multi-parameter optimization is given in [19]. A UAV tra-
jectory is proposed in [20] for WSN-based pesticide con-

trolling. This research focuses on energy depletion through
power consumption, harvesting solar power, energy storage
limitation, and various QoS parameters. However, this work
is best suited for cellular communication architectures. A sys-
tematic review on timely UAV-aided WSN research works is
summarized in [21].

Say et al. [22] proposed a new priority-based MAC pro-
tocol to reduce the number of redundant transmissions. The
priority-based frame selection process takes the mobility
characteristics of the UAV into consideration. Based on the
aforementioned MAC protocol, they also proposed a routing
protocol to minimize the routing distance between the UAV
and the sensor node. However, the fixed-wing UAV used
in the design is not suitable for accurate positioning and
generally needs a higher altitude compared to the rotary-wing
UAV. Another MAC protocol for UWSNs was proposed in
[23], considering fast and energy-efficient data gathering for
critical situations. A survey on MAC protocols for UWSNs
was proposed in [24]. However, our research goal does not
include optimizing the medium access usage.

Ho et al. [25] applied particle swarm optimization to obtain
the optimal WSN topology and UAV trajectory for reducing
energy consumption. The proposed model was compared
with a low-energy adaptive clustering hierarchy (LEACH)
protocol to evaluate its performance. Though the framework
considered a relatively flat terrain to model the radio com-
munication, the radio model used in the literature can also be
useful to design propagation models in other environments.
Different from the other proposed models, the UAV is also
utilized in this architecture to select the CH from the ground
sensor nodes.

In [26], a test-bed experiment was conducted at the Fund-
ulea National Research Institute under the Romanian project
MUWI. This data collection framework assumed that the
sensor transmits its sensed data to the nearest base sta-
tion first. The base stations were considered as the way-
point for the UAV to collect the sensed data. A heavily
infrastructure-dependent mechanism was shown, though the
architecture utilized the UAV to minimize the data collec-
tion energy consumption. You and Zhang [27] considered
affecting fading power of the propagated signal to model
the UAV–WSN communication channel. An obstacle-aware
3D trajectory model was derived for the UAV’s mobility.
The proposed model successfully maximized the least data
collection rate by calculating an effective outage probability.
In [28], the authors proposed a new K-means++ basedWSN
clustering approach. This architecture assumed uneven and
random deployment of sensor nodes in the field of interest.
Based on the remaining energy and storage capacity, the CH
was selected from the cluster with the help of fuzzy logic.

Chen et al. [9] proposed a data gathering mechanism for
UWSNs, where the target area was also divided into clusters.
The CH was determined based on the information value and
the residual power in the sensor nodes. The direct future
prediction was used to design the optimal trajectory of the
data collection scheme. Pang et al. [29] also investigated the
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FIGURE 1. Graphical representation of data collection in a UWSN.

problem of data collection from harsh terrain. Besides WSN
data collection, their architecture also considered recharging
the sensor nodes while gathering data from them.

The optimal WSN CH selection technique is observed in
many studies [30]. Some other studies investigated the opti-
mal trajectory problem for collecting WSN data [31], [32],
while some studies were performed to localize the sensor
nodes [33], [34].

Some interesting research works for the cellular network
have also been published [35]–[39], which are based on
UAV-aided communication. To enable wireless power trans-
mission and data communication at the same time, a UAV-
aided non-orthogonal multiple access solution is presented in
[35]. Besides data transmission and wireless power transfer,
the proposal also ensures data security. However, the work
tries to optimize the energy efficiency of users in the energy
harvesting point of view, which is in contrast to the decreased
transmission distance done in our proposed EFDC. A com-
prehensive review paper focused on 5G and beyond is given
in [36]. The article presents UAV-aided 5G research studies
briefly with proper recommendations. In [40], the authors
address the problem of sink deployment, where the UAVs act
as the sink. UAV deployment problem in other networking
paradigm can also be facilitated from the research. A wireless
powering system for sensor nodes and data collection with
the help of UAV is proposed in [41]. Such deployment will
elongate the lifetime of WSNs as their energy will be refilled
as per need basis, and long transmission will be avoided
with the help of UAVs. However, none of the aforementioned
researches in this paragraph focuses on the optimal placing
of a UAV as a sink node for the hilly terrains.

In [42], Trasviña-Moreno et al. did a test-bed experiment
for an ocean infrastructure monitoring system. Where the
sensors are installed inside buoys and UAV searches and
collects the data based on the previous location. However,

they did not apply any optimization process to reduce the
energy consumption of the sensor nodes. Besides, the pro-
tocol is not also suitable for a large number of nodes. In [43],
Dragana et al. proposed a surveillance system, combining
WSN and UAV. They proposed a new stochastic channel
modeling scheme for UAV-WSN communication. However,
they did not consider UAV position optimization, which is the
main contribution in our proposed EFDC. In [44], Bacco et al.
used WSN and UAV to establish a monitoring system for the
ancient buildings. However, the focus is given on 3D con-
struction of the structure, and no optimization is done from
the networking or data communication perspective. A UAV-
based WSN border surveillance system is proposed in [45],
but this architecture is also dependent on static infrastructure
and does not consider the energy issue of sensor nodes. A test-
bed of peat fire detection technique is given in [46] with the
help of aWSN and fixed-wing UAV. However, the fixed-wing
UAV is not applicable for position optimization. Besides, this
technique is heavily dependent on the BS.

Even though data collection for UWSNs is more suitable
for remote areas, the availability of infrastructure makes the
scenario incompatible. Some existing techniques assume that
the control center has prior knowledge of WSN topology.
This can be a bottleneck in terms of random deployment of
sensor nodes in harsh environments. Random deployment is
specifically used inmost of the studies, which can bematched
with the real-life unequal distribution of sensor nodes. It is
observed from the above discussion that most of the existing
architectures have prior knowledge about the WSN topology.
In our EFDC scheme, however, the UAV does not need any
prior information from the infrastructure, which is different
from the previous studies. This scenario decreases the utiliza-
tion of UAVs. Collecting data only from CHs also reduces the
utilization of the UAV while creating extra burden for CHs.
Even though some of the studies show trajectory optimization
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techniques, the altitude optimization technique is not shown
in the investigated literature. The altitude optimization tech-
nique can lead to reduction in the distance between the nodes
and the UAV, resulting in an efficient energy consumption.

The notations used in the study are summarized in Table 1.

III. SYSTEM MODEL
In this section, assumptions, communicationmodel, andUAV
mobility model are presented. The assumptions are listed
separately for the application area, WSN, UAV, and MAC
protocol. In the communication model, the descriptions of
the application area, communication phases, corresponding
jobs, and applied algorithms are mentioned. At the end of this
section, the default mobility model of the UAV is explained.

A. ASSUMPTIONS
The limitations and assumptions of the study are catego-
rized for the application area, WSN, UAV, and MAC proto-
col separately. While making the assumptions, we carefully
considered the standard assumptions in related studies and
the feasibility of implementation. The assumptions are given
below:

1) ASSUMPTIONS FOR APPLICATION AREA
Hilly/Mountainous Terrain: It is assumed that the ROI is
not flat and some natural obstacles are present in the envi-
ronment such as trees, rocks, and uneven ground. These
obstacles can cause scattering, diffraction, and reflection in
the ground-to-ground transmission such as sensor-to-sensor
communications [47]. However, air-to-ground or ground-to-
air transmissions are not affected with the obstacles [48].
In case of EFDC, the UAV is assumed to collect data from
the sensor nodes. The communication between sensors and
UAV is obstacle-free according to this assumption of the
application area. However, apart from mentioned application
area, EFDC is also operable in flat or urban area.
Absence of Static Infrastructure: It is assumed that the

WSN is deployed in a remote area, and any static infras-
tructure such as a static sink or any network communication
point is absent. For this given scenario, the sensor nodes
are unable to communicate with the NCC or outer world.
Usually, a node with consistent power supply works as a
sink node. Building such an end point will require power
supply with cable connection and regular supervision. In such
scenario, building an NCC is not an option for consideration.
In general, deploying a WSN for monitoring purpose is not a
permanent setup. Hence, building and maintaining any static
infrastructure will introduce an additional overhead. For such
scenarios, UAV is a more suitable option as an aerial mobile
data collector.

2) ASSUMPTIONS FOR WSN
Location Awareness: The sensor nodes are location aware.
They are equipped with a global positioning system (GPS).
By utilizing the GPS module, a sensor node can query about
its latitude, longitude, and altitude values [49]. The GPSmod-

TABLE 1. Notations Used in This Study.

ule is a practical assumption from the viewpoint of cost and
energy consumption. The sensor nodes are static, thus reading
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the positional information once is sufficient. This mechanism
does not cause a notable amount of sensor’s energy loss.
Static Nodes: The nodes are static. Once deployed, the sen-

sor nodes do not change their positional values anymore. This
is a common assumption practiced in the literatures. This
assumption is also the major differentiating criteria between
mobile ad hoc networks andwireless sensor networks. Node’s
mobility is also related with location reading criteria. With
introducing mobility, the sensor nodes will have to take read-
ing after regular time interval.
Homogeneous Nodes: The sensor nodes assumed in the

experiment are homogeneous, which means that they have
equal computational power and energy and the same radio
communication module with the same transmission range.
This assumption is also one of the popular assumptions prac-
ticed in [50]. However, to enable EFDC for heterogenous
nodes, only the CH selection algorithm should be adapted.
However, that is another research issue.
Node Characterization: The deployed sensor nodes can

be categorized as CMs or CHs. The role of a sensor node
is selected through the clustering algorithm, and no prede-
termined role is assumed. To design EFDC, we first run a
clustering algorithm named CBHEED. There are two goals
that the algorithm serves. One is to group the nodes and form
the underlying WSN topology, and another is to assign the
role of CH or CM to the sensors.
Node Deployment: The nodes are deployed in a completely

random manner over the ROI. This assumption is a regu-
lar assumption. The performance with planned deployment
is better than that with random deployment. As a result,
an architecture tested with random deployment will result
better than that with other planned deployment [51].
Energy Constraints: Sensors are battery powered and the

batteries are not rechargeable. Available nodes in the market
are mostly battery-powered. Thus, this is a valid assumption.
However, there are studies [52] focused on energy harvesting
based on solar power or other energy sources. Nevertheless,
energy harvesting inWSNs is a current research issue and the
cost will also increase with the added facility.
Adaptive Transmission Power Control: The sensor nodes

have the ability to control the transmission power. Transmis-
sion power is re-tuned after the data collection position is
obtained [53]. Based on this assumption, the sensor nodes
will transmit with the required power only. This will reduce
the transmission power cost and elongate the lifetime of the
WSN. The sensor nodes need to re-tune the transmission
power for a single time only when the data collection position
is determined.

3) ASSUMPTIONS FOR UAV
Non-Constrained Energy: The UAV has enough energy to
complete a single discovery or data collection round. Once
the UAV comes back to the launching station, it can be
recharged for the next round of operation [19]. This is a
valid assumption as the capacity of the UAV energy source

(battery) can be changed based on the mission [54]. There
are also researches going on for solar-powered UAVs [55].
UAVType:Weutilized a quadcopter instead of a fixed-wing

UAV. A quadcopter can easily change its position with the
least amount of bending angle and can stay in a stationary
position for an arbitrary amount of time [56], [57].
Buffer Capacity of UAV: It is assumed that the UAV is

equipped with sufficient memory that can receive and carry
all the sensed data from the sensor; thus, buffer overflow is not
possible for the UAV. The UAV stores the data for a limited
time only. When the UAV goes back to the control center, it
offloads all the data and free up its memory. Thus, memory
overflow in the later data collection round is not possible,
either.
Collision and Obstacle Free Movement: It is assumed that

the UAV does not face any obstacle on its way of movement.
UAVs are equipped with multiple sensors, which ensures
avoidance of any obstacle on its preplanned path [57].
UAV–WSN COMMUNICATION model: The communica-

tion model between the WSN and UAV is considered as
LOS communication. EFDC assumes a low altitude UAV
for data communication with densely deployed sensor nodes.
The sensor nodes are further group into cluster and the UAV
fine-tunes the data collection positions. As a result, even in
case of the presence of any natural obstacle, the UAV will
fin-tune the data collection position for higher RSSI, and a
LOS communication channel will be established.
RSSI Calculation Ability: The UAV can calculate the RSSI

power of the signal received from the ground sensor nodes.
It’s a trivial assumption for awireless communication enabled
devices. Available sensor nodes are also equipped with this
facility. Thus, the RSSI calculation ability for the UAV is a
legitimate assumption [58].
Least Flight Height: We assumed that the UAV could

detect the least-flying height through an embedded sensor
such as a sonar sensor or LDR sensor. This assumption is also
related to the obstacle-free movement capability of the UAV.
The ground is just another obstacle, where the UAV cannot
go beyond that [57]. While the tabu search algorithm works,
the LAUAV is determined by this sensing ability.

4) MAC PROTOCOL
The EFDC scheme uses carrier-sense multiple access
(CSMA) for hello packet transmissions. For data packet
transmission, it uses a time-division multiple access (TDMA)
protocol. We kept the MAC operation similar to the MAC
protocol proposed for UWSNs in [23]; however, different
from that in [23], we did not consider any priority for the
nodes.

B. COMMUNICATION MODEL
Sensor nodes are deployed randomly throughout the ROI.
The assumed ROI is a remote region, in which no infras-
tructure is available for the sensor nodes to transmit their
data directly to a sink node or to any NCC. EFDC will
be equally efficient even in the urban area with the added
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facility of infrastructure-less design. Each sensor node in set
N = 1, 2, 3, . . . , |N |} has coordinatesK=k1, k2, k3, . . . , k|N |,
where, K|N | ∈ R3×1. However, for the flat terrain, two-
dimensional consideration is enough as the sensor nodes
do not have a considerable amount of height. On the other
hand, the sensor nodes deployed for monitoring structures
are readily suited with our present design without any kind of
modification as the sensors deployed for such purpose have
a significant amount of differences in the height parameter.
The EFDC communication mechanism is divided into three
phases: initialization, discovery, and data collection.

In the initialization phase, the CBHEED clustering algo-
rithm forms clusters and elects CHs. The positions of the
CHs are used as initial positions for the tabu search algo-
rithm for data collection. Different from the conventional
approaches, neither NCC nor UAV has any prior knowl-
edge about the CHs’ positions. The CHs’ positions work as
the pre-optimized position for UAV’s data collection. As a
result, the runtime of the tabu search algorithm significantly
decreases. In EFDC, the extra workload of CHs is reduced by
sending the sensed data directly to UAV. On the other hand, in
the conventional UWSN data collection scenarios, the UAV
collects data from CHs in WSNs [28], [38]–[41], [45]–[47],
[55]. Because of the direct communication paradigm, the
energy consumption in EFDC is well balanced and the re-
election of CHs are redundant. A one-time clustering tech-
nique also reduces the number of exchanged control packets.

In the discovery phase, the UAV determines the position of
CHs and obtains sub-optimal data collection positions with
the help of the tabu search algorithm. At first, the UAV locates
the CHs with the help of hello packets. The UAV follows the
S-path mobility model [59] while discovering the positions
of CHs. It keeps track of its distance with all discovered CH
positions. When a UAV reaches the least distance from its
path to a CH location, it visits the CH’s position physically.
The modified S-path mobility model is described in detail
in the following subsection. After that, the UAV runs our
proposed modified tabu search algorithm to find out a sub-
optimal position to collect data from the cluster. The opti-
mization is done to reduce the energy consumption and to
ensure a balanced energy consumption of the sensors in the
cluster.

In the data collection phase, the UAV follows the derived
trajectory and collects data from the clusters. At first, theUAV
forms a traveling salesman problem (TSP) with the sub-
optimal data collection positions obtained with the tabu
search. The TSP is solved with the help of a modified GA
[60]. This modified version of GA ensures the avoidance
of pre-mature convergence and a better run-time complexity.
Ultimately, the shortest trajectory ensures fast data collection,
which is the second objective of the EFDC procedure.

C. UAV MOBILITY MODEL
This subsection describes the parameter of the S-path mobil-
ity model used in this study. In the discovery phase of the
EFDC scheme and in other cases where the UAV does not

know the CHs’ locations, the UAV follows the S-path mobil-
ity model. In the proposed scheme, the UAV starts searching
for the CHs from the initial position of the ROI:

UAV start =

 0
0

DAUAV

 , (1)

where the UAV’s initial position is denoted as UAV start and
the default altitude of the UAV is DAUAV . The final or exit-
ing position of the UAV after completing the search can be
denoted as:

UAV final =

 RoI x
RoI y
DAUAV

 , (2)

where UAV final is the final position, and RoI x and RoI y are
the maximum x-axis and y-axis values of the ROI, respec-
tively. When the UAV reaches the boundary of the x-axis
from the initial points, the UAV jumps an SY amount of space
according to the y-axis. The value of SY can be calculated as

SY =

{
SYSensors ∗ 2, SYSensors ≤ SYUAV
SYUAV ∗ 2, SYUAV < SYSensors

, (3)

where SYSensors and SYUAV are the y-axis displacements based
on the transmission range of the sensor nodes and the UAV,
respectively. SYSensors can be derived based on the following
formula:

SYSensors =
2
√
ξ2SENr − DA

2
UAV , (4)

where ξSENr is the transmission radius of the sensor. The value
of SYUAV can be calculated by

SYUAV =
2
√
ξ2UAVr − DA

2
UAV , (5)

where ξUAVr is the transmission radius of the UAV. The cal-
culation of SY is illustrated in Fig. 2.

The hello packet broadcast interval is set in away that every
sensor will be inside the transmission range of the UAV for
at least a single transmission. To accomplish this task, we set
the broadcast time as follows:

bprev < bnext < (bprev + (
UAV

Sy/2
R

DVUAV
)), (6)

where bprev is the timewhen the last beaconwas sent and bnext
denotes the time when the next beacon will be sent. UAV

SY/2
R

is the effective ground transmission range after half of the SY
distance according to the y-axis, and DVUAV is the default

speed of the UAV. UAV
SY/2
R

DVUAV
indicates the time duration that

a sensor will be inside the transmission range of the UAV,
where the sensor node’s distance is half of Sy from the parallel
line of the S-path mobility. The distance Sy

2 is the furthest
distance a sensor node can be, from the predetermined UAV’s
path. To ensure that all the sensor nodes will receive the
beacon packet from the UAV, the inequality of (6) must be
satisfied.
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FIGURE 2. Calculation of S-path y-axis difference based on (a) sensor
transmission range and (b) UAV transmission range.

TABLE 2. Working Procedure of EFDC Scheme.

IV. ENERGY-EFFICIENT AND FAST DATA COLLECTION
In this section, the EFDC scheme is presented according to
the phases presented in Table 2. The CBHEED algorithm is
shown as a part of the initialization phase. In the discovery
phase, following the S-path mobility model, the UAV discov-
ers the CH positions and obtains the sub-optimal position for
data collection from each cluster. The sub-optimal positions
are obtained with the help of the modified tabu search algo-
rithm. As a part of the data collection phase, the outline of the
GA is given. The modified GA is used to obtain the shortest
trajectory among the data collection positions.

A. CLUSTERING
The clustering algorithm is used in the EFDC scheme to
group the underlying WSN in a distributed manner. The CH
positions are used as the initial positions for the suboptimal
position search algorithm for data collection. As there is no
infrastructure available to assist the sensor nodes to form the
cluster, the clustering technique has to be fully distributed for
the application scenario. The HEED [61] algorithm is a well-
known algorithm owing to its energy-efficient CH selection
technique. We modified the original HEED algorithm and
proposed the CBHEED algorithm, which fulfills the cluster-
ing need for our scenario.

In the EFDC scheme, the clustering process occurs only
once. The UAV also searches the suboptimal positions for
data collection only once based on the CH position. Hence,

it is important for the clustering algorithm to determine the
node whose geographical position is superior compared to
other neighboring nodes. A nodewith a superior geographical
position means that its cumulative distance and the fluctua-
tions among the distances with the nodes in a cluster are also
minimal. Similar to the original HEED clustering algorithm,
the CBHEED algorithm also forms the cluster in three steps.
Algorithm 1 presents the outline of the proposed CBHEED
algorithm. The working procedure of Algorithm 1 is elabo-
rated in the following subsections.

1) INITIALIZATION
In the initialization step, every node formulates its neighbor-
ing table by broadcasting an initial hello message. Along with
the node’s ID, this hellomessage also contains the node’s geo-
graphical position. However, the RSSI level plays the most
important role here for calculating the neighboring list. RSSI
value must be within the threshold of the sensitivity level of a
particular node. To form the neighbor list, the geo-location of
a node is not considered. For example, in [62], it is mentioned
that the sensitivity level of MICAz node is -94 dBm, which
uses CC2420 RF transceivers. With the help of the RSSI
value obtained from the hello messages, the receiving nodes
formulate the Fngr list, which contains the neighboring node
IDs. Then, the sensor nodes calculate their central bias based
on the monotone chain convex hull algorithm and the Paul
Bourke’s equation for centroid calculation [63].

The outline of the monotone convex hull algorithm is given
as Algorithm 2. It should be mentioned that for calculating
the polygon and the centroid, we took only the x and y coor-
dinates of the neighbors. According to CBHEED, the nodes’
RSSI value should be more than a minimum threshold value
in order to be a neighbor. As a result, the nodes with lower
RSSI value will be automatically excluded in the neighboring
list formation process and do not participate in the subsequent
calculation. Even though the hilly areas have differences
in the z axis value, the UAV optimizes the data collection
position in 3D space (Algorithm 4). Considering 3D space
might be necessary if the CH is responsible for collecting
data. In EFDC, however, the responsibility for data collection
is not given to the CH but to the UAV. So, considering
the 3D space while clustering is unnecessary in EFDC. The
monotone chain convex hull [64], [65] algorithm is used to
form the polygon by considering the neighboring nodes and
it returns a sorted array of points of the polygon. The points
are then fed into Paul Bourke’s equation for calculating the
exact centroid position of the polygon.

To determine the centroid, the area should be calculated
first based on the derived coordinates from the convex hull
algorithm. The area can be calculated using with the follow-
ing equation:

A =
1
2

∑Npoly−1

i=0
(XiYi+1 − Xi+1Yi) , (7)

where A denotes the area of the polygon, X is the sorted
x-axis list of the sensor node’s geolocation on the edge of
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the polygon, Y contains the sorted y-axis list of the sensor
node’s geolocation on the edge of the polygon, and Npoly is
the number of nodes in the polygon. The x and y coordinates
of the centroid can be calculated based on the following,
respectively.

Centerx =
1
6A

Npoly−1∑
i=0

(Xi + Xi+1) (XiYi+1 − Xi+1Yi), (8)

and

Centery =
1
6A

Npoly−1∑
i=0

(Yi + Yi+1) (XiYi+1 − Xi+1Yi), (9)

where Centerx and Centery represent the x and y coordinates
of the polygon center. The probability of a node to become a
CH can be assigned using the following equation:

CHprob = max
(
(1−

δa,b

ρ
× ω), τmin

)
, (10)

where CHprob is the probability of a node to become a
CH, ρ indicates the transmission range of a node, ω is a
normalizing factor on which the number of iterations of the
clustering algorithm is dependent, and τmin is the minimum
value assigned in the nodes. When the central bias value
becomes lower than a certain threshold value, τmin is assigned
as the CHprob of a node. δa,b indicates the Euclidian dis-
tance between geographical positions a and b. Here, positions
a means the position of the examining node, where a =
{ax , ay} and b corresponds to the polygon’s center, where
b = {bx, by}.δa,b is calculated using the Euclidian distance
formula as indicated below:

δa,b =

√
(ax − bx)2 +

(
ay − by

)2
. (11)

The cost of a node is determined by the number of adjacent
nodes. Similar to the original HEED algorithm, the node
degree and cumulative distance of the neighbors are taken
into consideration for calculating the cost. Fig. 3 illustrates
an example of a centroid calculation after applying algorithm
2 and (11). Fig. 3(a) displays a greater distance, whereas
Fig. 3(b) shows a lesser and better example of δa,b.
The residual energy is not taken into consideration because

the deployed nodes are homogeneous. Initially, the energy
level inside all the sensors is the same. In the EFDC scheme,
clustering is done only once. In contrast to the conventional
clustering, the CH does not perform any extra work in the
proposed scheme. The energy consumption is the same for
all nodes. Depending on the CHprob value, the nodes declare
themselves as the tentative CH denoted as CH tentative and
initially, all the sensor’s CHfinal flags, that is, bool_CHfinal
are set to false.

2) ITERATION
The second step of the clustering algorithm is called the
iteration step as given in Algorithm 1. In this step, the nodes
compare the cost of the neighboring nodes with their own

FIGURE 3. Bias examples: (a) bad centroid bias and (b) good centroid
bias.

cost. The least cost node is selected as the temporary CH,
expressed as CH selected from the TCH list. The sensor selects
its CH by receiving a final CH message from a CHfinal or the
sensor claims itself as a CHfinal by its own. If a node finds
itself having the least cost and the value of CHprob is also
1, then the node sets its bool_CHfinal value to true and
broadcasts a CH final message to all neighbors. If the CHprob
is less than 1, then the node claims itself as theCH tentative and
broadcasts a tentative CH hello message to its neighbors.

When the TCH list of a node is empty and CHprob value of
the node is 1 then the CHfinal flag of a sensor becomes true
and the node broadcasts a CH final message. The TCH gets
updated every time a sensor node receives a new declaration
of a node as a CH tentative or CHfinal . The operation can be
expressed by the following equation:

TCH = {CH sin step(i− 1) ∪ CHs in step(i)} . (12)

Apart from the above cases, a node might not have any
CH in its vicinity and the CHprob value might not be 1.
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FIGURE 4. Illustration of clustering results in an example WSN: (a) 3D
view of the clustering outcome and (b) top view of the clustering
algorithm in 2D.

In such cases, the node declares itself as CH tentative based on
a random value and broadcasts its status. In every iteration,
the nodes increase the CHprob value by multiplying with
two. If the CHprob value becomes greater than 1, then the
corresponding node exits the iteration phase. In the iteration
phase, either the sensor node selects a CH or it declares itself
as the CH and quits the iteration round.

3) FINALIZATION
In the finalization step, the nodes check if their bool_CHfinal
is true or not. If it is not, then they find the least cost CH,
namely, CH selected from the TCH list and send a cluster join
request to the least cost CH. Otherwise, the nodes broad-
cast hello packets by setting their CH status to CH tentative.
Upon receiving the cluster join request, the CHfinal adds the

Algorithm 1 CBHEED

Input: {KFngr |K
Fngr
1 ,K

Fngr
2 ,K

Fngr
3 , . . . , K

Fngr
n contains the

geolocations of sensor node’s neighbors}
Output:CHfinal
Initialization
1. Fngr ← {Neighbor’s list based on RSSI value}
2. Broadcast cost to all nodes ∈ Fngr
3. Forms polygon using algorithm 2 (Monotone chain convex
hull algorithm)
4. Calculates the area of the polygon (A) using (7)
5. Calculates Centerx and Centery axis of the polygon using
(8) and (9)
6. Calculates difference between node’s geo-position and
polygon centroid position (δa,b) using (11)
7.Assigns CHprob value using (10)
8. bool_CHfina← False
Iteration
1.while (True)
2. if (empty (TCH )isnotequaltoTrue)
3. CH selected ← min_cost(TCH )
4. if (CH selected .ID is equal to NID)
5. if (CHprob is equal to 1)
6. broadcast_ch_info(NID, CH status[[space]]←

CHfinal, cost)
7. bool_CHfinal[[space]]← True
8. else
9. broadcast_ch_info(NID, CH status[[space]]←

[[space]]CH tentative, cost)
10. end if
11. end if
12. else if (CHprob is equal to 1)
13. broadcast_ch_info(NID,CH status← CHfinal , cost)
14. bool_CHfinal[[space]]← True
15. else if (Rand(0,1) is less than or equal to CHprob)
16. broadcast_ch_info(NID,CH status ←

[[space]]CH tentative, cost)
17. end if
18. CHprev← CHprob
19. CHprob← min(CHprob×2, 1)
20. if (CHprev is equal to 1)
21. break
22. end if
23.end while
Finalization
1. if (bool_CHfinal is equal to False)
2. if (contain_Final_CH(TCH ) is equal to True)
3. CH selected ← min_cost(TCH )
4. cluster_join(CH selected .ID, NID)
5. else
6. broadcast_ch_info(NID, CH status← [[space]]

CH tentative, cost)
7. end if
8.else
9. broadcast_ch_info(NID, CH status← [[space]]

CHfinal , cost)
10.end if
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requesting node information in the CM table. If the node
itself is a CHfinal , the node sends a CH final hello message
to further inform the neighboring nodes about the final CH
status. Fig. 4 displays a graphical representation of the out-
come of the clustering algorithm. In the figure, the CHs and
corresponding CM connections are shown.

4) POLYGON FORMULATION
In the EFDC scheme, the monotone chain convex hull algo-
rithm proposed in [66] is used to form the polygon based on
the neighboring nodes of an examining node. The algorithm
extends the Graham scan [65] by sorting the selected data
points. The algorithm is named as monotone chain because
the algorithm computes the lower and upper hulls of a mono-
tone chain of points. The pseudocode is given as Algorithm 2.

The algorithm first sorts the sensor nodes based on the
geolocation values of their neighboring nodes.KFngr contains
the values of the geolocations of the neighboring nodes.
Two lists, namely, Ulist and Llist , contain the points of the
upper and lower hulls. For computing Llist , a subset ς of the
sorted KFngr is taken with at least two nodes. All members
of KFngr are iterated, and positions with the same directions
are added. The added location first gets deleted and the next
node’s location gets inserted. Constructing Ulist is achieved
in the same manner as for Llist . A concatenation operation is
done on Ulist and Llist to produce the resulting K

Fngr
hull , which

contains the geolocation of the formed polygon.

5) RUNTIME COMPLEXITY OF THE CLUSTERING PROCESS
As Algorithm 2 is a subroutine of Algorithm 1 (CBHEED),
the runtime complexity of the CBHEED algorithm depends
on both of the algorithms. The runtime complexity for both
of the algorithms are discussed as below:

a: RUNTIME COMPLEXITY FOR MONOTONE CHAIN CONVEX
HULL ALGORITHM (ALGORITHM 2)
To calculate the central bias, we used the monotone chain
convex hull algorithm. This algorithm needs to sort the
coordinates of the sensors’ geolocations, which is the most
expensive process in terms of runtime complexity. By imple-
menting the radix sort, the time complexity can be reduced
to O(γ n), where γ is the bit count of the largest number and
n is the number of elements. For generating Llist and Ulist ,
the algorithm takes O(n) time. The function remove() takes
O(1) time and concat() needsO(n) time to finish. In summary,
the time complexity of Algorithm 2 is O(n).

b: RUNTIME COMPLEXITY FOR CBHEED ALGORITHM
(ALGORITHM 1)
The runtime of the CBHEED algorithm is similar to that of
the original HEED algorithm [61] except for the changes
due to the first parameter selection (that is, the central bias
calculation). The central bias calculation is used to assign
the CHprob value of a sensor node. In addition to the cost

Algorithm 2Monotone Chain Convex Hull Algorithm

Input: {KFngr |K
Fngr
1 ,K

Fngr
2 ,K

Fngr
3 , . . . ,K

Fngr
n contains the

geolocations of sensor node’s neighbors}
Output: {K

Fngr
hull |K

Fngr
hull1

,K
Fngr
hull2

,K
Fngr
hull3

, . . . , K
Fngr
hulln contains the

geolocations of sensor nodes, which took part in forming the
convex hull}
1.sort (list KFngr according to the x-axis, in case of a tie using
the y-axis)
// the Ulist and Llist will hold the upper and lower hulls
accordingly
2. Ulist ← {}
3. Llist ← {}
4.For i← 1 to length (KFngr )
5. while (ς[[space]] ⊂ [[space]]Llist , where n(ς) is ≥ 2

and
KFngr [i] does not make any counterclockwise turn with
the sequence of the last 2 points of Llist )

6. remove(Llist [last element])
7. append(Llist [KFngr [i]])
8. end while
9.end for
10.for i = 1 to length (KFngr )
11. while (ϑ ⊂ Ulist , where n(ϑ) ≥ 2

and
KFngr [i] does not make any counterclockwise turn
with the sequence of the last 2 points of Ulist )

12. remove(Ulist [last element])
13. append(Ulist [KFngr [i]])
14. end while
15.end for
16.remove(Ulist [last_element])
17.remove(Llist [last_element])
18. K

Fngr
hull = concat(Llist ,Ulist )

of finding CHprob, where the convex hull algorithm works,
the remaining part of the initialization step takes O(n) time.

In the worst case, a node will have CHprob of τmin. How-
ever, in every iteration, the CHprob is doubled. The maximum
number of iterations can be calculated using

2Niter−1 × τmin ≥ 1 (13)

and

Niter ≤
⌈
log2

1
τmin

⌉
+ 1, (14)

where Niter is the number of iterations in the iteration step of
the clustering algorithm and τmin is the minimum probability
of being a CH. Thus, it is evident that the number of iteratios
is constant and Niter ≈ O(1). With the maximum number of n
CHs, the runtime would beO (1)×runtimeofNiter . As Niter is
constant, the runtime of an iteration step is also O (n). Inside
the iteration step, the other computations take only constant
time.
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In the finalization step, the time complexity is dependent
on the number of final CHs found by the nodes. The clus-
ter_join() function completes its operation within O(1) time.
After the aforementioned analysis, it can be concluded that

the complexity of the entire clustering technique is O(n).

B. DISCOVERY OF DATA COLLECTION POSITION
In the EFDC scheme, the first round of the UAV is called the
discovery phase. This phase has two main goals:

1. discovering the CH locations and
2. finding the suboptimal data collection positions.
In discovering the CH locations, the UAV follows the S-

path mobility model and locates the CH locations. In the data
collection position search algorithm, a suboptimal position
is obtained for every cluster by the proposed modified tabu
search algorithm.

1) DISCOVERING THE CH LOCATIONS
For the discovery phase, we assumed that the UAV follows
an S-path using (1) and (2) as its initial and final positions,
respectively. The working procedure of this phase is given
as Algorithm 3. The list CHlocs holds all the discovered
CH geolocations. The UAV broadcasts a CH finding beacon
message to get a reply from the sensor nodes about their
CH’s position after every beaconing interval. In reply to the
hello message, the sensor nodes send their corresponding CH
positions back to the UAV. The reply message from the sensor
nodes includes the CH’s ID and geolocation. The UAV then
adds the corresponding information to its buffer memory as
discovered CHs.

Meanwhile, the UAV keeps searching for the minimal
distance for a specific CH, based on the track of the mobility
model. With the help of min_distance_to_a_CH() function,
the UAV searches the relative distance with the CHs. After
reaching a specific position where the distance of a corre-
sponding CH is minimal, the UAV flies into the position
that saves the UAV flight time. The UAV requests for the
cluster information using a request cluster information hello
message. Upon receiving the packet, the sensors reply the
cluster information. This reply message contains the CMs’
IDs and their geolocations. The UAV then finds the subopti-
mal data collection positions. The first parameter is the cluster
information and the second parameter is the position of the
corresponding CH. After finding the data collection position
the UAV goes back to its previous position on the predefined
S-path. The beaconing time interval is given in the description
of S-path mobility model under section III-C. The pause time
is set to according to (6).
Runtime complexity: The runtime complexity of Algo-

rithm 3 depends on that of Algorithm 4 as Algorithm 4 is
invoked inside Algorithm 3. Algorithm 4 runs at the pre-
defined number of iterations denoted as iternum. Except for
calling Algorithm 4, all other components such as the append
functions, value assigning task, UAV positioning task, net-
working task, and decisioning task have the runtime of O(1).
However, the outer loop keeps on running based on a contin-

Algorithm 3 Discovering the CH Locations
Output: {O1,O2,O3, . . . ,O|C| contains the suboptimal data
gathering positions}
Initialization:
1. CHlocs,O←{}
Iteration:
2.while (True):
3. CHtempPos←
4. broadcast_CH_search_message()
5. if (receive (CH info))
6. CHx ← discovered cluster head x-axis value
7. CHy← discovered cluster head y-axis value
8. CHz← discovered cluster head z-axis value
9. CHtempPos← {CHx ,CHy,CHz}
10. end if
11. append(CHlocs,CHtempPos)
12. if (min_distance_to_a_CH())
13. UAV_acquires_CH_position ()
14. UAV_requests cluster_member_information ()
15. CM info← UAV_receives_cluster_member_

information ()
16. Osingle = ALGORITHM 4 (CM info, isol)
17. append(O,Osingle)
18. UAV_acquires_previous_position();
19. end if
20. pause(); // following (6)
21.end while

uous interval. Thus, the runtime complexity of Algorithm 3 is
O(n) and that of Algorithm 4 is constant.

2) SUBOPTIMAL POSITION SEARCHING ALGORITHM FOR
DATA COLLECTION
To improve the quality of data collection position, we applied
a modified tabu search algorithm, which returns a moderate
solution with a smaller number of iterations. To apply this
algorithm in our scenario, a selectionmechanism for neighbor
positions is necessary.

a: NEIGHBOR SELECTION MECHANISM
To select the neighboring positions for the UAV in 3D space,
the UAV calculates the range of axis based on the upper and
lower limits of the cluster boundary according to the sensor
nodes’ geolocations.CmaxXCmaxY

DAUAV

−
CminXCminY
LAUAV

 =
CrangeXCrangeY
CrangeZ

 (15)

where CrangeX ,CrangeY , and CrangeZ are the corresponding
ranges of the x-, y-, and z-axis;CmaxX andCmaxY are the maxi-
mum values of the x-axis and y-axis of a cluster, respectively;
DAUAV is the default altitude of the UAV;CminX andCminY are
the minimum x- and y-axis values of a cluster, respectively;
and LAUAV indicates the least possible altitude of the UAV.
The transition step is calculated by taking a fraction of the
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ranges. The steps for the corresponding axis are calculated
based on the following equations:CrangeXCrangeY

CrangeZ

�
0x0y
0z

 =
StepXStepY
StepZ

 (16)

where 0x , 0y, and 0z indicate the coefficient percentages
of the range that should be taken as the step for the cor-
responding axis. The number of iterations depends on the
values of 0x , 0y, and 0z. It can be observed that, with larger
values of 0, the UAV will require a lesser number of steps,
but will produce relatively bad results. To keep a reason-
able iteration number in finding a better position, we used
0x , 0y, and 0z = 10% of the entire range. Finding the
optimal values of 0x , 0y, and0z is another research issue,
which is out of the scope of this present work.

The next position for iteration is calculated by adding
and subtracting the step sizes calculated in (17) and (18)
corresponding to their axes. By adding and subtracting the
fractional value, the UAV will be able to explore the axes
for both positive and negative direction. All possible com-
binations of the axes give 27 positions in total. However,
in (19), we have constituted the exploring positions for the
UAV, where the number of the positions are 6 in total. If we
observe carefully, it can be seen that the other positions in the
27 positions (excluding the 6 position we are considering) are
simply compound positions, which can be composed of the
6 simple positions. For example, we assume that the present
location of the UAV is (UAVX ,UAVy,UAVz) and the best solu-
tion is hidden in a compound space (UAVX + Stepx ,UAVy −
Stepy,UAVz). According to our approach, now the UAV may
advance first towards the x axis and the new position will be
(UAVX + Stepx ,UAVy,UAVz). Then, from the new position,
the UAVmay go to the negative direction of y axis, where the
coordinate with respect to the first position of the UAV will
be (UAVX + Stepx ,UAVy − Stepy,UAVz), which is the same
as that of the compound position containing the best result as
we assumed before. Besides, the number of searching spaces
will also be limited. In the meantime, Algorithm 4 will also
prevent the UAV to search in a repeated position.UAV x

UAV y
UAV z

+
StepXStepY
StepZ

 =
UAV h

x
UAV h

y
UAV h

z

 , (17)

where UAV h
x ,UAV

h
y, and UAV

h
z are the three possible UAV

searching positions from the previous positionsUAV x ,UAV y,
and UAV z. The other three possible positions can be derived
by the following equation:UAV x

UAV y
UAV z

−
StepXStepY
StepZ

 =
UAV l

x
UAV l

y
UAV l

z

 , (18)

where UAV l
x ,UAV

l
y, and UAV

l
z are the other three possible

searching spaces for the UAV. All possible searching posi-
tions from a previous position matrix are obtained by con-
catenating the above two matrices, which can be expressed

as

concat

UAV h
x

UAV h
y

UAV h
z

 ·
UAV l

x
UAV l

y
UAV l

z

 =
UAV h

x UAV
l
x

UAV h
y UAV

l
y

UAV h
z UAV

l
z

 . (19)
Algorithm 4 utilizes the matrix derived from (19). By fol-

lowing a greedy process, the UAV selects the best position
based on the evaluation of the objective function. We cleverly
proposed the testing positions by keeping two objectives in
mind. The first objective is to reduce the number of search
spaces and the second is to include the best state from all
possible states.

b: PROBLEM FORMULATION FOR FINDING SUB-OPTIMAL
DATA COLLECTION POSITION
We formed the objective function based on the RSSI values
of the sensors from the UAV. The RSSI value has been used
as one of the key parameters in many studies [60], [61],
[62]. The UAV changes its position physically and detects the
RSSI values of the sensors. We considered the log-distance
propagation model [70], which is an extension of the Friis
free space model [71]. The simplest equation for calculating
the RSSI value can be expressed as follows [72]:

Pr = Pt ∗
(
1
δ

)η
, (20)

where Pr is the power received, Pt is power transmitted from
the sender, δ denotes the distance, and η is the path loss
exponent. The value of η differs from 1.6 to 6 [73]. In [74],
the authors have done a test-bed experiment and found that,
in near-ground communication, the value of η differs from
2.45 to 3.40 in an outdoor environment with obstacles. The
authors in [74] used the CC2420 transceiver to conduct the
experiment. In our case, however, we can safely assume that
the value of η is 2 for UAV-to-sensor communication as
the probability of LOS communication between UAV and
sensor nodes are high. For sensor-to-sensor communication,
the value of η is 2.45-3.40 for, as obtained in the experiment.
In practice, the UAVwill sense the RSSI value and it will exe-
cute Algorithm 4 based on the value. By taking the logarithm
of both sides, we obtain [72]

10 logPr = 10 logPt − 10η log δ. (21)

If we express Pr in dB as RSSI and 10η log δ as the path loss,
the equation can be rewritten as [75]

RSSI = Pt − Ploss (δ) indBm, (22)

where Ploss denotes the path loss expressed in dBm. The log-
distance path loss can be described as [70]

Ploss (δ) = Ploss (δo)+ 10η log
(
δ

δo

)
, (23)

where Ploss (δ) indicates the path loss at distance δ, and
Ploss (δo) is the path loss at a reference distance δo. Replacing
the value of Ploss (δ), we can rewrite (22) into

RSSI = Pt −
(
Ploss (δo)+ 10η log

(
δ

δo

))
. (24)
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Usually, δo denotes one unit of distance. By updating the
value of δo in (24), the following equation can be obtained:

RSSI = Pt − Ploss (δo)− 10η log (δ) . (25)

The power perceived by a receiver from a reference dis-
tance can be expressed by

A = Pt − Ploss (δo) , (26)

where A denotes the perceived power at a reference distance
δo. Hence, the RSSI equation can be rewritten as

RSSI = A− 10η log (δ) . (27)

If the distance between the transmitter and the receiver
increases, Ploss (δ) increases and the RSSI value decreases.
RSSI is a function of the position constructed by the 3D
position of the UAV. According to the energy model used
in [76], the energy consumption of the sensor nodes for
data transmission depends on the distance. Therefore, the
objective function of the UAV searching procedure can be
written in the following format:

f (x, y, z) = max(
1

RSSISI

|Cn|∑
i=1

RSSI i + (1−
σE

σEI
)), (28)

where σE expresses the standard deviation of the energy
consumption of the nodes in a cluster and |Cn| denotes the
number of sensor nodes in a cluster. RSSISI and σEI means
the sum of RSSI values and the value of standard deviation
of energy consumption, respectively, in the initial position of
the searching mechanism in a cluster.

The constraints of (28) are as follows

RSSI i ≤ γRSSI , (29)

CminX ≤ UAVx≤ CmaxX , (30)

CminY ≤ UAVy≤ CmaxY , (31)

and

LAUAV ≤ zUAV≤ DAUAV . (32)

Constraint (29) states that for a single node, the RSSI value
must not be less than the threshold limit γRSSI . This constraint
also ensures that the value σE must not go higher than σEI .
The γRSSI can be expressed by the following equation:

γRSSI = min
(
RSSICninit

)
, (33)

where RSSICninit is the list of initial RSSI values in cluster Cn.
Constraint (30) states that the UAV cannot select a position
with UAV x , which is out of the cluster’s x-axis boundary
of CminX and CmaxX . Constraint (31) indicates that the y-
axis value UAV y must be inside the boundary expressed by
CminY and CmaxY , and (32) requires that the zUAV value must
be within LAUAV and DAUAV . LAUAV is the least possible
altitude that a UAV can fly, which can be achieved based on
internal height sensing capability.

The objective function for finding the suboptimal position
for data collection is divided into two parts. The first portion

of the function is formulated to find a place where the value
of RSSI is the maximum in a cluster. The second part of the
objective function states that the position should not only
increase the cumulative RSSI value but also minimize the
standard deviation σE of the energy consumption for all nodes
in a cluster. We assume that the UAV can measure the RSSI
value based on (27), and it can also estimate the energy
consumption of the sensor nodes in a cluster. Maximizing the
RSSI will reduce the energy consumption in a cluster, and
minimizing σE will result in a more balanced energy con-
sumption of the sensor nodes. RSSI values can be calculated
as follows:∑|Cn|

i=1
RSSI i =

∑|Cn|

i=1
(A− 10η log (δ)) (34)

As presented before, δ represents the distance between the
transmitter and the receiver. In the EFDC scheme, we mea-
sure the RSSI value of the sensor nodes from the UAV. There-
fore, δ can be expressed in terms of the Euclidian distance
between the UAV and the sensors nodes. Consequently, (34)
can be written as∑|Cn|

i=1

(
A− 10η log

√
(xi − UAV x)+

(
yi − UAV y

)
+ (zi − UAV z)

δo

 , (35)
and σE can be expressed as

σE =

√
(Ei − µCE )2

|Cn|
, (36)

where Ei is the energy consumed by a sensor node, and µCE
is the mean value of the energy consumption of all nodes
in a cluster. µCE can be calculated based on the following
formula:

µCE =
1
|Cn|

|Cn|∑
i

Ei. (37)

C. MODIFIED TABU SEARCH ALGORITHM
The tabu search algorithm searches the selected neighboring
coordinates as discussed above and chooses the best neigh-
boring position greedily. The pseudocode of the modified
tabu search algorithm is given as Algorithm 4.

The initial solution isol is selected as the initial position
for the search mechanism, which is the CH position of the
corresponding cluster. to_Visit_Neighbor is a queue that con-
tains the calculated neighboring coordinates with the help of
the calculate_neighboring_coordinates() function. This func-
tion selects the neighboring position based on the fractional
value StepX , StepY , and StepZ given as (16). The UAV iter-
ates through all the neighboring positions and calculates the
fitness function value by (28), except for the positions that the
UAV has already visited. This technique is adopted from the
core concept of the tabu search algorithm [77].

VOLUME 9, 2021 23181



R. A. Nazib, S. Moh: EFDC in UAV-Aided Wireless Sensor Networks for Hilly Terrains

Algorithm 4 Suboptimal Position Search Algorithm for Data
Collection
Input: CM info = cluster information isol = selected CH
position
Output: Opos = best neighboring position
1. Opos← [[space]]isol
2.count←0
3. locvisited = {}
4.while (count is less than iternum)
5. to_Visit_Neighbor← calculate_neighboring_co-ordinates
(Opos)

6. iter_bestpos← Opos
7. for j← ç1 till length(to_Visit_Neighbor)
8. psol ← to_Visit_Neighbor(j)
9. if (locvisited does not contain psol)
10. set_UAV_coordinates(p_sol);
11. UAV_broadcast _beacon_request(CM info);
12. UAV_receive_beacon_and send_acknowledges();
// Evaluates the value of the fitness function based on (28)
13. if (f (psol) is greater than or equal to f (iter_

best_pos))
14. iter_bestpos← psol
15. end if
16. append(locvisited , psol)
17. end if
18. end for
19. if (iter_bestpos is equal to or less than Opos)
20. Break;
21. else
22. Opos← iter_bestpos
23. end if
24. count←count+1
25.end while

In every designated neighboring position, the UAV broad-
casts a request for a beacon packet from specific cluster
nodes. In reply, the sensor nodes send beacon signals from
which the UAV calculates the RSSI strength for that specific
position using (27). After receiving the beacon reply, the UAV
unicasts an acknowledgement packet to the sensor node. The
visited positions are recorded after every successful visit
to the designated neighboring places and inserted into list
locvisited . After comparing with all the neighboring values,
the UAV selects the best neighboring position as its next
position. The best position is updated if any better solution is
found; else, the loop terminates. The algorithm iterates until
an exact number of iterations or the local optimum is found.
Runtime complexity: The number of iterations is fixed for

the tabu search algorithm, and it may converge in a sub-
optimal position before reaching the maximum number of
iterations. The inner loop in Algorithm 4 will be executed
based on (19). The number of search operations is also limited
to a constant number and it will be at most 6. Also, the UAV
positioning task, value assigning task, appending operation,
networking operation, and decision-making process take con-

stant time. In summary, we can say the runtime complexity
of the entire algorithm is at most the number of iternum×
6, where iternum is the maximum limit of iterations. As a
result, the runtime complexity of this algorithm is constant
(i.e., O(1)).

D. DATA COLLECTION
In the data collection phase, the UAV first computes the
shortest trajectory by applying the modified GA [60]. The
UAV follows the shortest trajectory for the rest of the data col-
lection run. After computing the trajectory, the UAV goes to
each derived data collection position and collects data from a
specific cluster. In the discovery phase, Algorithm 3 produces
a list containing the optimized positions for data collection.
Based on this list, the UAV applies themodifiedGA from [60]
and searches for the shortest trajectory for data collection.
Fig. 5 shows the optimized trajectory calculated using the
GA. Only top view of the trajectory is given in the figure to
make it more comprehensible. The three-dimensional ver-
sion of the optimal trajectory is cumbersome to understand.
The modifications done in the different phases of GA are
described further in the following subsection.
GA: The GA tries to find the best solution of a fitness func-

tion by implementing the metaphor ‘‘survival of the fittest.’’
The algorithm uses an evolutionary technique to discard the
low fit values and tries to incorporate the best fit value inside
the fixed size population.

The fitness function used to find the shortest trajectory can
be given as:

g (O) = δ(S,O1) + δ(O|O|,S) +

|O|∑
i=1

δOi,Oi+1 (38)

where, δ(S,O1) denotes the distance from the entering position
S to the first data collection position O1. δ(O|O|,S) denotes the
distance from the last data collecting position to the exiting
point. g (O) represents the entire distance that the UAV will
travel to collect data in the ROI. In the first step of the GA,
random solutions are being generated based on the subop-
timal data collection positions. The metaphor chromosome
is used to represent a solution. The major operations of the
GE can be divided into crossover, mutation and selection.
Modifications in all three stages are given below:
Crossover: In the crossover operation, extended partial

mapped crossover (EPMX) policy is considered [60]. In this
operation a pair of new chromosomes (CR) are created by
crossing two parentsCR. EPMXoperation can be divided into
five steps. At first, EPMX finds a crossover region by taking
an arbitrary position. After that, the chromosomes are divided
into the two parts namely, crossover region and match region.
Then, the EPMX sorts and scan the match region to find the
non-identical data collection position. the exchange policy is
obtained from the non-identical corresponding positions.

Based on the exchange policy, data collection positions are
changed in the crossover region and new chromosomes are

23182 VOLUME 9, 2021



R. A. Nazib, S. Moh: EFDC in UAV-Aided Wireless Sensor Networks for Hilly Terrains

FIGURE 5. Illustration of the optimized trajectory of the UAV for data
collection.

created. Unlike [60], our initial and final positions are not
variable. A step by step example is given below:

Input: Taking two chromosomes for crossover operation

CR1 : {os, o5, o3, o2, o4, o1, o8, o9, o7, o10, o6, os}

CR2 : {os, o7, o4, o9, o3, o8, o6, o1, o2, o5, o10, os}

Step 1: Find a random crossover position
Crossover position: 6
Step 2: Divide each chromosome into match region and

crossover region based on crossover position.
Match region:

CR1 : {os, o5, o3, o2, o4, o1}

CR2 : {os, o7, o4, o9, o3, o8}

Crossover region:

CR1 : {o8, o9, o7, o10, o6, os}

CR2 : {o6, o1, o2, o5, o10, os}

Step 3: Obtain the exchange policy
Matching operation:

CR1 : {os, o3, o4, o1, o2, o5}

CR2 : {os, o3, o4, o7, o8, o9}

Exchange policy: 1↔ 7, 2↔ 8, 5↔ 9
Step 4: Apply the exchange policy into both of the chro-

mosomes crossover region.

Exchange policy applied:

CR1′ = {os, o5, o3, o2, o4, o1, |o2, o5, o1, o10, o6, os}

CR2′ = {os, o7, o4, o9, o3, o8, |o6, o7, o8, o9, o10, os}

Step 5: Exchange crossover region and new chromosomes
are created

Crossover region exchanged:

CR1′′ = {os, o5, o3, o2, o4, o1, o6, o7, o8, o9, o10, os}

CR2′ = {os, o7, o4, o9, o3, o8, o2, o5, o1, o10, o6, os}

Mutation: In this operation, the selected chromosomes are
mutated by their own and new chromosomes are created.
The newly created chromosomes or solutions are expected
to perform better for the fitness function and prevent the
premature convergence. The mutation operation adopted in
EFDC can be divided into four steps. The first step is to
generate a random position for mutation. Then, a random
element is taken from the chromosome in the second step.
In the third step, the randomly chosen element is inserted
inside the randomly chosen position. Lastly, the previous
element inside the randomly chosen position is taken and
inserted in the location of randomly chosen element. A step
by step example is given as follows:
Input: Taking one chromosome for mutation operation.

CR1 = {os, o7, o4, o9, o3, o8, o2, o5, o1, o10, o6, os}

Step 1: Select a random position.
Random position: 10
Step 2: Select a random element from the chromosome.
Radom data collection position: o8
Step 3: o8 is inserted into position 10 and o10 is stored

CR1 = {os, o7, o4, o9, o3, o8, o2, o5, o1, o8, o6, os}

Step 4: o10 is inserted in the previous position of o8

CR1′ = {os, o7, o4, o9, o3, o10, o2, o5, o1, o8, o6, os}

Selection: The third stage of GA is called selection, where
some chromosomes are chosen from all the population for
next round of evaluation. To ensure population diversity,
a discrete roulette operator is used to select chromosomes
as in [60]. In this mechanism, the percentage of selection
probability is magnified thus, the chances of getting selected
for poor performing chromosomes increases.

The stopping criterion for the GA is fixed as the ‘‘stall
iteration limit.’’ In this mechanism, if the GA procedure is
unable to produce any better solution for a specific number
of iterations, we stop the procedure and select the best chro-
mosome that occurred so far.
Runtime Complexity: The TSP is a NP-complete problem,

and the runtime complexity for finding the shortest trajectory
based on the TSP problem is O(n!), which is not a feasible
option for real-life application. In order to minimize the time
complexity of finding the shortest trajectory, a modified GA
[60] is applied. The expected runtime of GA is O(n log n)
and good solutions can be found in O(log n) [78]. Superior
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TABLE 3. Simulation Parameters

runtime complexity and the chances of getting good solutions
in less iterationsmakeGA a favorable option to solve the TSP.

V. PERFORMANCE EVALUATION
A. SIMULATION ENVIRONMENT
The performance of the proposed EFDC scheme was evalu-
ated via an extensive computer simulation using MATLAB.
The parameters used are summarized in Table 3.

We compared our proposed scheme with two other data
collection mechanisms, namely LEACH [79] with UAV and
the original HEED with UAV. The compared mechanisms
change their CHs in every round, representing the common
approaches adopted for UWSN data collection. As assumed,
our ROI is in a remote place where no static infrastructure is
available. Thus, the UAV needs to determine the CH’s loca-
tion for the compared schemes first. As a result, we cannot
apply any shortest path tour to optimize the data collection
path in these schemes. We applied the S-path pattern for the
mobility of the UAV for these two schemes as well. The S-
pattern used in these schemes is the same as the mobility pat-
tern we used in the discovery phase of our proposed scheme.
Most of the data collection algorithms for UWSNs assume
that they have prior knowledge about the CH positions with

the help of static infrastructure. This is the main difference
of our proposed scheme—the UAV cannot get any prior
information about the topology because of the unreachability
of the ROI. As a result, our research is not comparable with
other studies in the field of UWSN data collection scheme,
even though they are also dealing with the topic of WSN
energy efficiency.

B. ENERGY CONSUMPTION MODEL
We utilized the simplest energy transmission model for cal-
culating the WSN energy consumption. As shown in [76],
the energy consumption of a WSN node mainly depends on
the energy consumed for transmitting and receiving signals.
The energy consumption for l bit data transmission to dis-
tance δ of a sensor node represented as ETx (l, δ) can be
computed by the following equation:

ETx (l, δ) = ETx−elec(l) + ETx−amp(l,δ)

=

{
l ∗ Eelec + l ∗ ψfs ∗ δ2, δ < δth

l ∗ Eelec + l ∗ ψmp ∗ δ4, δ > δth
, (39)

where Eelec represents the node’s circuitry energy con-
sumption for transmitting one bit data, ETx−elec(l) the cir-
cuitry energy consumption for transmitting l bit data, and
ETx−amp(l,δ) the energy consumption of the amplifier of a
node to transmit l bit data to distance δ.ψfs and ψmp are envi-
ronment dependent variables. ψfs serves as the transmitter
amplifier model in the free space environment, whereas ψmp
is for the multipath model. The use of ψfs or ψmp depends
on the distance between the transmitter and the receiver. The
threshold distance δth can be calculated using the following
equation:

δth =

√
ψfs

ψmp
. (40)

If the actual distance between the transmitter and the
receiver is greater than δth, then the multipath energy con-
sumption model is used; otherwise, the free space model is
applied.

The energy consumption for receiving a message can be
derived by the following equation:

ERx (l) = ERx−elec ∗ l, (41)

where the equation simply shows the energy consumed due
to l bit data receiving, denoted by ERx (l) .ERx−elec stands for
the energy consumption for receiving one bit of data.

The energy consumption of the EFDC scheme is measured
based on the data transmission and data receiving by the
sensor nodes in three phases, namely initialization, discovery,
and data collection. We calculated the energy consumption
for data transmission based on (39) and (41). For the energy
consumption analysis, the duration of the simulation depends
on the completion of the number of rounds and it varies for
the three compared schemes. It should be noted that we only
considered the energy consumption of the deployed sensor
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nodes. The UAV’s energy consumption is not taken into con-
sideration as it is rechargeable and can harvest energy through
solar power. The energy consumption is obtained using the
following formula:

E∀ =
Rn∑
rn=1

∑
j∈C

∑
i∈j

(∑
ETxi +

∑
ERxi

)
, (42)

where E∀ is the total energy consumption of the sensor nodes
due to data transmission and reception. ETxi and ERxi corre-
spond to the energy consumption of a node i due to the trans-
mission and reception of data, respectively. The definitions
of ETxi and ERxj are given in (39) and (41), respectively. C
is the set of clusters, j denotes a single cluster, and i denotes
a single node from the cluster. Rn stands for the number of
rounds and, with the help of rn, we can iterate and compute
the energy consumption for each round. The energy consump-
tion is derived for a given number of rounds. The energy
consumption analysis given in Figs. 6–9 and Fig. 11 is derived
with the help of (42). EFDC tries to optimize the WSN
energy by optimizing the transmission distance and reducing
the number of transmissions. Distance optimization results
in lower transmission power, and reducing the number of
transmissions results in a less number of message receptions.
Thus, to analyze the total energy consumption, we have taken
these two key parameters in concern.

C. DELAY MODEL
The delay performance of the proposed EFDC scheme is
derived based on the following formula:

D∀ =
Rn∑
rn=1

 g (O)
DVUAV

+

∑
j∈C

∑
i∈j

$

 , (43)

whereD∀ denotes the total time required for a UAV to collect
data from the WSN for a given number of rounds. DVUAV is
the default speed of the UAV. Data collection positions list O
is computed with the help of Algorithm 3. From (38), we can
derive g(O), which denotes the total distance covered by a
UAV by following the optimal trajectory. Fig. 5 gives a good
visual explanation of the optimal trajectory. $ is the transmis-
sion time taken by a single node to upload its sensed data to
the UAV in a single round. C is the set of clusters, j denotes
a single cluster, and i is a node of the cluster. To simplify the
equation, we consider the delay for all transmissions to be
equal and represent it as $. The delay is computed for a given
number of data collection rounds denoted as Rn, and rn is a
variable to iterate through the rounds. For simplicity, the UAV
speed DVUAV is kept constant. Thus, the acceleration, decel-
eration, wind effect, or any other parameters that might bring
change into the UAV speed are not taken into consideration.
The analysis given in Fig. 12 is done with the help of (43).

D. SIMULATION RESULTS AND DISCUSSION
In this subsection, the simulation results of our EFDC scheme
are presented in performance graphs and comparatively dis-

FIGURE 6. Energy performance with linear S-path approach.

cussed with the two conventional schemes, i.e., LEACH with
UAV and HEED with UAV.

Fig. 6 depicts the energy consumption of the EFDC scheme
compared with those of the LEACH with UAV and HEED
with UAV. The compared approaches follow the linear data
collection approach, in which the UAV collects data from the
shortest position according to its way of the S-path mobility
model and does not visit the CH’s position physically. The
cumulative energy of the entire WSN is measured in joules
and shown in the vertical axis, whereas the number of rounds
is indicated in the horizontal axis.

From Fig. 6, it is evident that the energy consumption of
our proposed mechanism is less than those of the LEACH
with UAV and HEED with UAV. The lower energy con-
sumption of the EFDC scheme is expected, because no dis-
tance optimization is performed in the compared approaches.
According to our energy consumption model in (39), the
transmission energy heavily depends on the distance between
the transmitter and the receiver; thus, the total energy con-
sumptions in the compared approaches are higher than that
of our proposed approach. As no static infrastructure is taken
into consideration in the EFDC approach, more energy is
consumed for hello packet broadcasting in the other two
approaches to determine the positions of the CHs in every
round.

Fig. 7 displays the energy consumption comparison
between the EFDC and the other two schemes. In this sim-
ulation, the UAV visits the CH’s location to collect data from
the clusters from its default altitude. Theoretically, the energy
consumption should decrease as the distance between the
CH and the UAV is reduced. However, our simulation result
does not show a significant improvement for HEED with
UAV, whereas the LEACH with UAV approach shows a
slight improvement, and the WSN takes 50 rounds more to
become completely dry compared to that in Fig. 7. The energy
efficiency of our EFDC scheme does not only depend on the
UAV visitation to the CH’s position but also on other energy
optimization factors such as direct data collection from the
sensors and suboptimal position search.

Fig. 8 presents the comparison of dead nodes per round
among the proposed EFDC and the compared schemes fol-
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FIGURE 7. Energy performance with data collection approach from the
CH position.

FIGURE 8. Number of dead nodes with linear S-path approach.

lowing the S-path linear approach. The term dead nodemeans
that the node’s specific energy becomes lower than the thresh-
old value and the node becomes unable to transfer its sensed
data to the other nodes or the UAV. The graph shows that
the number of dead nodes in HEED with UAV is the high-
est, and EFDC shows the best result among the compared
schemes. The number of dead nodes per round also indirectly
indicates the lifetime of the WSN. In LEACH with UAV
and HEED with UAV approaches, all nodes become dead in
approximately 340 rounds whereas in EFDC, it took almost
500 rounds.

Fig. 9 shows a comparison of the EFDC with the two
approaches in terms of the number of dead nodes, where the
UAV visits the CH position to collect the sensed data from the
clusters. This graph shows that even if the UAV visits the CH
position with its default altitude and optimizes the distance
between them, the dead node count for the proposed EFDC
still shows a better result. This outcome also proves that our
suboptimal positioning technique has a beneficial effect on
the outcome of the dead node count per round performance
metric, which cannot be achieved only by acquiring the CH’s
position for the UAV.

Fig. 10 depicts a comparison of the number of exchanged
control packets among LEACH with UAV, HEED with
UAV, and the proposed EFDC. We can observe that EFDC
exchanges a relatively higher number of control packets in

FIGURE 9. Number of dead nodes with data collection approach from the
CH position.

FIGURE 10. Number of control packets versus number of rounds.

the first round compared to the subsequent rounds. As already
mentioned, the clustering process takes place only once in
EFDC. As a result, to form the cluster among the sensor
nodes with the CBHEED clustering approach, the method
consumes a relatively higher number of control packets. In the
subsequent rounds, our approach does not reform the clusters;
therefore, the number of exchanged control packets decreases
dramatically. In the other two approaches, the CHs change in
every round of data collection, so the sensor nodes need to
exchange a suitable number of control packets to locate and
initiate the data transmissions between the CHs and UAV. On
the other hand, EFDC does not need to find the CH position in
every round, which also contributes to the increasing number
of the exchanged control packets.

Fig. 11 illustrates the scalability performance of the pro-
posed EFDC. The scalability is measured among the three
compared schemes by varying the area parameter. It should
be noted that we took a square shape of ROI in consider-
ation and the length and width were measured in meters.
We assumed that the nodes are randomly deployed. For the
two compared clustering techniques, the intra-cluster dis-
tance increases with the increment of the area. Therefore,
the data transmission cost in terms of energy also increases.
In the proposed EFDC, the suboptimal position search algo-
rithm plays a major part behind the superior outcome. The
tabu search finds a suitable place that optimizes the distance
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FIGURE 11. Energy consumption versus network area.

among all nodes, which also reduces the energy consumption
of the WSN. With the increasing area of the ROI, the effec-
tiveness and necessity of finding the data collection position
also increases.

Fig. 12 displays the outcome of the delay analysis com-
parison between our proposal and the other two approaches.
The delay performance of the compared approaches is cal-
culated based on (43). The LEACH with UAV and HEED
with UAV approaches do not know the position of the CH
before they start for the data collection tour. As a result,
both need to follow a search and collect mechanism. For
implementing the scenario, we used an S-shaped UAV path
from where the UAV simultaneously searches for the CHs
and collects data from them. Consequently, the data collection
time increases enormously with the increasing size of the
ROI, whereas in EFDC, the UAV is able to collect all data
collection positions in advance, and it calculates the shortest
data collection trajectory based on the GA. The trajectory
optimization algorithm shortens the data collection path; thus,
our EFDC shows a better result. The graph also shows that in
our method, the data collection time does not vary substan-
tially with the size of the ROI, unlike those of the compared
approaches, because in EFDC, the traveling distance depends
on the distance of the calculated suboptimal position for data
collection and not directly on the size of the ROI. In LEACH
with UAV and HEED with UAV, the delay increases with
increasing size of the ROI.

Fig. 13 is presented to analyze the energy depletion com-
parison between direct data collection andCHdata collection.
In order to show that the energy consumption between a
CH and its CMs is balanced, only one cluster is assumed
for simplicity in this simulation. In the direct data collection
mechanism, all CMs along with their CH directly send their
data to the UAV, whereas in the CH data collection mecha-
nism, the CMsfirst send their data to the CH and the CH sends
the data to the UAV. The data shown in fig. 13 were taken
from one cluster consisting of nine CMs and one CH. The
CH selection was done by our proposed CBHEED clustering
technique. The horizontal axis shows the node ID and the
vertical axis shows the remaining energy after data collection.
The analysis was conducted by observing the energy deple-

FIGURE 12. Data collection delay versus network area.

FIGURE 13. Energy consumption at different nodes using CM-UAV direct
transmission and CM-CH-UAV transmission.

FIGURE 14. Convergence along with iterations.

tion from the same cluster. The graph shows that even though
both cases consume similar amounts of energy for sending
data from the CMs to the CH or UAV, the CH consumes more
energy in the CH data collection method. Thus, collecting
data through the CH will consume more energy because
of an imbalanced energy consumption, and the direct data
collection approach is the better option for our given scenario.

Fig. 14 shows the convergence along with iterations for
the three algorithms of the modified tabu search, simulated
annealing [80], and Nelder Mead optimization [81]. In the
simulation, data are taken five times for every iteration and,
then, the percentage of the changed fitness value is recorded
based on the initial fitness values for all the three algorithms.
The graph shows the relative increment of fitness values,
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in which it can be seen that the proposed tabu search algo-
rithm does not bring any change after the sixth iteration. This
is a desired phenomenon for implementing the tabu search as
the goal is to achieve a moderately optimized data collection
position with the minimal iteration count. Even though the
energy consumption of UAV has not considered in designing
EFDC, the higher the number of iterations is, the higher the
energy depletion will be for the UAV as well as the sensor
nodes. As for every iteration, the sensor nodes also need to
broadcast a beacon packet.

VI. CONCLUSION
In this study, we proposed an EFDC scheme for UWSNs. This
scheme is suitable for data collection in hilly or mountainous
areas, where infrastructures are difficult to build and main-
tain. Energy-efficient data collection requires a suitable UAV
position for data collection. To find an initial data collection
position, we proposed the CBHEED clustering algorithm by
modifying the HEED algorithm. The probability of being
a CH of a sensor node depends on the central bias of its
geolocation in a polygon formed by its neighboring nodes.
The polygon formulation was performed by applying the
monotone chain convex hull algorithm and the centroid of
the polygon was derived by applying Paul Bourke’s centroid
finding calculation. The positions of the CHswere selected by
the CBHEED algorithm, which tries to minimize the overall
energy consumption of data collection within a cluster.

The second level of energy optimization was conducted
by computing a suboptimal position for data collection by
applying a modified tabu search algorithm. This algorithm
tries to determine a better position that will consume less
energy and improve load balancing in terms of energy con-
sumption in a cluster simultaneously. The UAV-aided data
collection approach is separated into discovery and data col-
lection phases. In the discovery phase, the UAV searches the
CH locations and optimizes the data collection position based
on the modified tabu search algorithm.We applied a modified
GA to optimize the trajectory of the data collection route
based on the derived data collection positions. In the data
collection phase, the sensed data are collected from each of
the sensors to the UAV via a direct connection with a cluster.
As a result, no extra workload is given on the CH such as
collecting and aggregating data from the CMs. The altitude
with the position is also optimized and thus, less energy
is consumed compared with the conventional approaches.
In EFDC, we ran the discovery phase for a single time only
as the CH positions do not change. We compared the per-
formance of the proposed EFDC with HEED with UAV and
LEACH with UAV in terms of energy efficiency, dead node
comparison, scalability, and load balancing.
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