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ABSTRACT Nonlinear magnetic network is an effective model to solve the magnetic field of the motor.
For the strong nonlinearity of magnetic network parameters, it is difficult to solve the nonlinear magnetic
network equations. To overcome the divergent issue for solving the nonlinear magnetic network equations,
a new method, the homotopy continuation method, is proposed. Based on the benchmark model of Testing
Electromagnetic Analysis Methods Problem 20 (TEAM P20), the two-dimensional nonlinear magnetic
network model is established. Next, homotopy equations of nonlinear magnetic network equations are
derived, and they are solved by the homotopy continuation method. So that solving the nonlinear magnetic
network equations is transformed into solving a set of homotopy equations. Then, the magnetic flux density
of iron core with different saturation levels is calculated using the simple iteration method, the relaxation
iterationmethod, Newton-Raphsonmethod, and the homotopy continuationmethod, respectively. The results
and convergence performance of the four methods are compared. It is proved that the proposed method
can effectively expand the convergence domain and simplify the calculation process. The magnetic flux
density calculated by the homotopy continuation method is compared with the finite element method in the
supersaturated state, and the results are in good agreement. The relative error of the magnetic flux density
of the core is less than 5%, which verifies the correctness of the proposed algorithm.

INDEX TERMS Nonlinear magnetic network, homotopy continuation method, TEAM P20, nonlinear
magnetic field calculation.

I. INTRODUCTION
For electrical machines and transformers, if the current is
passed through the coil, a magnetic field will be formed
in the space around it. Due to the saturation characteristics
of the core material, the magnetic field is nonlinear. The
non-linearity of electromagnetic is a problem that scholars
pay attention to. Paese et al. presented a method for calculat-
ing the magnetic flux density. The equivalent circuit method
is a simple and straightforward numerical method that can be
used to solve non-linear electromagnetic problems and can
also be extended to rotary machines [1]. Zheng and Chen
proposed a subspace correction method (SCM) for solving
the multi-scale eddy current problem in the lamination sys-
tem, which is very efficient for large-scale simulations [2].
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J. Bao et al. proposed a hybridmodel which combines Fourier
modeling and magnetic equivalent circuits for the analysis
of the magnetostatic field in saturated electrical machines
and verified its diverse applicability to linear and rotary
machines [3]. Newton-Raphson (N-R) method is a traditional
method to solve nonlinear magnetic network (NMN) equa-
tions [4], which is also widely used in the finite element
method (FEM) to calculate magnetic field [5], [6]. However,
the key of N-Rmethod is to solve the Jacobianmatrix consist-
ing of many partial derivatives, which have to be recalculated
in each iteration. The relaxation iteration method is also
a common method for solving nonlinear magnetic network
equations [7], but the improper selection of relaxation factor
can also lead to divergent results. Otherwise, the simple
iteration method is only suitable for an unsaturated magnetic
network. To solve the above problems, we took the TEAM
P20 benchmark model as an example and calculated the
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nonlinear magnetic network with the homotopy continuation
method for the first time.

In recent years, many scholars have studied nonlinear mag-
netic networks. H. Dogan et al. put forward a multistatic
reluctance network model of permanent magnet synchronous
machines and presented three different methods to calculate
the air-gap reluctance [8]. Z. Q. Zhu et al. analysed the
performance of a flux switching permanent motor (FSPM),
and established a nonlinear lumped parameter magnetic cir-
cuit model for FSPM with doubly salient structure [9].
Ling Ding et al. presented a novel equivalent magnetic
network model of permanent magnet machines, and the
air-gap network is composed of rhombic elements, which can
consider the rotation of permanent magnet machines [10].
Yunkai Huang et al. built the magnetic equivalent circuit
of the stator, rotor, and permanent magnet of an axial flux
permanent magnet machine, and the computational time of
the proposed model is greatly reduced [11]. Wei Sun et al.
established a parameterized dynamic magnetic equivalent
circuit model, and analysed the dynamic characteristic of
a novel axial-field switched reluctance motor whose rotor
is segmented [12]. However, all the above mentioned did
not derive the calculation method of the nonlinear magnetic
network in detail, nor discussed the convergence performance
of the results.

Based on the nonlinear magnetic network, Jae-Jun
Lee et al. designed a 140 kW-class wound field synchronous
motor for the electric vehicle and used the Newton-Raphson
method to calculate the normalized torque values of the elec-
tric machine [13]. H.W. Derbas et al. established nodal-based
and mesh-based magnetic equivalent circuit models of a
claw-pole alternator, and derived the Newton-Raphson algo-
rithm of both model; however, the results of the nodal-based
magnetic network equations failed to converge under nonlin-
ear operating conditions [14]. Ahmed Hemeida et al. given
theNewton-Raphson iteration scheme of the equivalent reluc-
tance network, and the correctness of the proposed method
is verified by a 16-pole permanent magnet synchronous
machine [15]. Nian Li et al. adopted the Newton-Raphson
method to solve the nonlinear magnetic network equations
of the axial field flux-switching memory machine; however,
they did not describe the Jacobian matrix in detail [16].
P. Naderi et al. derived the Jacobian matrix in [17], and
they used the Newton-Raphson method to calculate the
performance under interturn short circuit fault of a salient
pole synchronous motor by using magnetic equivalent cir-
cuit model, which considered the saturation effect. In fact,
the scalar magnetic potential is solved by the nonlinear mag-
netic network equations, but the scalar potential often leads to
oscillation and even divergence in Newton-Raphson iterative
process [18]. The relaxation iteration method was utilized
to calculate the nonlinear magnetic network in [19], which
simplified the nonlinear iterative process. Gaohong Xu et al.
deformed the iteration scheme based on the relaxation iter-
ation method and constrained the maximum magnetic flux
density to accelerate the convergence speed [20]. To improve

the flexibility of modeling, Donghui Cao et al. proposed a
magnetic network meshing for the oblique region. They used
the successive over relaxation method, which is an advanced
Gauss iteration method, to solve the magnetic network
equations [21]. In the practical calculation, the selection of
relaxation factors depends on experience, and improper relax-
ation factors can also lead to divergent results.

However, how to ensure effective convergence and expand
the convergence domain of the results of nonlinear magnetic
network equations have not been discussed in the existing
literature. The homotopy continuation method is an effective
method for calculating nonlinear equations [22]. The prin-
ciple is to introduce a continuation parameter to construct a
family of homotopy equations so that the nonlinear equations
start from a new system that is easy to calculate. Track
towards the solution branch of each system and the solution
of the original nonlinear equation is finally obtained. The
homotopy continuation method can extend the convergence
domain, and it is widely used in science and engineering.
Abbasbandy used the homotopy analysis method to solve
nonlinear equations arising in heat transfer, which provided
a convenient way to control the convergence [23]. Dinesha
first applied the homotopy algorithm to the dynamic simu-
lation of large power systems [24]. A homotopy continua-
tion method was proposed for the finite element model of
indirect coupling of nonlinear electric field and temperature
field in [25], and a good convergence effect was obtained.
Yong and Preindl designed a novel unified position sen-
sorless observer of permanent magnet synchronous motors
based on the homotopy continuation method to identify the
correct position and speed [26]. The homotopy continuation
method is widely used in the power flow calculation of power
systems [27], [28]. Mehta applied the homotopy continua-
tion method to power systems and extended the method to
transient stability assessment, voltage stability analysis, and
other problems [29]. In this paper, we used the homotopy
continuation method to calculate nonlinear magnetic network
equations for the first time. By solving the homotopy equa-
tions, the convergence domain of nonlinear calculation is
extended effectively, and the complicated solving process of
the Newton-Raphson iteration method is avoided.

TEAM P20 is one of the benchmark model officially pro-
posed by the International Compumag Society (ICS), and the
problem is to analyse the magnetic field and electromagnetic
force [30]. In this paper, the nonlinear magnetic network
model of the TEAM P20 benchmark model is developed.
We write a computer program of the homotopy continuation
method by Matlab to solve the nonlinear magnetic network
equations. The solutions are a set of data, which are the
average magnetic flux density of each branch in the model.
The results and iterative process of the proposed method
are compared with those of the simple iteration method,
relaxation iteration method, and Newton-Raphson method.
It is proved that the proposed method can effectively expand
the convergence domain and simplify the calculation pro-
cess. Finally, Magnet 7.5, a finite element analysis software,
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is used to calculate the 2-D magnetic field of the TEAM
P20 benchmark model. The results of the proposed algorithm
are compared with those of the FEM, and the results are basi-
cally the same, which verify the effectiveness of the proposed
algorithm.

II. STRUCTURE AND MATHEMATIC MODEL
A. PHYSICAL MODEL
TEAM P20 benchmark model [30] is shown in Fig.1. The
model consists of two parts: the center pole and the yokemade
of silicon steel. The coil is around the center pole and excited
by direct current, and the gap between the silicon steel and
the coil is filled with insulation.

FIGURE 1. Physical model of TEAM P20.

The magnetic network model combines the advantages of
the magnetic circuit theory and the finite element method to
solve the magnetic field of motors. This model makes up for
the shortcomings of the low accuracy of the magnetic circuit
method and overcomes the disadvantages of occupying a
large computer capacity and taking more time using the finite
element method.

In order to establish the calculation model, the following
assumptions are indicated:

1) The effect of temperature on permeability and conduc-
tivity is ignored.

2) Core eddy current loss and hysteresis effect are ignored.
3) Each magnetic permeability element is equivalent to a

rectangle.
4) It is assumed that the flux directions are only horizontal

and vertical.
5) The magnetic field lines are uniformly distributed in

the axial direction, regardless of the axial variation.
According to the hypotheses and characteristics of the

material and structure of TEAM P20, the nonlinear magnetic
network model, as shown in Fig. 2, is established. The black
permeance is ferromagnetic permeance, and the rest is air
permeance. Due to the saturation of ferromagnetic mate-
rial, the ferromagnetic permeance is nonlinear. Otherwise,

FIGURE 2. Nonlinear magnetic network of TEAM P20.

three magnetomotive force (MMF) sources are uniformly
distributed on the center pole.

B. MATHEMATIC MODEL
The magnetic network is similar to the electric network
in mathematical expression, and the principle and analysis
methods are similar to those of circuit theory. According to
Kirchhoff law, the nodal magnetic potential matrix equation
can be written as

Gn×nϕn×1 = Φsn×1 (1)

where Gn×n is the nodal permeance matrix, Φsn×1 is the
flux matrix, and ϕn×1 is the nodal magnetic potential matrix,
which is unknown.

The augmented matrix G(n+1)×(n+1) of the nodal perme-
ance matrix Gn×n can be expressed as

G(n+1)×(n+1)

=



g1,1 . . . . . . . . . g1,j . . . g1,n+1
...

. . .
... . .

. ...
... gi,i . . . gi,j

...
...

...
. . .

...
...

gj,1 . . . gj,i . . . gj,j
...

... . .
. . . .

...

gn+1,1 . . . . . . . . . . . . . . . gn+1,n+1


(2)

where gi,j is the mutual permeance between node i and node j,
which is negative. gi,i is the self-permeance of node i, and it
is equal to the opposite of the sum of the mutual permeability
between node i and the other nodes.
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Since there are only n independent nodes in the equations,
the last row and the last column of (2) are removed to obtain
the nodal permeability matrix Gn×n,

Gn×n =



g1,1 . . . . . . . . . g1,j . . . g1,n
...

. . .
... . .

. ...
... gi,i . . . gi,j

...
...

...
. . .

...
...

gj,1 . . . gj,i . . . gj,j
...

... . .
. . . .

...

gn,1 . . . . . . . . . . . . . . . gn,n


(3)

The permeance can be calculated by (4),

g = µ0µrS/l (4)

where µ0 is the permeability of vacuum, µr is the relative
permeability, S is the cross-sectional area of the flux through
the permeance, and l is the length of the permeance along
the magnetic flux direction. The calculation method of series
and parallel permeance is similar to that of conductance in
the circuit. The relative permeability of vacuum is 1, and
the relative permeability of each ferromagnetic permeance
corresponds to the B-H curve.
Φsn×1 is the flux matrix, which can be expressed as

Φsn×1 =
[∑

Φs1 . . .
∑
Φsi . . .

∑
Φsn

]T (5)

where
∑
Φi represents the total flux of all magnetic flux

sources flowing into node i. Analogous to the current source,
the expression of the magnetic flux source can be written as

Φs = F × g (6)

where F = NIf is the MMF. N is the turns number of
excitation coil, If is the excitation current, g is the permeance
of the same branch as the MMF.

The nodal magnetic potential ϕi can be obtained by (1),
and then the magnetic flux φi,j and the average magnetic flux
density Bi,j between node i and node j can be obtained.

III. CALCULATION METHOD OF NONLINEAR MAGNETIC
NETWORK EQUATIONS
A. HOMOTOPY CONTINUATION METHOD
1) CONSTRUCTION OF HOMOTOPY EQUATIONS
The key to the homotopy continuation method is to construct
homotopy equations. For constructing homotopy equations,
it is necessary to introduce the continuation parameter
t ∈ [0, 1] into the equations, where homotopy equations
begin with an initial equation f0(x) = 0 that is easy to solve
with t = 0, and gradually transitions to the original nonlinear
equation f (x) = 0 with t = 1.
As for nonlinear equations (1), G andΦ are both related to

the relative permeabilityµr . On the other hand,µr are related
to the magnetic flux density B. Thus, original equations (1)
are equivalent to

F(B) = G(µr (B))ϕ −Φs(µr (B)) = 0 (7)

where F are functions defined on a certain space D
of Rn.
It is easy to know that the nonlinearity of (7) is caused

by the nonlinearity of the relative permeability µr . If µr is a
constant, (7) is a linear system. According to the continuation
theory, the continuation parameter t is introduced to set up a
family of functions H(B, t) : D × [0, 1] ⊂ Rn+1 → Rn to
instead of functions F. Functions H meet the conditions of

H(B, 0) = F0(B) (8)

H(B, 1) = F(B) (9)

where the solution B0 of F0(B) = 0 are known, and the
corresponding relative permeability is constant. Therefore,
H(B, 0) = 0 are linear equations.H(B, 1) = 0 are equivalent
to (7). Then the original problem can be converted to solve
homotopy equations (10).

H(B, t) = 0, t ∈ [0, 1] (10)

According to the above rules, homotopy equations of (7)
can be established as (11),

H(B, t) = G(µr0 + t(µr (B)− µr0))ϕ

−Φs(µr0 + t(µr (B)− µr0)), t ∈ [0, 1] (11)

where t is the continuation parameter, and µr0 are the initial
relative permeability.

In this way, solving the nonlinear magnetic network
equations is transformed into solving a set of homotopy
equations (11).

2) SOLVING HOMOTOPY EQUATIONS
The flowchart of solving the nonlinear magnetic network
based on the homotopy continuation method is shown
in Fig. 3. The continuation parameter t is divided into n parts
in the interval [0,1], where 0 = t0 < · · · < ti < · · · <
tn = 1, and n is the number of continuation. Solving homo-
topy equations by continuation method is a dynamic process
of t from 0 to 1. When t = 0, equations (11) are equivalent to

H(B, t0) = G(µr0)ϕ −Φs(µr0) = 0, (12)

and obviously (12) are linear equations, which can be calcu-
lated easily. Then the results are taken as the initial value B(0)

1
of the first continuation. In the same way, the solution Bi of
H(B, ti) = 0 at the i-th continuation are used as the initial
value of the next continuation equations H(B, ti+1) = 0.
The final solution Bn are the true solution B∗ of the original
equations.

In order to accelerate the convergence speed, the Steffensen
iteration method is used in each continuation process, and its
iteration scheme is

B(k+3)
i = B(k)

i −
(B(k+2)

i − B(k+1)
i )2

B(k+2)
i − 2B(k+1)

i + B(k)
i

(13)

where i is the number of continuations and k is the iteration
number.
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FIGURE 3. Flowchart of homotopy continuation method.

When the Steffensen convergence condition is satisfied,
one continuation process ends, and the next continuation
process begins. Until t = 1, the calculation stops when meet-
ing the convergence condition. The Steffensen convergence
condition is shown as

| B(k+3)
i − B(k)

i |< tol (14)

where tol is the tolerance. We chose 1×10−6 as the tolerance
in this paper.

It can be known from the B-H curve that the relative perme-
ability µr changes with the change of magnetic flux density.
The nonlinearity of the magnetic network equations is caused
by the nonlinearity of µr of the ferromagnetic material. The
higher degree of nonlinearity, the less likely it is that the

calculation results will converge. The homotopy continuation
method starts with a simple solution of the physical field; that
is, the calculation starts from a linear magnetic field that does
not consider saturation and gradually transitions to calculate
a non-linear magnetic field, and finally, the distribution of the
magnetic field is obtained.

B. OTHER METHODS TO CALCULATE NONLINEAR
MAGNETIC NETWORK
Simple iteration, also called fixed-point iteration, is a con-
ventional method to calculate nonlinear equations [31]. The
expression of simple iteration is

B(k+1)
= f (B(k)), k = 0, 1, 2, . . . ,N (15)

B∗ = BN (16)

VOLUME 9, 2021 32243



P. Yang et al.: Probing Homotopy Continuation Method for Solving Nonlinear Magnetic Network Equations

where B(k) is the k-th iteration, and f (B(k)) is the iterated
function. When B(N+1) and B(N ) are infinite approximation,
B∗ = B(N ) can be regarded as the true solution.
Relaxation iteration is an accelerated iteration method, and

the iteration scheme is

B(k+1)
= B(k)

+ ω(B(k+1)
− B(k)) (17)

where ω is the relaxation factor. In order to compare the
convergence performance of different methods under differ-
ent saturation levels more accurately, the same relaxation
factor should be selected for calculation. We chose 0.5 as the
relaxation factor in this paper.

Newton-Raphson iteration method is a traditional method
to solve nonlinear magnetic network equations. The iteration
scheme of the Newton-Raphson method is

ϕn+1 = ϕn − [J (ϕn)]
−1f (ϕn) (18)

f (ϕn) = Gϕ −Φs (19)

where J is the Jacobian matrix.

IV. CALCULATION RESULTS AND VERIFICATION
A. DIFFERENT METHODS TO CALCULATE NONLINEAR
MAGNETIC NETWORK
The saturation level of the core is affected by the excita-
tion current flowing in the coil. Simple iteration, relaxation
method, Newton-Raphson method, and homotopy continua-
tion method are compared to solve the nonlinear magnetic
network at different saturation levels. By changing the excita-
tion current If , the MMF can be changed to simulate different
iron core saturation levels.

1) UNSATURATED STATE
When the total MMF is 600A, the iron core is unsat-
urated. The simple iteration, the relaxation method,
Newton-Raphson method, and the homotopy continuation
method are compared to solve the nonlinear magnetic net-
work equations. The iterative processes of the maximum
magnetic flux density calculated by different methods are
shown in Fig. 4. All four methods obtain convergent solu-
tions. The simple iteration method converges first, the relax-
ation method and the hotomopy continuation method require
more iterations, while the Newton-Raphson method needs
the most time to converge. For easy to analyse, we selected
the path a→b→c→d→e→a as the analysis object, which
is shown in Fig. 2, and the branches are numbered from
1 to 20 along the path. The magnetic flux density of each
branch along the path is shown in Fig.5. The symmetry
of the magnetic circuit results in a symmetrical magnetic
flux density. The magnetic flux density of branch 1 and
branch 20 is the smallest because there is an air gap. As can
be seen from Fig.5, the results obtained by the four methods
are consistent.

2) SATURATED STATE
When the total MMF is 6000A, the center pole is satu-
rated. The iterative processes of the maximum magnetic flux

FIGURE 4. The iterative process under unsaturated state.

FIGURE 5. Magnetic flux density under unsaturated state.

density calculated by different methods are shown in Fig. 6.
In the saturation state, the results of the simple iteration
method always oscillate up and down, and the calculation
results diverge. Both the homotopy continuation method and
the relaxation iteration method obtain a convergent solution
quickly; however, the Newton Raphson method obtains a
convergent solution after a long time. The magnetic flux
density of each branch is shown in Fig. 7. The results obtained

FIGURE 6. The iterative process under saturated state.
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FIGURE 7. Magnetic flux density under saturated state.

by the relaxation iteration method, Newton-Raphson method,
and homotopy continuation method are consistent.

3) SUPERSATURATED STATE
When the MMF is 10000A, the center pole is supersatu-
rated. As shown in Fig. 8, the highly nonlinear magnetic
network equation causes the calculation results of the simple
iteration method to not converge. Although the relaxation
iteration method can change the convergence performance,
the inappropriate selection of the relaxation factor still fails
to converge. In the supersaturated state, only the results cal-
culated by the Newton-Raphson method and the homotopy
continuous method converge. The magnetic flux density at
each branch on the path is shown in Fig. 9.

FIGURE 8. The iterative process under supersaturated state.

Fig. 10 shows the iteration number of the three methods
under different saturation levels, where the continuation step
is 0.2. Table 1 gives the calculation time of different methods.
It can be seen from the above calculations that the results
of the simple iteration converge when the iron core is at
an unsaturated state. As the level of saturation increases,
the convergence effect of the simple iteration and the relax-
ation iteration method becomes worse. When the relaxation
factor is not selected properly, the results will also diverge.
Newton-Raphson method converges to a reasonable solution,

FIGURE 9. Magnetic flux density under supersaturated state.

TABLE 1. The calculation time of different methods.

FIGURE 10. Iteration number of different methods.

but the construction of Jacobian matrix is extremely complex,
and it takes a much longer time to calculate. It is important
to select an appropriate initial value of the Newton-Raphson
method to get a reasonable result. However, the homotopy
continuation method does not have high requirements for the
selection of initial values. When the continuation parameter t
is introduced to construct the homotopy equation, the solving
process of the original nonlinear equations is divided into
several continuation processes. The solution after each con-
tinuation can enter the local convergence domain to ensure
subsequent calculation convergence.

B. INFLUENCE OF DIFFERENT CONTINUATION STEP SIZES
AND DIFFERENT INITIAL VALUE
In order to analyse the influence of the selected initial value
and continuation step size on the results, we set the initial
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relative permeability as 0, 200, 500, 1000, and 2000, respec-
tively, and compared the iteration number of different con-
tinuation step sizes at several initial values under saturation
state.

As can be seen from table 2, at the same continuation step,
iteration numbers are different with different initial values.
On the other hand, the iteration number increases with the
decrease of the continuation step size at the same initial
relative permeability. This is because the results must be con-
verged in each continuation, and the smaller the continuation
step size, the more times of continuation, so the iteration
number increases.

TABLE 2. Iteration number of different continuation step sizes and
different initial relative permeability.

In some cases, in fact, the excessive continuation step size
will lead to non-convergence, because the solution obtained
in the previous continuation does not fall into the local region
of convergence of the next continuation. By reducing the con-
tinuation step size, the solution is easier to track the solution
branch, and gradually approaches the final nonlinear solution.

C. METHOD VALIDATION
The correctness of a new algorithm can be verified through
existing algorithms or experiments. We verify the correctness
of the proposed method by the finite element method (FEM),
which is a well-recognized method for analyzing electromag-
netic fields with high accuracy. The magnetic flux density
along the path when the center pole is supersaturated is com-
pared with the FEM. The 2-Dmagnetostatic field distribution
obtained by the finite element software MagNet 7.5 is shown
in Fig. 11, where the air volume boundary is flux tangential
boundary. In 2-D FEM analysis, the elements are shaped
like triangles defined by three vertices, with a maximum
element size of 5 millimeters, 4478 elements, and 770 knots.
In order to compare with the calculation results of the nonlin-
earmagnetic networkmethod, according to Figure 2, there are
20 branches along the path a→b→c→d→e→a in Figure 11,
as shown by the red solid line. The sampler in the finite
element software is used to sample the magnetic flux density
of each branch, and 50 points are uniformly sampled along the
path for each branch. The average magnetic flux density of
each branch is taken as the reference value. The comparison
results of the twomethods are shown in Fig. 12. The compari-
son results of the twomethods are shown in Fig. 12. The black
curve shows the calculation results of FEM, and the red curve
shows those of nonlinear magnetic network equations. The
green vertical lines show the relative error of the magnetic

FIGURE 11. Magnetic flux density by FEM.

FIGURE 12. Comparison with finite element method.

flux density of each branch of the two calculation meth-
ods. The relative error of the flux density from branch 2 to
branch 19 obtained by the two calculation methods is less
than 5%, while the relative error of branch 1 and branch 20 is
large. As branch 1 and branch 20 are located in the air gap
position, a large flux leakage will be generated. Therefore,
the equivalent cross-sectional area at the air gap cannot be
accurately determined, which leads to large errors. In fact,
the flux density of each branch calculated by the proposed
method is basically identical to the results of FEM which
verifies the correctness of the algorithm.

V. CONCLUSION
This paper established a nonlinear magnetic network model
of the TEAM P20 benchmark model, and the homotopy
continuation method is proposed to solve nonlinear magnetic
network equations. The following conclusions are obtained.

1) Homotopy continuation method can effectively solve
the nonlinear magnetic network equations, improve the
convergence of nonlinear magnetic network calcula-
tions, and expand the convergence range.
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2) Homotopy continuation method can avoid the com-
plicated calculation of the Jacobian matrix of the
Newton-Raphson iteration method, and can reduce the
calculation time by nearly 10 times or more.

3) Initial value and continuation step size affect the iter-
ation number of the solution. In general, the larger the
continuation step size, the fewer the number of itera-
tions. The smaller the continuation step size, the easier
it is to follow the solution branch, but the number of
iterations will increase accordingly.

4) Homotopy continuation method has clear physical
meaning to solve the nonlinear magnetic network equa-
tions. The calculation starts from a linearmagnetic field
and gradually transitions to a nonlinear magnetic field
considering saturation.
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