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ABSTRACT The increased presence of advanced sensors on the production floors has led to the collection
of datasets that can provide significant insights into machine health. An important and reliable indicator of
machine health, vibration signal data can provide us a greater understanding of different faults occurring
in mechanical systems. In this work, we analyze vibration signal data of mechanical systems with bearings
by combining different signal processing methods and coupling them with machine learning techniques to
classify different types of bearing faults.We also highlight the importance of using different signal processing
methods and their effect on accuracy for bearing fault detection. Apart from the traditional machine learning
algorithms we also propose a convolutional neural network FaultNet which can effectively determine the
type of bearing fault with a high degree of accuracy. The distinguishing factor of this work is the idea of
channels proposed to extract more information from the signal, we have stacked the ‘Mean’ and ‘Median’
channels to raw signal to extract more useful features to classify the signals with greater accuracy.

INDEX TERMS Convolutional neural network, FaultNet, featurization, machine learning.

I. INTRODUCTION
With the advent of the 4th industrial revolution, industries
across the globe are using artificial intelligence (AI) to
improve their processes and increase efficiency to meet the
ever-rising customer demands. In this rapidly changing land-
scape of technology, organizations across the globe having
increased the presence of sensors on the production floor with
the motivation of gathering data that can give them valuable
insights into their processes [1]. This sensory data contains
rich information about the machine and its effective analy-
ses using AI can contribute significantly towards preventive
maintenance, quality control, and increased process effi-
ciency [2]. Realizing these obvious benefits of cost-effective
tools like AI, organizations across the world are turning
towards smarter technologies.

Driven by the keenness of the industry to embrace
advanced digital technologies, many researchers are using
different signal processing methods and coupling them with
machine learning algorithms to address some of the com-
plicated research problems. For example, Thomazella et al.
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used digital signal processing techniques such as short-time
Fourier transform (STFT) and the ratio of power (ROP) to
extract features from vibrations signals captured to mon-
itor chatter phenomenon during the grinding process [3].
In another paper on signal processing on vibration data,
Zoltan et al., have demonstrated that signal processing tech-
niques such as Discrete Wavelet and Wavelet Packet Trans-
form are effective in extracting features from the frequency
domain for fault detection [4]. Their simulated results proved
the techniques are even capable of predicting abnormalities
exploring long-term tendencies of the detected signals. Signal
processing techniques have been performed on acoustic sig-
nals as well. Adam et al. have proposed a signal processing
technique named MSAF-RATIO-24-MULTIEXPANDED-
FILTER-8. This technique is used on acoustic signals cap-
tured from electric motors and extracted features are used to
classify motor faults [5].

In this work, we will be focusing on the vibration signal
data and will be analyzing the different methods of fault
detection in bearings using vibration signals. Vibration data
has many applications in the areas of structural weakness or
looseness, rotating component looseness, and validating the
presence of resonance. The optimal monitoring of vibration
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signals can thus help the analysis of machine performance
more effectively, improve efficiency, and more importantly
give us insights about machine health. With bearing fail-
ure being one of the major contributors to the downtime
of industrial machines, it is very important to address this
problem with high reliability and reduce the break-down of
machines [6]–[8]. As determined by Zhang et al., for rotating
machine health monitoring, vibration signal is very important
as it contains rich information regarding machine health [9].
Therefore, the analysis of vibration data may help us in
the detection and prevention of faults in bearing. In their
study, Samanta et al. used time domain statistical features
extracted from vibrations signals to classify faults using an
artificial neural network [10]. This study was one of the
earliest attempts to utilize the capabilities of deep learning
for bearing fault detection using vibration signal data. Apart
from signal featurization, some researchers have also used
wavelet decomposition to extract relevant information from
the signal. In a study conducted on wavelet transformation
of vibrations signals for fault diagnosis, Sun W et al., use
a combination of discrete wavelet transforms and envelope
analysis using which they extract the characteristic spectrum
of rolling bearing vibration data. Subsequently, a spectrum
cross-correlation coefficient is then applied to identify differ-
ent operating conditions of rolling bearings [11]. Based on
this coefficient, different vibration signals are then classified.

Building upon the previous works, we use different signal
featurization methods to extract 14 features from the raw
vibration signals to classify bearing faults using machine
learning and deep learning approaches. In order to com-
prehensively analyze the signal data, we also implemented
wavelet decomposition on the raw signal and couple it with
machine learning approaches to evaluate its performance for
bearing fault classification. With the motivation of develop-
ing a generalized model, we evaluate our machine learning
and deep learning approaches on twomajor publicly available
datasets for bearing fault classification.

The first dataset that we analyze has been developed
by Case Western Reserve University (CWRU) bearing cen-
ter [12]. The dataset from the CWRU bearing center will
be referred to as the CWRU dataset throughout the paper.
The CWRU dataset is one of the important datasets in this
research area and has been widely used by researchers to
benchmark the performance of their models. In their study,
Smith et al., have proposed a benchmark for the CWRU
dataset using three different techniques. They have carefully
analyzed the different ball faults and compared the signal data
amongst the faults. Thus, articulating the difference among
signals data when different types of fault occur. However,
they do not use the signal featurization techniques that we
have employed and don’t use any deep learning models [13].
Many researchers recently have used different deep learning
models on the CWRU bearing dataset. In their review paper,
Zhang et al., have compiled a comprehensive list of different
methods used by researchers working in this area. Based
on their review of different methods, it is evident that the

best performing deep learning models have accuracies in the
range of (97%-99%) [14]. Another recent review paper by
Neupane et al., also discusses different bearing fault classi-
fication datasets, signal feature extraction techniques, and
some of the highly accurate deep learning architectures [15].
Based on both the review papers we can conclude that deep
learning methods are highly compatible and effective when
addressing the bearing fault diagnostics problem.

Most of the deep learning architectures used for bearing
fault diagnosis are based on Convolutional Neural Network
(CNN). Guo et al. propose a hierarchical adaptive deep con-
volution network for bearing fault size prediction. In their
paper, they convert the signal data into a 32 × 32 array
and use CNNs to accomplish the task. However, their work
does not use other information available from signal data
like skewness, kurtosis, impulse factor, RMS value [16].
Another work done by Pham et al. proposes a method that
converts the signal data into its spectrogram which is then fed
to VGG16 for classification [17], [18]. In their paper, they
used only four classes and achieved 98.8% accuracy. When
compared to their work, we achieved a comparable accuracy
on 10 classes with computationally inexpensive architecture.
Pan et al., employed 1D CNN and LSTM, in order to take
advantage of the signal data, in their paper one-dimensional
CNN and LSTM are combined into one unified structure by
using the CNNs output as input to the LSTM to identify
the bearing fault types [19]. They also compare the usage of
nine different featurization techniques and using them with
different traditional machine learning algorithms. However,
Pan et al., do not use stacked median and mean channels in
their work and use a more computationally heavy framework
by combining the CNN and LSTM approaches. Most of the
state-of-the-art works report an accuracy of more than 98%
in bearing fault detection. Guo et al., in their paper, used
Stacked denoising Autoencoders have obtained an accuracy
of 99.83%. However, they separate the data as per the size of
the fault and then make predictions and have only 4 classes
in their predictions [20]. As the dataset created by the CWRU
bearing center is able tomimic the actual operating conditions
the dataset contains some noisy signals as is expected in the
actual environment. Therefore, the use of SDAE has been
made particularly by researchers to make their predictions
more resilient to the noise in the dataset [21], [22]. Another
approach used by Li et al. combines the convolutional neural
network and Dempster-Shafer theory-based evidence fusion.
In their work, they demonstrate adaptability to different
loads and report an accuracy of 98.92% [23]. LiftingNet by
Pan et al. proposes split, predict and, update blocks that are
accurately able to predict the bearing faults and are adaptable
to different motor speeds and loads. However, their approach
is not able to gauge the size of the fault [24]. Our Fault-
Net can not only predict the type of fault but also the size
of the fault based on the input signal. Wang et al. propose
the creation of a time-frequency image of the signal and
classifying them with AlexNet based architecture [25], [26].
When compared to AlexNet which has 5 convolutional layers
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ours is a relatively inexpensive architecture computationally.
Roy et al. propose an autocorrelation-based methodology for
feature extraction from a raw signal and then use the random
forest classifier for fault classification. They achieve com-
parable accuracies to the deep learning methods discussed
earlier [27].

The second dataset that we have considered in this work
is the Paderborn University Data Center bearing dataset [28].
From here onwards, the dataset from Paderborn University
will be referred to as the Paderborn dataset throughout the
paper. The dataset has vibration as well as motor current
signal captured on the test-rig. In the paper proposing the
dataset, to extract the features, Fast Fourier Transform (FFT)
and power spectral density (PSD) are performed on vibra-
tion and motor current signal. After feature extraction and
feature selection, 18 features emerge for motor current sig-
nals, and 15 features are extracted for the vibration signal
data [29]. Using conventional machine learning approaches,
Karatzinis et al, achieved the highest accuracy of 98%. How-
ever, they do not use advanced deep learning techniques
which may possibly increase the accuracy. In another study
Zhong et al., transform the signal using Short-time Fourier
Transform (STFT) and use CNN to classify the bearing
fault [30]. On the transformed signal domain, they apply
CNN. The average accuracy achieved is 97.4%. Compared to
their work, our model yields better results by directly using
the raw signal. Bin Li et al., have implemented 1 dimen-
sional CNN architecture and the best result achieved by
them is 98.3 % accuracy in fault classification. However,
they have not explored the 2D CNN method to improve the
results. In another study, Pandhare et al., have implemented
2D CNN for the bearing fault classification on the Paderborn
dataset [31]. In their work, they have demonstrated 2D CNN
on 3 different signal types – raw time domain signal, enve-
lope spectrum, and spectrogram. The maximum accuracy
achieved is with a spectrogram. For raw signals, the achieved
accuracy of 95% is slightly lower when compared to the other
studies. Another group of researchers, Wang et al, have pro-
posed a method to use 1D CNN as well as 2D CNN together
to predict the fault class in the Paderborn dataset [32]. They
have concatenated the 1D CNN output with 2D CNN output
before passing it on to a fully connected neural network for
classification. Their resultant accuracy for the classification
task is 98.58%. However, their approach is computationally
expensive and hence may not be very suitable for online
deployment.

In this article, we propose FaultNet, a CNN based model to
determine different types of bearing faults with high accuracy.
The aim of this article is to set a benchmark for bearing
fault detection using conventional machine learning algo-
rithms and deep learning techniques on CWRU and Pader-
born datasets. It is important to note that the base architecture
for both the datasets is the same and the performance of
FaultNet is not dataset specific, suggesting wide applicability
and deployability of the model to detect different types of
bearing faults. We achieve state-of-the-art accuracies for both

datasets while proposing a different methodology to extract
features from the data. We also study different signal pro-
cessing techniques and compare accuracies of the traditional
machine learning algorithms when combining different types
of signal features and our own 2D CNN model.

II. DATASET PREPROCESSING
A. CASE WESTERN RESERVE UNIVERSITY BEARING
DATASET
The test rig to generate the dataset consists of a 2 hp electric
motor to the left, driving a shaft on which a torque trans-
ducer and encoder are mounted in the middle coupled to a
dynamometer in the right. The torque is applied to the shaft
via a dynamometer and electronic control system. The test
rig also includes bearings at both the drive end (DE) and fan
end (FE) of the motor. The bearing at the DE and FE are
6205-2RS JEM and 6203-2RS JEM, respectively. The 6205-
bearing used for data collection is a Single RowDeep Groove
Radial Ball Bearing with an inner diameter of 25mm, an outer
diameter of 52mm, and 15mm in width. To collect the vibra-
tion signal data single point faults were artificially induced
using electro-discharge machining (EDM) with fault diam-
eters from 7 to 28 mils (0.18 to 0.71mm). The motor loads
varied from 0 to 3 hp (approximate motor speeds of 1720 to
1797 rpm). The vibration data was collected using accelerom-
eters, which were attached to the housing with magnetic
bases. The data was collected with two sampling frequencies,
one with 12,000 samples per second, and 48,000 samples
per second, and was processed using MATLAB R©. In their
study, the DE&FE bearing data for the normal (N), inner race
fault (IF), outer race fault (OF), and the rolling element(ball)
fault (BF) conditions was acquired for fault pattern classifi-
cation where the fault diameters were selected to be 7 mils,
14 mils, and 21 mils.

TABLE 1. CWRU bearing health conditions and class labels.

Ten different conditions are investigated to verify the accu-
racy of the proposedmethod in consideration of multiple fault
patterns. The vibration signals of ten health conditions are
referred to in table 1. In this article, we used the data from
the drive end of the test rig. The sampling frequency chosen
is 48 kHz with the load condition being 2 HP at 1750 rpm.
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To analyze and classify different bearing faults we do some
preprocessing steps on the dataset. The rotating speed of the
shaft is 1750 rpm and the sampling frequency is 48 kHz
implies that approximately 1670 data points will be collected
for one revolution. Out of 1670 data points, the first 35 points
and last 35 points are ignored to account for the noise in
the data. Thus, 467600 data points of each fault class are
chosen and divided into 280 samples, with 1670 data points.
Finally, we have 2800 samples with 10 different classes with
280 samples each. Further details, which introduce the test
set-up and other data collected, can be found at the CWRU
Bearing Data Center website.

B. PADERBORN UNIVERSITY DATASET
This dataset is generated using 32 bearings. The bearing type
used for this dataset generation is 6203, which stands for
Deep Groove Ball Bearings with dimensions (inner diameter,
outer diameter, and width) – 17 × 40 × 12mm. Out of 32,
6 bearings are healthy, 12 bearings have artificially created
defects and the remaining 14 bearings are naturally damaged.
The artificial defects have been created by using drilling,
EDM, and electric engraving machine. The artificial defects
are produced on both, inner and outer race. The natural dam-
ages are produced by accelerated lifetime tests. A detailed
description can be found in the paper [28].

Further, the bearings’ samples can be divided into 3 classes,
healthy, inner race fault, and outer race fault. By this clas-
sification, there are 6 healthy bearings, 11 inner race fault
bearings, and 12 outer race fault bearings. This amounts to
29 bearings in total. The Remaining 3 bearings are omitted
due to their nature of the fault. These 3 bearings have inner as
well as outer race fault. In the study conducted by Paderborn
University, the authors have classified these bearings on the
grounds of the maximum contributing fault. If the inner race
damage is more compared to the outer race, the bearing is
classified as inner race fault bearing. For the current model,
we used 29 bearings datawhich can be classified distinctively.
The data set is generated with multiple combinations of rpm,
torque, and load. For the purpose of this study, we use the
following combination. N=1500 rpm, load torque=0.7 Nm
and Radial force=1000 N.

Each bearing is used 20 times to generate 20 signals with
one fixed combination. The signal generated is a vibration
signal for 4 sec with a sampling frequency of 64kHz. That
means, in a signal, there are 256,000 data points. To avoid
initial and ending noise and disturbance, the sample signal is
clipped off for the first 1/16th part and the last 1/16th part.
Eventually, the signal used has 2,24,000 data points which
are used further for featurization. In total 2320 signals have
been used for classification.

III. FEATURIZATION
In every machine learning process, feature engineering plays
a very important role and can significantly affect the perfor-
mance of an algorithm. Feature engineering can directly help

the machine learning algorithm to identify the underlying
patterns and effectively improve the accuracy of the model.
For signal data, featurization includes deriving different
domains’ features from raw signals such as time domain,
time-frequency domain, etc. The vibration signals from
machinery components are in general considered to be non-
stationary. The non-stationary signals mean that the frequen-
cies present in a signal vary with time [33]. Therefore, it is
important to extract features from the time domain as well as
the time-frequency domain to capture the time-varying nature
of frequencies present in a signal. In this article, the features
extracted from raw signal data include multiple time and
time-frequency domain features. Some of the statistical time
domain features that we extract include mean, variance, stan-
dard deviation, root mean square (RMS). Moreover, features
such as kurtosis and skewness are also extracted as these
signals are not stationary. In their paper, Caesarendra et al.,
give us some physical insights into the features as they report
the approximate values of kurtosis and skewness for a normal
bearing to be 3 and 1 respectively [34]. Hence, for bearings
that are faulty, we expect to have kurtosis and skewness values
shifted from 3 and 1. Another important observation wemade
was that for faulty bearings, the bearing signal amplitude
undergoes abrupt changes when rolling elements pass over
the defective region of the bearing. These abrupt changes are
responsible for disturbing the overall distribution of signal
and therefore can act as an important clue in detecting faulty
bearings. Generally, the value of kurtosis increases and skew-
ness may change to the negative or positive side for faulty
bearings. Apart from these features, dimensionless features
such as crest factor, shape factor, impulse factor are also
extracted. The shape factor is affected by the shape but is
independent of the dimension. The crest factor is a measure
of an impact when a rolling element comes in contact with
the raceway. Table 2 summarizes all the 14 features extracted
from the raw signal data along with their mathematical for-
mulae used.

Time-frequency domain representation methods such as
short-time Fourier transform (STFT), wavelet transform, and
Wigner-Ville distribution (WVD) are commonly used for
the non-stationary or transient signal. These methods imple-
ment a mapping of one-dimensional time-domain signals
to a two-dimensional function of time and frequency. The
objective is to provide a true time-frequency representation of
a signal. Similar, to the methods presented in the review [35]
conducted by Feng et al., on time-frequency analysis meth-
ods for machinery fault diagnosis, we decomposed these raw
signals by employingwavelet decomposition package (WPD)
using Haar wavelet as a mother wavelet for the extraction
of time-frequency domain features. The wavelet decomposed
signal consists of approximation coefficients and detailed
coefficients. In this work, we use the approximation coeffi-
cients as they are more sensitive towards bearing conditions
as suggested in [28] for the extraction of statistical features
mentioned in table 2.
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TABLE 2. Features and the mathematical formulae used to calculate
values for each signal.

IV. RESULTS WITH SIGNAL FEATURIZATION
A. CASE WESTERN RESERVE UNIVERSITY BEARING
DATASET
Weused all the 14 features in Table 2 and evaluated the perfor-
mance of different shallow learning algorithms. The train-test
split used was 80-20% and average 5-fold cross-validation
accuracy has been reported. Amongst all the models we tried,
the random forest yielded the highest accuracy (figure 2(a)).
An important functionality of the random forest algorithm
is that it provides feature importance which gives the user
important insights about the features. The feature importance
score of the top 5 features calculated using Random Forest
has been demonstrated in figure 1(a). It was observed that
absolute mean, variance, RMS, shape factor, and themean are
the 5 most important signal features. Subsequently, to ana-
lyze the effects of these important features on the accuracy
multiple combinations of these features were used to clas-
sify the bearing faults. As expected, the accuracy improves
when a model is trained with a greater number of features
(figure 2(a)). We also implemented wavelet decomposition
on the raw signal data for the CWRU dataset extracted the
same 14 features from Table 2 on the decomposed signal.
Random forest was the best performing algorithm, and it was
observed that wavelet decomposition level 2 and level 3 had a

FIGURE 1. Feature importance based on Random Forest results.
(a) shows top 5 important features obtained on CWRU bearing dataset.
Similarly (b) shows the results obtained for Paderborn University dataset.
For both the datasets, out of 5 important features.

slightly higher performance (figure 3(a)). After testing mul-
tiple algorithms and different signal featurization techniques
it was observed that the performance did not improve beyond
90% accuracy, to further improve the accuracy we then tried
deep learning approaches.

B. PADERBORN UNIVERSITY DATASET
Like the CWRU dataset, we used a train-test split of 80-
20% and report the average five-fold cross-validation accu-
racy. For the Paderborn data, the random forest algorithm
gave the highest accuracy. Utilizing the feature importance
functionality of random forest, the top five important fea-
tures were calculated. It is important to note that, out of
the top five important features, four features are common
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FIGURE 2. Classification accuracy with raw data, all features, and five
important features (a) shows accuracy for CWRU dataset for five different
classification algorithms. It is evident from the figure that accuracy
improves as number of features increases. Only using raw data yields the
lowest accuracy. Similarly (b) shows the results obtained for Paderborn
University dataset.

in the CWRU dataset (figure 1(b)). Similar to CWRU mul-
tiple combinations of different features were tried and the
accuracy of different shallow learning methods was evaluated
(figure 2(b)). We also tested for three different decomposition
levels to check the effect of wavelet decomposition on the
overall accuracy of themodel. As demonstrated in figure 3(b),
it is observed that there is a slight increase in accuracy with
the decomposition level. Similar to the CWRU dataset we
decided to use deep learning to improve the accuracy further.

After analyzing the results from conventional machine
learning approaches with signal featurization, we real-
ized that the best accuracy achieved was not comparable
with the state-of-the-art results discussed earlier. Therefore,
we decided to build a Convolutional Neural Network (CNN)
that is computationally inexpensive and also achieves higher
accuracy.

FIGURE 3. Classification accuracy using all 14 features on different signal
wavelet decomposition level (a) shows accuracy for CWRU dataset.
Decomposing signals at different result in slightly higher accuracy. Also,
for some ML algorithms decomposed signals gives better accuracy
compared to raw signals. Similarly (b) shows the results obtained for
Paderborn University dataset.

V. CONVOLUTIONAL NEURAL NETWORK
To further improve the classification performance, we devel-
oped FaultNet a CNN based architecture that takes raw signal
data as input without any pre-processing. CNNs, because they
possess a special ability to extract relevant features from the
data, given a task of prediction. In the FaultNet architecture,
there are two parts, the first part being the convolution part
and the second part is fully connected layers. We have two
convolution layers. Each convolution layer is followed by
a max-pooling layer. The activation function used for both
convolution layers is ‘ReLU’. Usage of max-pooling lay-
ers ensures that the most important features are selected.
The addition of pooling has also led to decreased compu-
tational times making the FaultNet relatively inexpensive
architecture.

As we know, the raw signals CWRU dataset contains
2800 signals of 1600 data points. The signal data is con-
verted into a 2D array of shape 40 × 40. Therefore,
we have 2800 signals in the form of 2D arrays of shape
40 × 40. Similarly, for the Paderborn University dataset,
signals of 250,000 datapoints are split into 100 smaller signals
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FIGURE 4. Convolutional Neural Network Architecture. 2D CNN architecture used for Paderborn University dataset. Different colors
represent different operations. There are 2 convolution and 2 max-pool layers along with fully connected neural network with 3 outputs.
After each convolution layer, a ‘Batch-norm’ and ‘ReLU’ activation is applied.

of shape 50 × 50 2D arrays. The convolution operation
is performed on the 2D data. The convolution operation is
defined by:

y (t) = x (t) ∗ w(t)

Where y(t) is the output of convolution, x(t) is the input
data, w(t) are the weights of a convolutional filter and ∗ rep-
resents convolution operation. After the convolution layers,
the output is flattened and fed to fully connected layers. The
fully connected layer has an input layer with 5184 neurons
for the Paderborn dataset. There is only one hidden layer
with 256 units. According to the dataset, the output layer has
either 3 (Paderborn dataset) or (CWRU dataset) 10 neurons.
For fully connected layers as well, the activation function
used is ‘ReLU’. Besides, for the final layer, a drop-out of
0.25 is added to prevent the overfitting in the neural network.
Soft-max activation is applied to the outputs of the neurons
in the final layer [36], [37]. The overall network architecture
is shown in figure 4.

As the problem’s nature is classification, we use Cross-
entropy loss. For training, we use the ‘Adam’ optimizer with a
constant learning rate of 0.001. The whole network is trained
for 100 epochs with a batch size of 128 onNVIDIARTX2080
GPU. At the end of training, the loss value for Paderborn
dataset is 0.0003 and CWRU dataset is 0.0049.

VI. RESULTS WITH CONVOLUTIONAL NEURAL NETWORK
Initially, we tried to predict the bearing fault class with only
raw signals. However, the 5-fold accuracy maxed out at
95.27%.With the state-of-the-art model achieving accuracies
in the range of 97-100%.We devised a methodology to incor-
porate more signal information so that the model can learn the
signal features better. Thus, we came with the idea of using
mean and median channels to augment the raw signal in a bid
to improve the accuracy. In order to generate new channels,
a sliding window with a length of 10 was used as a filter.
For every given sample signal data, the filter scans through

the whole sample data from the front to the end. To get the
same quantity of data points as the sample data, nine ‘0’ were
replenished at the end of the sampled signal data and the filter
has been set to shift by length 1 for each time. Consequently,
we get a new channel, which had the same shape size as
the original channel of the sample signal data. For the first
additional channel, a mean filter was applied to create a mean
channel. For the second channel, the mean filter is substituted
with a median filter to generate the median channel. We com-
bined new channels with the original channel as the new input
for the 2D convolution model. With an increasing number of
channels, the accuracy improves simultaneously. The average
accuracy has already improved to 98.50% as evident from
figure 5(a). Similar improvements in performance were seen
on the Paderborn dataset in figure 5(b).

Apart from the improved accuracy, we observed that the
deviation of accuracy was lowered over the five folds of
test datasets. Leading us to conclude that channel addition
not only improves accuracy but also generates a more stable
model in terms of accuracy. In order to augment accuracy as
an evaluation metric, we also calculate the precision, recall,
and F1 score. The high values of the F1 score for both datasets
(Table 3) indicate that the FaultNet architecture is robust and
captures the faults with high precision. When comparing the
performance of FaultNet with CNN architecture proposed
by Zhang et al, we observe that the precision, recall, and
F1 score for their method are 0.8155, 0.8105, and 0.8129 [38].
However, these values are only reported with 90 training
data points. When we trained the FaultNet with the same
number of datapoints we get the precision, recall, and F1
score as 0.799, 0.7924, and 0.7956 respectively. The perfor-
mance of FaultNet is comparable to the architecture proposed
by Zhang et al., even in a low data setting considering the
fact that they propose a deeper CNN that has five convo-
lutional layers, and FaultNet has two convolutional layers.
Pham et al., have also calculated the precision and recall
score on different motor settings and their average scores
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FIGURE 5. Comparison of accuracies obtained for different CNN models.
(a) CWRU dataset with one-channel, two channel and three channel
approach. (b) Paderborn dataset with one-channel, two-channel and
three channel approach.

are 0.9826 and 0.991 respectively [17]. When compared to
their architecture FaultNet has a slightly higher precision by
0.0034 and slightly lower recall by 0.0053. The performance
of our architecture FaultNet is comparable to other state-of-
the-art methods in all performance metrics. Despite being
a lightweight CNN architecture, FaultNet is able to achieve
comparable results on all performance metrics because of the
novelty in the way in which wemake use of median and mean
channels.

Apart from that, we also plot the confusion matrix for both
datasets (Figure 6). We observe that for the CWRU dataset,
the model fails to classify datapoints belonging to ball fault
with 0.18 mm fault size. The model is confused between
ball fault with 0.18 mm fault size and outer race fault with
0.36 mm. This leads us to conclude that the model has a
slightly lower accuracy for outer race faults. Interestingly,
the model is able to classify smaller size faults with high
accuracy. For Paderborn dataset, it is evident that class 0 has
better accuracy when compared to other datasets and class
2 has the highest number of missclassifications. The model
has difficulty in distinguishing between the inner race and

FIGURE 6. Confusion matrix for comparing the inter-class performance,
the x axis is the ground truth label and the y axis is the predicted label.
(a) CWRU dataset: Classes from 0 to 9 correspond to the labels given in
table 1. The test accuracy corresponding to this confusion matrix is
98.57%. (b) Paderborn dataset: Class 0 corresponds to healthy bearing.
Class 1 and class 2 represent inner race fault bearing and outer race fault
bearing, respectively. Overall accuracy is 99.14%.

TABLE 3. Performance metrics for CWRU and Paderborn dataset.

outer race faults. In general, it is difficult to classify outer race
faults as observed from confusion matrixes of both datasets.

VII. PERFORMANCE EVALUATION FOR NOISE
ROBUSTNESS
To evaluate the robustness of the FaultNet architecture and
different conventional machine learning algorithms to noise
we added white Gaussian noise to the vibration data and
assessed the fault classification performance. We chose seven
different signal to noise ratios (SNR) to understand how
noise affects the performance of the different algorithms. The
results for the CWRU and Paderborn datasets are demon-
strated in Table 4 and Table 5, respectively. Among the
conventional machine algorithms, we observed that random
forest had the highest accuracy and was more robust to
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TABLE 4. Performance evaluation of FaultNet for noise robustness on
CWRU dataset.

TABLE 5. Performance evaluation of FaultNet for noise robustness on
Paderborn dataset.

noise for both the datasets (CWRU and Paderborn). FaultNet
achieves a high accuracy of 97.77% (CWRU) and 98.8%
(Paderborn) when the SNR is 10. It can be observed that
the accuracy is slightly lower when compared to the original
vibration signal. For all the conventional machine learning
algorithms and CNN-based FaultNet, accuracy increases as
the SNR goes up. It must be noted that for the noisiest
signal with SNR equal to –4, FaultNet performs reasonably
well with an accuracy of 82.12% and 89.3% for CWRU and
Paderborn respectively. When compared with deep learning-
based architecture by Zhang et al., FaultNet achieves compa-
rable accuracy within 1% for SNR values of 8 and 10 and
considerably outperforms it when the SNR values are less
than 2 on the CWRU dataset [38]. We would like to note that
CNN proposed by Zhang et al., consists of 5 convolutional
layers whereas our lightweight architecture FaultNet only has
2 convolutional layers, making it more suitable for an online
industrial setting. FaultNet is able to achieve high accuracy
because of the novel way in which it is able to use information
from signals through mean and median channels.

VIII. CONCLUSION
In this article, a systematic approach towards a data-driven
vibration-based diagnosis of faults in rolling element bearings
is demonstrated. We have benchmarked the performance of
different machine learning algorithms by using the featurized
signal data and deep learning approaches for the CWRU
and Paderborn datasets. Five-fold accuracies of ∼99% are
obtained for both the datasets indicating the state-of-the-art
performance is achieved by the FaultNet architecture. For
classification, it is important to have enough differentiating
features between classes. As we stack a greater number

of channels, the algorithm is able to extract more features
compared to single-channel input. Each additional channel
could be considered as a feature map of the input which
provides more information about the input. This is analogous
to grayscale and RGB images. If we convert an RGB image
to a grayscale image, often, there happens to be information
loss leading to poor performance [39]. Hence, adding more
information improves the performance of our model by work-
ing exactly opposite to the image conversion from RGB to
grayscale.

The novelty of this work is in the concise CNN structure,
also, in the concept of augmenting 2D raw signal with its
mean and median value channels to extract more meaning-
ful features for CNN. We have demonstrated that the CNN
structure devised here improves upon previous methods and
has a highly competitive performance compared with state-
of-the-art methods. We believe this work can pave the way
for online fault detection in the case of bearings which could
be extremely beneficial for industries. Our approach can be
extended to similar types of datasets.
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