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ABSTRACT We develop a cylindrical shape decomposition (CSD) algorithm to decompose an object,
a union of several tubular structures, into its semantic components. We decompose the object using its
curve skeleton and restricted translational sweeps. For that, CSD partitions the curve skeleton into maximal-
length sub-skeletons over an orientation cost, each sub-skeleton corresponds to a semantic component. To
find the intersection of the tubular components, CSD translationally sweeps the object in decomposition
intervals to identify critical points at which the shape of the object changes substantially. CSD cuts the
object at critical points and assigns the same label to parts along the same sub-skeleton, thereby constructing
a semantic component. The proposed method further reconstructs the acquired semantic components at
the intersection of object parts using generalized cylinders. We apply CSD for segmenting axons in large
3D electron microscopy images and decomposing vascular networks and synthetic objects. We show that
our proposal is robust to severe surface noise and outperforms state-of-the-art decomposition techniques in
its applications.

INDEX TERMS Cylindrical decomposition, electronmicroscopy, generalized cylinder, image segmentation,
skeleton decomposition, tubular object decomposition.

I. INTRODUCTION
Shape decomposition is a fundamental problem in geom-
etry processing where an arbitrary object is regarded as
an arrangement of simple primitives [1], [2] or semantic
components [3], [4]. Applications of shape decomposition
include disciplines such as object recognition and retrieval
[5], [6], shape reconstruction [7], shape clustering [8], or
modeling [9].

Our motivation for studying shape decomposition comes
from biomedical image segmentation. Advanced biomedi-
cal imaging techniques, such as 3D electron microscopy,
generate large image volumes whose size can range from a
gigabyte to hundreds of terabytes [10]–[12]. Segmentation of
such image volumes generally favors bottom-up strategies,
where the image is first over-segmented into supervoxels,
then supervoxels are merged subsequently [13]–[15]. This
strategy is error-prone because both the over-segmentation
and subsequent merge are subjected to greedy optimization
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as opposed to optimizing a global objective. Our idea is
instead to approach the segmentation problem based on a
top-down strategy, where under-segmentation is followed by
subsequent split using a priori knowledge of objects to be
segmented; in our case, tubularity of neuronal processes or
blood vessels. This strategy divides a large image volume
into sub-domains whose geometry/topology can be analyzed
based on a global objective, independently and in parallel,
but necessitates the development of a fast and robust shape
decomposition technique capable of processing thousands of
tubular structures in a reasonable time.

This article develops a novel decomposition algorithm
called cylindrical shape decomposition (CSD), decomposing
big voxel-based tubular objects in large image volumes. We
demonstrate the CSD’s application in segmenting tubular
structures, as the split operation of a top-down strategy, and
its application in decomposing general synthetic objects.

A. RELATED WORK
We categorize shape decomposition techniques in the litera-
ture into three categories: 1) representing an object in terms
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of geometrically homogeneous and simple primitives, such
as ellipsoids, convex components, or generalized cylinders
[1], [2], [7], [16]–[20]; 2) decomposing an object into its
semantic components using object skeleton or Reeb graph
[3], [4], [21], [22]; and 3) learning-based decomposition
methods [23]–[26].

Primitives are homogeneous components with a com-
pact representation and efficient computation. Examples of
primitives with a simple parametric representation include
ellipsoids [16] and straight cylinders [17]. This class of
primitives with a simple parametric representation is typi-
cally applied in description simplification of complex geo-
metrical models. Therefore, higher-level primitives such as
tubular primitives [18], convex components [1], [19], gen-
eralized cylinders [2], and generalized sweep components
[7], [20] were proposed for trading-off the representation
simplicity for the generality. For example, tubular primitives
in Plumber [18] are constructed applying a seeded region
growing with a heuristic set of sphere positions and radii. The
Plumber does not return a complete decomposition of objects
but extracts ideal tubular components [18]. Convexity-based
methods are another interesting class of high-level primitive-
based decomposition techniques, developed based on the
human tendency to divide an object into parts around concave
regions [27]. An exact decomposition of a shape into convex
components is costly and too strict for decomposition because
such methods can generate many small parts. Therefore, [19]
and [1] apply weakly convex components, which are derived
from analyzing the pairs of points in the shape visible to
each other, obtaining an approximate convex decomposition
(ACD). An alternative to the convex decomposition is gen-
eralized cylinder decomposition (GCD), quantifying cylin-
dricity. Reference [2] introduces a quantitative measure for
the cylindricity following the minimum description length
principle [28] as a measure of the skeleton straightness and
the variation among the profiles. In this method, the global
objective for merging local generalized cylinders is to min-
imize the cylindricity. The approximate convexes and gen-
eralized cylinders are effective high-level primitives, where
the approximate convex method generates smoother cuts
between parts, and the generalized cylinders suit better the
decomposition of tubular objects. The generalized cylinders
method is a computationally expensive technique, e.g., [22]
reported approximately 30 minutes for a single femur decom-
position. Another set of high-level primitive-based decompo-
sition techniques is based on cross-sectional sweeping. These
methods are computationally less demanding as compared to
the convexity and generalized cylinder methods. The sweep-
ing algorithms analyze object cross-sections and generate
homogeneous sweeping components. For example, in [20],
the object is swept along its curve skeleton in search of
critical points, where the object geometry/topology changes
substantially. This method uses the variation of the perimeter
of consecutive cross-sections as the homogeneity measure,
which is sensitive to the surface noise and prone to over-
segmentation. The method in [7] generates local prominent

cross-sections from a set of initial seed points. This method
is semi-automated, requiring user interactions to adjust the
density of cross-sections in different object regions and avoid
creating prominent cross-sections in regions with no sweep
evidence.

To decompose an object into its semantic components,
the object curve skeleton or Reeb graph can be used. Both
concepts are object descriptors able to guide a decompo-
sition: the curve skeleton is a 1D representation of a 3D
object [29], encoding its topology and geometry; the Reeb
graph tracks topology changes in level sets of a scalar func-
tion [29]. Reference [21] extracts object curve skeleton based
on a collapse measure, i.e., a measure of importance, and
subsequently provide an object decomposition by defining
skeleton-to-surface mapping based on the shortest geodesics.
Reference [3] extracts the curve skeleton, applying an implicit
Laplacian smoothing with global positional constraints, pre-
serving the mesh connectivity and its key features. Reference
[3] provides an object decomposition with an approximate
measure of thickness about extracted curve skeletons. The
tubular decomposition in [22] aims to be as close as pos-
sible to a Voronoi partitioning, having skeleton branches as
sites, while satisfying structural constraints that ensure each
decomposition element is a tube-like shape. These skeleton-
based decomposition methods [3], [21], [22] are applied to
segment synthetic objects into functional parts, which is not
the case for decomposing an under-segmentation error in
objects acquired from biomedical imaging datasets. In [4],
the decomposition of a 3D mesh is a two-step approach
accounting for the Reeb graph construction and refinement:
the Reeb graph captures the surface topology and protrusions,
and the refinement step uses curvature and adjacency infor-
mation on the graph critical points for fine localization of part
boundaries. This approach does not provide smooth boundary
cuts between parts, requiring the internal energy function
to control the smoothness of boundaries. In the context of
skeletonization, it is worth reviewing the L1-medial skele-
tonization [30] and rotational symmetry axis (ROSA) [31]
techniques. The L1-medial skeletonization employs local-
ized L1-medians to construct a skeleton. This method uses
a weighting function with a supporting radius that defines
the size of the local neighborhood; gradually increasing the
supporting radius yields a clean and well-connected skeleton.
ROSA defines a curve skeleton as a generalized rotational
symmetry axis of a shape. The position of a skeleton point
in a local set of points is computed by minimizing the sum of
the projected distances to the normal extensions of the data
points. The L1-medial and ROSA skeletonization techniques
may form cycles when two object parts are close to each other,
where the skeleton is to be acyclic. These two skeletonization
methods deal with incomplete point clouds, but the skeleton
centeredness within the objects is not guaranteed.

Learning-based methods are an important class of
shape decomposition techniques, from early statisti-
cal modeling methods [23] to recent deep neural net-
work techniques [24]–[26]. The objective function of a
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FIGURE 1. Outline of the CSD algorithm. (a) An object is a union of several tubular components. The tubular components are color-coded.
(b) A 800× 400× 70 voxel-based representation of the object. Intersections of the tubular components are magnified. (c) The curve skeleton of the
synthetic object in (b) is the union of all skeleton branches. Skeleton branches are color-coded and denoted as γ . We define a junction-point j as such a
point that skeleton branches connect. Junction-points are shown as blue filled-circles. (d) The curve skeleton of the object is partitioned into
maximal-length sub-skeletons ψ over a local orientation cost. The sub-skeletons are color-coded. (e) On a sub-skeleton ψ and in the proximity of a
junction-point j ∈ ψ , we define two decomposition intervals. The boundaries of decomposition intervals are shown with red filled-circles. The object is
swept along ψ and towards the joint j to find a critical point in each interval. At a critical point, the normalized Hausdorff distance Hρ between a
cross-sectional contour and the mean of visited cross-sectional contours exceeds θH . Sweeping directions are shown with arrows. (f) We cut the object at
critical points to obtain object parts. (g) The object parts along the same sub-skeleton are assigned the same label to construct a semantic-component.
The semantic-components are further reconstructed between their comprising object-parts using generalized cylinders. The synthetic object in (a)
comprises seven object-parts, and our algorithm decomposes it into three semantic components.

learning-based method is learned from a collection of labeled
training objects. Learning-based decomposition methods
have demonstrated impressive results, often producing seg-
mentation and labeling comparable to those produced by
humans. However, these techniques crucially depend on large
training datasets and are often impaired when the objects
to be decomposed deviate substantially from the training
material.

B. OUTLINE OF THE CSD ALGORITHM AND
CONTRIBUTIONS
The main idea of the CSD algorithm is to guide the
decomposition using the object curve skeleton and cut the
object by restricted translational sweeps. Fig. 1a shows an
under-segmented tubular object as a union of three tubu-
lar components. CSD begins with extracting the object
curve skeleton (Fig. 1c) and partitioning the skeleton into
maximal-length sub-skeletons over an orientation cost func-
tion (Fig. 1d). Each sub-skeleton corresponds to a semantic
tubular component. To identify intersections of the semantic
components, CSD translationally sweeps the object along
sub-skeletons, searching for critical points where the object
cross-section changes substantially (Fig. 1e). A translational
sweep is restricted in decomposition intervals; in the prox-
imity of junction-points where sub-skeletons intersect. The
object is cut at critical points to obtain object parts (Fig. 1f). A
semantic component is further reconstructed at intersections,
using generalized cylinders (Fig. 1g).
The CSD algorithm possesses several advantages over

previous shape decomposition techniques. Unlike semi-
automated methods in [7] and [3], CSD is a fully auto-
matic algorithm and requires no manual interventions; the
decomposition is guided using an algorithm that partitions
the object skeleton curve into distinctmaximal-length straight
sub-skeletons. Compared to primitive-based methods in [1],
[2], [16], [17], or skeleton-to-surface mapping in [4], [21],
our method identifies the intersection of the object parts and

defines smooth boundary cuts between them. Compared to
[20], our method is intrinsically more robust in defining criti-
cal points in the presence of noise because we measure cross-
sectional changes using the mean close curve of traversed
cross-sections andmodifiedHausdorff distance. In [2], gener-
ating a generalized cylinder requires iterative operations, yet
many such primitives are required to cover the object; hence-
forth, these primitives must be merged to satisfy a global
objective. Such methods are computationally expensive, not
suitable for the decomposition of big voxel-based objects in
large image volumes. Unlike [3], [21], [22], and [4], which
apply a one-to-one assignment between skeleton branches
and object parts, we propose to merge skeleton branches
belonging to the same semantic part. Unlike learning-based
techniques [23]–[26], our proposal does not rely on train-
ing and thus generalizes to the variation of tubular objects
extracted from medical images, where it attains consistent
quality without the need for additional training datasets. In
comparison to the L1-medial and ROSA skeletonization tech-
niques, we use a distance-based skeletonization approach,
which correctly stays at the center of the object, even when
the object parts are adjacent.

In the experimental section of this article, we demon-
strate the application of CSD in the segmentation of large
electron microscopy volumes of myelinated axons. We
also demonstrate the CSD decomposition of vascular net-
works and synthetic objects. Moreover, we compare CSD
to other state-of-the-art decomposition techniques (ACD [1]
and GCD [2]), and our skeletonization technique to well-
known skeletonization approaches (L1-medial and ROSA).
We also evaluate the effect of surface noise on decompo-
sition results and assess a methodology to reduce the CSD
computation-time.

II. PRELIMINARIES
This section defines the core concepts used in the paper as
there are no generally accepted definitions for most of them.
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A. OBJECT
An object � ⊂ R3 is a nonempty bounded open set. We
assume that its boundary ∂� is homeomorphic to a 2-sphere.
For a discrete object, which results from foreground segmen-
tation, we define a 3D binary image as I : X ⊂ Z3

→ {0, 1},
and a segmented object � := {x ∈ X : I (x) = 1}, where X
is the image domain. Throughout the paper,�, ∂�, and x are
in R3 unless defined otherwise.

B. CURVE SKELETON
Given � and ∂�, the curve skeleton ϒ ⊂ � is defined as
a locus of centers of maximal inscribed balls [32]. A ball
B(x, r) centered at x ∈ �with radius r is maximally inscribed
if its surface touches ∂� in at least two distinct points. For-
mally, B is a maximal inscribed ball in � if ∀B′, B ⊆ B′ ⊆
�⇒ B′ = B.

C. CURVE SKELETON POINT TYPE
We distinguish three types of points on the curve skeleton of
an object: 1) regular-points that have exactly two neighbor
points on the skeleton, 2) end-points that have exactly one
neighbor point on the skeleton, and 3) junction-points that
have three or more neighbor points on the skeleton [29]. We
denote the collection of junction-points as J where j ∈ J and
the collection of end-points as O where o ∈ O.

D. SKELETON BRANCH
Removing junction-points J from the curve skeleton ϒ

results in disconnected simple curves, known as skeleton
branches. The collection of skeleton branches is denoted as0,
and a skeleton branch is γ ∈ 0. For γ (t) : [0, 1] → R3, its
arc-length is written as l =

∫ 1
0 |γ̇ (t)| dt with the convention

γ̇ (t) :=
d
dt
γ (t).

E. SKELETON GRAPH
The topology of curve-skeleton ϒ can be represented as
a connected acyclic undirected graph (i.e., a tree) Gϒ =
(V ,E,L). There is a one-to-one map between skeleton
branches in 0 and edges in E and a one-to-one map between
the union of end-points and junction-points (O ∪ J ) and
vertices in V . This means that for each branch γ ∈ 0 we
associate exactly one edge in e in Gϒ . L ⊂ R+ is the set of
edge lengths. The length of an edge is the arc-length of its
associated skeleton branch.

F. WALK, PATH
A walk is a finite or infinite sequence of edges which joins
a sequence of vertices. A finite walk is a sequence of edges
W = {e1, e2, . . . , en′} for which there is a sequence of ver-
tices {v0, v1, . . . , vn′} such that ei = vi−1vi for i = 1, . . . , n′.
The vertex sequence of the walk is (v0, v1, . . . , vn′ ). A path is
a walk in which all vertices are distinct.

Sub-skeleton is a path in the curve skeleton domain.
If W = {e1, e2, . . . , en′} is a path in the skeleton graph,

and {γ1, γ2, . . . , γn′} are corresponding skeleton branches,
then ψ = ∪iγi ⊆ ϒ is a sub-skeleton.

G. CRITICAL POINT
Apoint on a sub-skeleton at which the cross-sectional contour
of the object changes substantially. We provide a formal
definition in section V-B.

H. CUT
A closed simple curve C ⊂ ∂� is a cutting-curve if ∂� \ C
is not connected. Cut means removal of a cutting-curve from
the surface.

III. OUTLINE OF THE CSD ALGORITHM
The outline of the CSD algorithm is shown in Fig. 1, and it is
as follows:

1) define the curve skeleton of a given object (Fig. 1c,
section IV-A);

2) partition the curve skeleton of the object into sub-
skeletons (Fig. 1d, section IV-B);

3) define decomposition intervals to restrict the object
sweep (Fig. 1e, section V-A);

4) sweep the object to find critical points and cut the object
at critical points (Fig. 1e and Fig. 1f, section V-B);

5) reconstruct the object between parts that have the same
label using generalized cylinders (Fig. 1g, section VI).

The CSD algorithm is designed for genus zeros objects.

IV. SKELETON PARTITIONING
We use the curve skeleton of an object to drive the decompo-
sition. For that, we partition the skeleton graph into several
distinct paths union of which covers the skeleton graph. The
partitioning of the skeleton graph, by extension, partitions the
curve skeleton into sub-skeletons. Each sub-skeleton corre-
sponds to exactly one semantic object component.

A. CURVE SKELETON
To determine the curve skeleton of an object � with sub-
voxel precision, we apply a method from [33] and [34]. The
algorithm initiates by determining a point x∗ ∈ � with the
biggest distance from the object surface ∂� inside the object
domain. This point is used to determine a skeleton branch
γ (t) : [0, 1] → R3, starting at xs, the furthest geodesic
point from x∗ in �, and ending at x∗. A cost function F
is defined to enforce the path to run in the middle of �,
where F should increase if the path moves away from the
center. To determine F , we find the distance field D(x) from

∂�, and assign F = 1 −
( D(x)
D(x∗)

)2. The distance field D(x)
is determined by solving an Eikonal equation on the object
domain� using the fast marching method [35]. Starting at xs,
the skeleton branch γ is traced by a back-tracking procedure
on F to reach x∗, written as

γ = argmin
P

∫ x∗

xs
F(P(t)) dt, (1)
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FIGURE 2. The curve skeleton of an object is the union of all skeleton
branches. (a) The skeleton of the synthetic object, size:
800× 400× 70 voxels, seven branches. The blue filled-circles show
junction-points, and the red filled-circles show end-points. The skeleton
graph of this object is Gϒ (V ,E, L), where E = {e1, . . . ,e7},
V = {v0, . . . , v7}, and L = {l1, . . . , l7}. (b) The skeleton of a synthetic
object, size: 128× 128× 128 voxels, six branches. (c) The skeleton of a
vascular network, size: 256× 256× 256 voxels, 20 branches. Skeleton
branches are color-coded.

where t traces the path P. We use the Euler scheme for the
back-tracking procedure, which solves the ordinary differ-
ential equation with a sub-voxel accuracy. This process is
repeated to determine further branches that form the curve
skeleton of the object. But rather than using the single point x∗

as the starting point for the fast marchingmethod, all points in
the previously calculated branches are used as starting points.
We propagate a new wave from the starting points with the
speed F to update xs. The point xs is now the furthest point
from the current state of the curve skeleton and the starting
point of the new branch. Applying a back-tracking algorithm
from the updated xs defines the new skeleton branch. Fig. 2
shows the skeletons of two synthetic objects and a vascular
network.

B. SKELETON GRAPH DECOMPOSITION
Several skeleton branches are often required to represent one
semantic component of an object, and therefore detecting
skeleton branches is not sufficient for a semantic decomposi-
tion. An example is shown in Fig. 2a, where the union of three
skeleton branches γ1, γ2, and γ3 is required to represent one
tubular component. To formalize what constitutes a semantic
decomposition, we consider connectivity, length, and local
orientation, to unify skeleton branches. We propose an algo-
rithm for traversing the graph representation of the curve
skeleton Gϒ (V ,E,L), decomposing Gϒ into distinct paths,
each corresponds to a semantic component. The algorithm
starts at the root edge and explores as far as possible along
edges, which provide the optimal choice at each stage.

We partition the skeleton graph of the object into sev-
eral distinct paths union of which covers the set of graph
edges. Formally, we partition Gϒ (V ,E,L) into m paths Wi,

i = 1, . . . ,m so that ∪iWi = E and Wi ∩ Wk = ∅ ∀i, k =
1, . . . ,m, i 6= k . To determine the paths, we require four
conditions: 1) the path contains the longest edge not associ-
ated to any other path, 2) the path has the maximum number

FIGURE 3. Partitioning the skeleton graph of the synthetic tubular object.
E comprises seven edges and is partitioned into three paths:
W1 = {e1,e2,e3}, W2 = {e4,e5}, and W3 = {e6,e7}. We determine W1
starting from the longest edge in E denoted as e∗ towards its incident
vertices. At each vertex, we traverse the edge with minimum orientation
cost. Appending new edges terminates when a leaf vertex is visited, or
the angle between two successive edges is smaller than θc . We subtract
W1 from E , when W1 is determined (see Algorithm 1). The blue
filled-circles show vertices in Gϒ . The edges are color-coded with
full-lines. At vertices, arrows show where to traverse next when standing
on e∗. The grey dash-lines show the previously calculated paths.

of edges, 3) the associated angle between two successive
edges is bigger than θc, and 4) the path locally minimize an
orientations cost. Denoting two successive edges in a path as
es and es+1, the edge es+1 has the maximum angle compared
to es among the set of connected edges to es. The angle
between two edges es and es+1 is the angle between the
line segments connecting endpoints of the skeleton branches
associated with edge es and es+1, and it lies in range [0, π].
We used Algorithm 1 to determine them distinct paths onGϒ .
Fig. 3 shows skeleton graph decomposition of the synthetic
object n = 7 into three paths m = 3. Each path is equivalent
to a sub-skeleton.

V. CYLINDRICAL DECOMPOSITION
In this section, we propose a method to decompose an object
into parts and intersections by cutting the object at critical
points. To determine critical points, we sweep the object
along sub-skeletons in decomposition intervals to find loca-
tions where the object geometry changes substantially (see
Fig. 6).

A. DECOMPOSITION INTERVAL
We restrict the sweep of the object along each sub-skeleton to
decomposition intervals in the proximity of a junction-point j
on sub-skeleton ψ , as illustrated in Fig. 4. It is convenient to
work with parametrized sub-skeletonψ(t) : [0, 1]→ R3. We
define two decomposition intervals [t+s , t

+
e ] and [t−e , t

−
s ] for

each junction-point as in Fig. 4a. To determine the boundaries
of a decomposition interval, we define an upper threshold
rs and a lower threshold re. We specify rs and re based on
the radius of the maximal inscribed ball at tj and two factors
αs ≥ 1 and αe ≥ 0 where αs ≥ αe, as rs = αs × r and
re = αe × r .
To determine the thresholds, we use the signed arc-length

from j. Define tj so that j = ψ(tj). Then t+s (t−s ) is
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Input : Gϒ = (V ,E,L); θc.
Output: Collection of distinct paths 3.
3← ∅

while E 6= ∅ do
W ← ∅; e∗← longest e ∈ E
V ∗← { incident vertices to e∗ }
W ← W ∪ {e∗}
forall υ ∈ V ∗ do

eref ← e∗

υnext ← υ

while deg(υnext ) > 1 and eref 6= ∅ do
CE ← { edges connected to υnext } \eref

enext ← ∅
forall engb ∈ CE do

θmax ← θc; θ ← 6 (eref , engb)
if θ > θmax then

θmax ← θ ; enext ← engb

end
end
eref ← enext

if eref 6= ∅ then
υnext ← υ2, where eref = (υ2, υnext )
W ← W ∪ {eref }

end
end

end
3← 3 ∪ {W } and E ← E \W

end
Algorithm 1: Decomposing the Set of Edges of Gϒ Into
Distinct Paths. A Vertex and an Edge Are Called Incident If
the Vertex Is One of the Two Vertices the Edge Connects

such a point on the sub-skeleton that signed arc-length
from tj to t+s (t−s ) equals rs (−rs). And t+e (t−e ) is such
a point on the sub-skeleton that signed arc-length from tj
to t+e (t−e ) equals re (−re). We have t+s < t+e < tj <
t−e < t−s .
The upper and lower thresholds may imply arc-distances

outside parametrization limits of ψ . If the arch-length from
ψ(0) to ψ(tj) is smaller than rs (re) we assign t+s = 0
(t+e = 0). And if the arch-length fromψ(tj) toψ(1) is smaller
than rs (re) we assign t−s = 1 (t−e = 1). Also, when a
junction-point is at the either ends of a sub-skeleton, e.g., in
a T-shape object, we define only one decomposition interval.
Therefore, if ψ(tj) = 0 (ψ(tj) = 1) the only interval that
we define is [t−e , t

−
s ] ([t

+
s , t
−
e ]). Fig. 4b shows decomposition

intervals in the proximity of j1 and j2 on sub-skeletonsψ1, ψ2,
and ψ3.

B. CRITICAL POINT
A critical point on a sub-skeleton is such a point that the
cross-sectional contour of the object at this point changes
substantially (Fig. 6). We use the Hausdorff metric to com-
pare geometrical changes between cross-sectional contours

FIGURE 4. (a) In the proximity of every junction-point, e.g. j1 blue
filled-circle, and on each sub-skeleton, e.g. ψ1 green line, we define two
decomposition intervals, [t+s , t+e ] and [t−e , t−s ], tracing ψ1, from t+s to t+e
and from t−s to t−e (red filled-circles). The lower and upper bounds of the
intervals are two factors of the radius of the maximal inscribed ball at tj ,
the green circle. (b) Decomposition intervals in the proximity of all
junction-points j1 and j2 and for all sub-skeletons ψ1, ψ2, and ψ3 are
defined with the red filled-circles. Only in decomposition intervals, we are
allowed to sweep the object. Arrows depict the sweeping direction to
approach junction-points.

FIGURE 5. (a) Two nearly similar curves C1 and C2. Turquoise arrows
represent OM(C1,C2), and pink arrows represent OM(C2,C1). (b) The
average curve µ obtained from the orthogonal correspondence between
C1, an already visited curve, and C2 a new cross-sectional curve.

in a decomposition interval. The Hausdorff distance between
two curves C1 and C2 is calculated as

H(C1,C2) = max{ sup
p∈C1

inf
q∈C2

d(p, q), sup
q∈C2

inf
p∈C1

d(p, q)},

(2)

where d(.) is the Euclidean distance between two points. We
sweep ∂� by a cross-sectional plane P ⊂ R3 to extract the
cross-sectional contours. A cross-sectional plane P(t) is a
plane orthogonal to ψ at every point t along ψ . The plane
normal is equal to the tangent vector to ψ at point ψ(t). We
sweep ∂� by P along ψ in [t+s , t

+
e ] interval starting at t+s

toward t+e , and in [t−e , t
−
s ] interval starting at t−s toward t−e ,

as illustrated in Fig. 4. Let P(t) intersects ∂� at an inquiry
point t . Since we assumed that ∂� is homeomorphic to a
2-sphere, the cross-sectional contour C(ς ) : [0, 1] → R2

is a simple closed curve, where C(0) = C(1). Translating
P along ψ(t) with t moving in decomposition intervals, we
compare the Hausdorff distance between the cross-sectional
contour at t denoted as Ct with the average of visited cross-
sectional contours µ.
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FIGURE 6. Sweeping the object surface along the sub-skeleton ψ1 at
junction-point j1 (blue filled-circle) between [t+s , t+e ] and [t+s , t+e ]
(red filled-circles). Sweeping directions are shown with arrows. At any
decomposition interval, if Hρ < θH the inquiry continues to the next
point. If Hρ (t) ≥ θH the inquiry stops at t and the point is called a critical
point. The critical point in the first interval is denoted as tc1 and in the
second interval is denoted as tc2 .

To find the average curve µ between two nearly similar
curvesC1 andC2, we first need a one-to-one orthogonal map-
ping (OM) between C1 and C2. Consider that C1 is param-
eterized by ς . To each point C1(ς ) of C1, the OM (C1,C2)
associates the closest point C2(ς ) on C2 that lies on the
line passing through C1(ς ) and having for direction the nor-
mal N (ς ) to C1 at C1(ς ). Having this mapping, then each
point C2(ς ) of C2 may be expressed as the normal offset
C1(ς )+ d(ς )N (ς ) of C1(ς ). We say that C1(ς ) is the closest
normal projection of C2(ς ) onto C1 and can express C2
as a deformation of C1 completely defined by the normal
displacement field d(ς ) (see Fig. 5a) [36]. The average curve
obtained by this orthogonal correspondence is asymmetric:
OM (C1,C2) is not necessarily equal to OM (C2,C1). There-
fore, we consistently take C1 as an already visited curve, C2
as the new cross-sectional curve, and define the average curve
over OM (C1,C2) (see Fig. 5).
We normalize the Hausdorff distanceH(Ct , µ) to the range

[0, 1] and denote it as Hρ(t). For that we first find a point
interior to Ct denoted as κ . We define κ ∈ R2 to be
the intersection of P and ψ at point t . Defining dCt (κ) =
supq∈Ct d(κ,Ct ), we write Hρ(t) as

Hρ(t) =
H(Ct , µ)

H(Ct , µ)+ dCt (κ)
. (3)

We define a similarity threshold between cross-sectional
contours as θH . While sweeping ∂� along ψ from t+s (t−s )
to t+e (t−e ), if Hρ(t) < θH , the inquiry continues to the
next point. However, if Hρ(t) ≥ θH the inquiry stops at t
and the point is called a critical point, denoted as tc1 (tc2 ),
as shown in Fig. 6. In [t+s , t

−
e ] ([t

−
e , t
−
s ]), if at no inquiry

point Hρ(t) exceeds θH , we define the tc1 (tc2 ) as the point
with minimum arc-distance r (−r) to ψ(tj) at which Hρ is
maximum.

VI. OBJECT RECONSTRUCTION
We cut the object at all critical points and decompose ∂� into
n parts, n is the number of skeleton branches, and δ inter-
sections, δ is the number of junction-points. We distinguish
between an object part and an intersection such that the

FIGURE 7. (a) Homotopy between two curves Cc1 (ς) and Cc2 (ς).
Generalized cylinder along (b) a linear, (c) spline, and (d) sine
interpolation between ψ(tc1 ) and ψ(tc2 ).

interior of an intersection includes a junction-point. The final
decomposition step is to discard intersections and assign the
same label to those object parts that are along the same
sub-skeleton to obtain m semantic tubular components, m
is the number of sub-skeletons. As we discard the inter-
sections, we reconstruct the semantic tubular components
using generalized cylinders. A generalized cylinder8(u, ς) :
[0, 1]2 → R3 represents an elongated surface on an arbi-
trary axis and smoothly varying cross-sections [37]. In Carte-
sian coordinates x1, x2, x3, the axis is parametrized by u as
ζ (u) = (x1(u), x2(u), x3(u)) and cross-section boundary is
represented as Cu(ς ) = (x1(u, ς), x2(u, ς)). To construct 8,
we apply a translational sweep along ζ (u) using closed simple
curves Cu(ς ) written as

8(u, ς) := {ζ (u) ∈ R3,Cu(ς ) ∈ R2
: u, ς ∈ [0, 1]}. (4)

To obtain a parametric representation of generalized cylin-
ders, it is convenient to employ a local coordinate system
defined with the origin at each point of ζ (u). A conve-
nient choice is the Frenet-Serret frame which is suitable
for describing the kinematic properties of a particle moving
along a continuous, differentiable curve in R3. The Frenet-
Serret frame is an orthonormal basis composed of three unit
vectors eT , eN , and eB, where eT is the unit tangent vec-
tor, and eN and eB are the unit normal and unit binormal
vectors, respectively. By defining the cross-section in the
Frenet-Serret frame, we form a parametric representation of
generalized cylinders [38] as follows:

8(u, ς) = ζ (u)+ x1(u, ς)eN (u)+ x2(u, ς)eB(u) (5)

To define Cu(ς ), we use a homotopy between two curves
Cc1 (ς ) and Cc2 (ς ), where the curves are obtained by cross-
sectioning the object surface at critical points tc1 and tc2 ,
respectively (see Fig. 7a). Let the simple closed curvesCc1 (ς )
and Cc2 (ς ) in R2 be homotopic with a continuous map h :
[0, 1]2→ R2. So, we write:

h(0, ς) = Cc1 (ς ), h(1, ς) = Cc2 (ς ), ∀ς ∈ [0, 1], (6)

h(u, 0) = h(u, 1), ∀u ∈ [0, 1], (7)

where h is called a homotopy from Cc1 (ς ) to Cc2 (ς ). We
denote a cross-section at a point along ζ (u) as Cu := h(u, .).
Note that, R2 is simply connected space. We use a linear
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homotopy between Cc1 (ς ) to Cc2 (ς ) defined as:

h(u, ς) = (1− u) Cc1 (ς )+ u Cc2 (ς ), (8)

where the computation on the right side is inR2. Equation (8)
essentially indicates that we are moving from Cc1 (ς ) to
Cc2 (ς ) along a straight line. To define the curve ζ (u), we use
an interpolation between ψ(tc1 ) and ψ(tc2 ). Figs. 7b-d show
8 on different choices of ζ .

VII. EXPERIMENTAL RESULTS
In this section, we evaluate the effect of CSD parameters
on object decomposition, present the applications and advan-
tages of the proposedmethod in decomposing tubular objects,
and show the performance of CSD applied on more general
objects. We use the marching cubes algorithm [39] to com-
pute a triangulated mesh of the object surface, visualizing
voxel-based objects.

A. PARAMETER SETTING
In all our experiments, we fix the value of αe = 1
(section V-A), meaning that the distance of t+e (t−e ) to a
junction-point is equal to the radius of the maximal inscribed
ball at that junction-point. Here, we examine the effect of
αs, which determines t+s (t−s ) of the decomposition intervals
(section V-A) for values equal to 10, 20, and 30. For that,
we set the similarity threshold θH (section V-B) equal to
0.7. We use a linear interpolation to define ζ , the curve on
which a generalized cylinder is defined (section VI), and set
the value of the angular threshold θc (section IV-B) equal
to 0◦. Figs. 8a-c show the decomposition of the synthetic
tubular object for αs equals 10, 20, and 30, respectively. The
decomposition/reconstruction at αs = 10 is more faithful to
the original object as the critical points are detected close to
the junctions. Increasing the value of αs enlarges the decom-
position interval. Therefore, at αs = 30, CSD detects the
critical points distant from the junctions, resulting in a bigger
reconstruction error compared to small values of αs. It is
worth noting that although setting αs to small values provides
more accurate decomposition/reconstruction results, it may
also result in defining a critical point within an intersection.
This can be the case when applying CSD to objects degraded
with surface noise. The curve skeleton of an object with
surface noise may not exactly lie in the center of the object,
which means that the junction-point can be dislocated and the
radius of the maximum inscribed ball at that junction-point
be measured smaller than its true value. For αs and αe, we
suggest values in range [3, 20] and [0.5, 2], respectively.

We also examine the effect of θH value, which is the
similarity threshold between cross-sectional contours and µ.
Figs. 9a-c show the decomposition of the tubular synthetic
object at θH equals 0.6, 0.7, and 0.8, respectively. To better
demonstrate the effect of θH , we setαs = 30, whichwe earlier
showed this could result in a substantial decomposition error.
We use a linear interpolation to define ζ and set θc = 0◦.
At θH = 0.6, CSD is sensitive to cross-sectional changes

FIGURE 8. Decomposition of the synthetic tubular object at
αs = 10,20,30 for fixed values of αe = 1 and θH = 0.7. We use a linear
interpolation to define ζ and set θc = 0◦. At αs = 10, the
decomposition/reconstruction is in agreement with the original object
because critical points are detected close to the junctions. Increasing the
value of αs enlarges the decomposition intervals, which may result in
inaccuracy while decomposition/reconstruction, e.g., at αs = 30.

FIGURE 9. Decomposition of the synthetic tubular object at
θH = 0.6,0.7,0.8 for fixed values of αs = 30 and αe = 1. We use a linear
interpolation to define ζ and set θc = 0◦. Increasing the θH value
increases the CSD tolerance in dealing with gradient cross-sectional
changes of the tubes. At θH = 0.8, CSD recognizes the critical points near
to junction-points, despite distant starting points from the junctions.

and does not tolerate the gradual increase of the tube diam-
eter; hence critical points are detected distant from junction-
points, and the reconstruction shows a low agreement with
the original object. Increasing the value of θH to 0.7 increases
the tolerance of CSD to cross-sectional changes. Therefore,
despite distant starting points from junction-points, the recon-
struction shows a better agreement to the original object, and
at θH = 0.8, the reconstructed object is faithful to the original
object. Note that increasing θH elevates the tolerance of CSD
to the cross-sectional changes quickly, e.g., at θH = 0.9, the
algorithm tolerates a nine times difference between a cross-
section and µ, and at θH = 0.95, it tolerates a 19 times
difference. We suggest θH to be in the range [0.7, 0.85].

In the skeleton partitioning section (section IV-B), we
showed that we merge two successive edges when the angle
between them is bigger than θc. Therefore, by setting θc to
big values, we emphasize the straightness of a path, but then
the path may not be maximal-length. Fig. 10 shows how θc
affects the number of semantic components. At θc = 0◦, all
successive edges are allowed tomerge evenwith acute angles;
therefore we obtain a minimum number of object partitions
with maximal-length paths (Fig. 10b). By increasing θc, only
successive edges with a close-to-straight angle are allowed
to be merged, which reduces the number of merges and
increases the number of object partitions. Fig. 10c shows that
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FIGURE 10. The angle between two successive edges in a path should be
bigger than θc to be merged. (a) A synthetic tubular object, size:
128× 128× 128 voxels. (b) Setting θc = 0◦ produces maximal-length
paths; the minimum number of object parts m = 3. (c) At θc = 135◦, the
number of object parts increases to m = 4. (d) At θc = 180◦, every edge in
the skeleton graph is a path, hence producing the maximum number of
semantic components, which is equal to the number of skeleton
branches, m = 5.

FIGURE 11. Overlapping of decomposition intervals when junction-points
are adjacent. (a) Two junction-points (left panel) and two intersections of
parts (right panel, grey sections) when αs is equal to 3. (b) Two
junction-points (left panel) and one intersection of parts (right panel,
grey section) when αs is equal to 10.

decomposition for θc = 135◦ yields four semantic compo-
nents. At θc = 180◦, no successive edges are merged, and
every edge in the skeleton graph corresponds with an object
part. Setting θc > 180◦ generates the maximum number
of object parts, equal to the number of skeleton branches
(Fig. 10d).

We design CSD to have the same number of part intersec-
tions as the number of junction-points. However, when two
junction-points appear adjacent on a sub-skeleton, we can
merge them into one, depending on the value of αs. Fig. 11a
shows a four-leg with two intersections. For αs = 3, the
decomposition interval around j1 does not cover j2, and the
decomposition interval around j2 does not cover j1; therefore,
the back of the four-leg, within its body, is decomposed.
Fig. 11b shows that for αs = 10, the decomposition interval
around j1 includes j2, and the decomposition interval around
j2 includes j1, resulting in one object part intersection, where
the four-leg body is the intersection of object parts.

B. AXON SEGMENTATION IN ELECTRON MICROSCOPY
VOLUMES
The primary purpose of developing CSD is to segment tens
of thousands of myelinated axons in electron microscopy
volumes of white matter, whose sizes are approximately
4000 × 2000 × 1300 voxels. We generate a probability
map of myelinated axons using deep convolutional neu-
ral networks (for details, we refer to [40]). We threshold
the probability map, and using connected component anal-
ysis, we obtain a preliminary foreground segmentation of
myelinated axons. Fig. 12a shows examples of myelinated
axons after connected component analysis with an under-
segmentation error(s): an axon intersects other axons or
merges with the extra-axonal space. We apply CSD to evalu-
ate every preliminary segmentation of myelinated axons for
the under-segmentation error. If CSD recognizes an under-
segmentation error, it decomposes the segmented compo-
nent into its semantic parts. Fig. 12 shows the proposed
decomposition of myelinated axons compared to the ACD
(developed for point clouds) and skeleton-to-surfacemapping
approaches. To apply ACD on large objects, we first down-
sample the point cloud representation of objects to 50 000
points, enabling the decomposition to be performed in a
reasonable time (less than 10 minutes per object). Fig. 12b
shows that ACD over-segments myelinated axons. We per-
form skeleton-to-surface mapping decomposition based on
the Voronoi partitioning of surfaces, using Euclidean distance
to skeleton branches (Fig. 12c). Because a curve skeleton
captures the object geometry, skeleton-to-surface mapping
decomposes an object close-to-semantic, but it does not rec-
ognize intersections of object parts and the boundary cuts
are not correct. Fig. 12d shows our decomposition of myeli-
nated axons, where CSD generates the correct number of
semantic parts for under-segmented myelinated axons and
reconstructs axons at intersections using generalized cylin-
ders. Fig. 13 shows the complete segmentation of myelinated
axons in a large electron microscopy volume, where CSD
scans, decomposes, and reconstructs about 30 000myelinated
axons.

C. DECOMPOSITION OF VASCULAR NETWORKS
We compare our method to ACD and skeleton-to-surface
mapping for the decomposition of a vascular network.
Fig. 14a shows that ACD over-segments the vascular net-
work. Fig. 14b shows that skeleton-to-surface mapping
decomposes the object into 20 semantic components based
on the Euclidean distance to skeleton benches, but the method
does not identify intersections, yet the boundary cuts are not
correct. For example, Fig. 14b (magnified box) shows that
where the thin vessel (green partition) bends on the thick ves-
sel (red partition), skeleton-to-surface mapping erroneously
assigns a part of the thick vessel to the thin vessel, the
part which is closer to the skeleton of the thin vessel. CSD
decomposes the object into eight semantic components and
reconstructs the object at intersections (Fig. 14c).
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FIGURE 12. (a) Examples of foreground segmentation of myelinated axons with under-segmentation. (b) Decomposition using ACD [1]. The point
cloud representation of objects is first down-sampled to 50 000 points to enable the decomposition task in a reasonable time; this method
over-segments the objects. (c) Skeleton-to-surface mapping [21] based on Voronoi partitioning of the surface using skeleton branches. (d) CSD
decomposition provides the correct number of semantic components in under-segmented myelinated axons. The objects are reconstructed at
intersections using generalized cylinders. Objects inside boxes are magnified.
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FIGURE 13. (a) A large electron microscopy volume of the white matter. The size of the volume is
4 055× 2 002× 1 292 voxels in x , y , and z directions, respectively. (b) A 3D rendering of myelinated
axons (at one-third of the original resolution). CSD evaluates a preliminary segment for
under-segmentation error(s), and if required, decomposes and reconstructs an under-segmented
myelinated axon. (c) A 3D rendering of myelinated axons sampled at different locations illustrating
the diversity of thickness and orientation in segmented axons.

FIGURE 14. (a) ACD [1] over-segments the vascular network. (b) Skeleton-to-surface mapping [21] decomposes the object into 20 semantic components,
and the boundaries between these components are not accurate. (c) CSD decomposes the object into eight semantic components and reconstructs the
object at intersections. Objects inside boxes are magnified. The 3D image of the vascular network is acquired from Colin Macdonald’s GitHub page.

FIGURE 15. A gallery of CSD decomposition of synthetic objects.

D. DECOMPOSITION OF SYNTHETIC OBJECTS
To demonstrate the general applicability of the CSD algo-
rithm, we examine the proposed CSD method on synthetic
voxelized objects. The synthetic objects are from the Prince-
ton segmentation benchmark database [41]. We voxelize
meshes from the Princeton database using a ray intersection
method described in [42]. The resolution of a voxelized object

is determined using the bounding box of its OFF model;
the bounding box values are normalized to range in (0, 1]
then multiplied by 128. The resolution at each dimension
is proportional to the length of the bounding box at that
dimension, e.g., the dimension with the maximum length is
represented by 128 voxels. Fig. 15 shows a gallery of decom-
position on a mixture of objects with articulating parts, such
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FIGURE 16. Human shape decomposition compared to the CSD
decomposition results. The human decomposition of meshes into
functional parts are treated as probabilistic ground truth; darker lines
show places where more people placed a segmentation boundary.

as humans, octopuses, or pliers, and objects with moderate
or small articulation, such as birds or fishes. Objects such
as tables or airplanes include flat parts, which cannot be
considered tubular. In Fig. 16, we qualitatively compare sev-
eral of the CSD results to how humans decompose an object
into functional parts (the darker the seam, the more people
have chosen a cut along that edge [41]). For quantitative
analysis, we compare ACD, GCD, and the proposed CSD
method to the human decomposition over objects acquired
from the Princeton database. We select two objects per cat-
egory from the Princeton database, excluding categories that
have objects with the genus bigger than zero, such as cups
or vases, and categories that have an ambiguous skeleton,
such as busts or mechs. The objects and their corresponding
human segmentations are converted from mesh to voxel-
based representation. To aggregate evaluation metrics over
multiple human segmentations for the same model and mul-
tiple models for the same object category, we report aver-
ages per category (averages are computed first within each
model, then the results are averaged within each object cat-
egory). We report Rand error [43] and boundary error [44]
and propose using the variance of information (VOI), which
has a better discriminative error range than Rand error [45].
Table 1 shows that the proposed CSD algorithm outperforms
both ACD and GCD methods. We stress that these results
refer to the decomposition of the voxel-based objects (as
obtained in biomedical imaging experiments), and we make
no claims about the superiority of CSD when, for exam-
ple, mesh-based representation of the surfaces would be the
natural one.

E. DECOMPOSITION OF NOISY SYNTHETIC OBJECTS
We develop CSD to decompose voxel-based objects,
e.g., objects extracted from biomedical images, where noise
can degrade the object surface. To examine how noise affects
decomposition techniques, as shown in Fig. 17a, we add
impulse noise to the surface of an object for different noise
density Dn values; Dn = 0, 0.1, 0.35, and 0.6. Fig. 17b
shows that ACD over decomposes the noise-free object to
64 parts and 82 parts when noise density equals 0.6. The
GC decomposition of the noise-free object is approximately
correct, but over-decomposes the noisy object at Dn = 0.1

TABLE 1. Comparison of decomposition techniques using Rand error
(RE), the variance of information (VOI), and boundary error (BE) to human
shape decomposition; smaller values are better. The average
decomposition time (Time) of all objects reported in this table is
presented as mean ± standard deviation. These decomposition
techniques are implemented using different programming languages
(ACD [1]: C++ and Matlab, GCD [2]: C++, and CSD: Python) and take
different object representations as input (ACD: point cloud, GCD: mesh,
and CSD: voxel).

(Fig. 17c). GCD does not decompose the object at stronger
noise levels when Dn equals 0.3 or 0.6. The proposed CSD
method decomposes the objects at different noise levels with
excellent performance, as shown in Fig. 17f. For the quan-
titative analysis, we compare decompositions against human
segmentation using Rand error, VOI, and boundary error, as
in Table 2. The ACD and GCD decomposition errors are high
on different metrics while constantly low for the proposed
CSD method.
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FIGURE 17. Decomposition of (a) ACD [1], (b) GCD [2], and the proposed CSD method (d-f) when the object surface is degraded with
the impulse noise for the noise density Dn equals 0, 0.1, 0.35, and 0.6. The original Hausdorff distance as the similarity measure in
the proposed CSD method is substituted with alternative metrics: (d) the shape context (ShCx) method [46], (e) original Hausdorff
distance (OHD), and (f) modified Hausdorff distance (MHD) [47].

TABLE 2. Comparison of different techniques over the voxel-based object shown in Fig. 17 using Rand error (RE), the variance of information (VOI), and
boundary error (BE). Smaller values indicate a closer decomposition to how humans decompose an object into functional parts. The average
decomposition time (Time) of all objects reported in this table is presented as mean ± standard deviation. The GCD [2] method does not decompose
objects at strong noise levels when Dn equals 0.3 or 0.6 and returns the object itself; therefore, we reported the GCD decomposition time for all
experiments separately, showing the decomposition time of a failure case with∞. These decomposition techniques are implemented using different
programming languages (ACD [1]: C++ and Matlab, GCD: C++, and CSD: Python) and take different object representations as input (ACD: point cloud,
GCD: mesh, and CSD: voxel).

F. CROSS-SECTIONAL SIMILARITY METRIC
To define a critical point in section V-B, we use the Haus-
dorff distance as defined in (2) to compare geometrical
changes between cross-sectional contours. The Hausdorff
distance can be sensitive to surface noise, showing a mis-
match between cross-sectional contours that belong to the

same object part. Figs. 17d-f show the CSD decomposi-
tion performance, substituting the original Hausdorff distance
with alternative shape matching techniques: the modified
Hausdorff distance [47] and shape context metric [46]. We
set θH equal to 0.8 for the original and modified Haus-
dorff distances and set a similarity threshold of 0.5 for the
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FIGURE 18. Skeletonization using (a) L1-medial [30], (b) ROSA [31], and (c) CSD distance-based techniques. L1-medial and ROSA may incorrectly form
cycles in the skeleton of genus zero objects when two object parts are close, while the CSD skeletonization generates separate branches for different
object parts. Also, L1-medial and ROSA do not necessarily stay within the object, while the CSD distance-based skeletonization approach penalizes the
skeleton where the path moves away from the center of the object. Objects inside boxes are magnified.

shape context metric. The surface of the synthetic object in
Fig. 17a is degraded with the impulse noise for the noise
density Dn equals 0, 0.1, 0.35, and 0.6. In Table 2, we
quantitatively evaluate decompositions using different cross-
sectional similarity metrics and at different noise levels to the
human segmentation using Rand error, VOI, and boundary
error. Results demonstrate that different CSD similarity met-
rics yield excellent decompositions for the noise-free object,
where the original Hausdorff distance performs better than
the shape context metric and modified Hausdorff distance.
With increasing the noise density, however, modified Haus-
dorff distance performs better than the shape context and the
original Hausdorff metrics. The modified Hausdorff distance
produces an excellent decomposition across noise densities.

G. CHOICE OF SKELETONIZATION TECHNIQUE
The skeleton partitioning step guides the CSD algorithm
for semantic decomposition; therefore, the quality of the
skeletonization itself is crucial for the decomposition. We
compare the CSD skeletonization approach to the L1-medial
skeletonization andROSA techniques in terms of the topolog-
ical correctness and centeredness of the extracted skeletons.
We compare these skeletonization techniques on synthetic
voxel-based objects from McGill 3D Shape Benchmark [6].
Fig. 18 shows that when two object parts appear very close,
L1-medial (Fig. 18a human hand) and ROSA (Fig. 18b octo-
pus) merge the object parts and form a cycle in genus zero
objects. The CSD skeletonization, see Fig. 18c, generates

separate branches for different object parts. Also, flat object
parts, such as tabletop, do not possess a reasonably meaning-
ful curve skeleton, but CSD skeletonization generates a more
meaningful skeleton than the other two methods. In terms
of centeredness, L1-medial and ROSA do not stay within
the object. The CSD distance-based skeletonization approach
penalizes the skeleton where the path moves away from the
center of the object. Table 3 shows the computation time
spent on skeletonization with L1-medial, ROSA, and CSD
methods. The CSD skeletonization is faster than the other two
methods, rendering it suitable for large objects.

H. COMPUTATION TIME
The time complexity of the sub-voxel precise skeletoniza-
tion is O(nN� logN�), where n is the number of skeleton
branches, andN� is the number of voxels in a discrete�. The
N� logN� factor is from the fast marching algorithm [35].
The time complexity to determine a critical point is O(Np),
whereNp is the number of inquiry points that we check for the
cross-sectional changes in a decomposition interval. Defining
the critical points is independent ofN�. The complexity of the
method is measured through the number of basic arithmetic
operations performed; other factors that may also influence
the execution time, such as the number of memory accesses
or memory consumption, have not been considered.

A fair comparison between the computation times of
different decomposition techniques by the wall clock time
requires the same constraints for all techniques. Providing
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TABLE 3. The skeletonization time for objects in Fig. 18 using L1-medial
[30], ROSA [31], and the proposed CSD method. These methods are
implemented using different programming languages (L1-medial: C++,
ROSA: C++ and Matlab, and CSD: Python). L1-medial and ROSA take
point clouds as input, while CSD takes voxel-based objects as input.
Therefore, the times reported are not directly comparable but provide
insight into the speed of skeletonization algorithms, which is important
for our segmentation application of large objects. For L1-medial and
ROSA, we report the number of points (pts). For CSD, we report the
number of voxels representing objects; the bounding box of objects is
128× 128× 128 voxels.

FIGURE 19. Sampling object sub-skeletons to reduce the decomposition
time. The decomposition of a human and a four-leg at (a) sf = 1, (b)
sf = 4, (c) sf = 16, and (d) sf = 64.

such constraints is challenging because different decomposi-
tion techniques use different programming languages or take
different object representations as input. In spite of that, we
demonstrate the average decomposition time of ACD, GCD,
and the proposed CSDmethod in Tables 1 and 2. The average
decomposition time of the proposed CSD is shorter than ACD
and GCD in all our experiments: the average decomposition
time of synthetic objects is 3 m for CSD, 21 m for ACD, and
5 m for GCD. Note that, although the computation times of
the GCD and proposed CSD methods are close, we have not
been able to decompose objects acquired from biomedical
image datasets, e.g., axons (Fig. 12) and the vascular network
(Fig. 14), using GCD within a day.

We also propose to reduce the CSD computation time
by reducing the number of inquiry points Np. For that, we
propose to sub-sample the sub-skeletons by a sampling factor
sf , as shown in Fig. 19. Increasing sf reduces the computation

TABLE 4. Evaluation of how sampling the sub-skeletons for sf equals 1,
4, 16, and 64 affects decomposition results of objects in Fig. 19 using
Rand error (RE), the variance of information (VOI), and boundary error
(BE), considering decomposition at sf = 1 as the ground truth. The
decomposition results are achieved on a 4-core Intel CPU 3.41 GHz
computer with 64 GB RAM using Python 3.6.

time linearly while affecting decomposition results mini-
mally. Fig. 19 shows the decomposition of three objects at
sf equals 1, 4, 16, and 64. To evaluate the effect of sampling
the sub-skeletons on decomposition results, we compared
decomposition results over Rand error, VOI, and boundary
error, considering decomposition at sf = 1 as the ground
truth. Table 4 shows that decomposition by a factor of four
substantially reduces the computation time, whereas the eval-
uation metrics worsen minimally. Reducing the computation
is important when dealing with big voxel-based objects. For
example, on a 2× Intel Xeon E5 2 630 CPU 2.4GHzmachine
with 512 GB RAM using Python 3.6, the skeletonization
of the myelinated axon shown in the first row of Fig. 12
(N� = 395 594) consumes 117 s and defining its critical
points 353 s, and sampling the sub-skeletons by sf = 5
reduces the decomposition time to 75 s.

VIII. CONCLUSION
In this article, we proposed the application of 3D shape
decomposition in image segmentation. We presented the
novel CSD algorithm to decompose and reconstruct under-
segmented tubular objects. The CSD method is guided by
the curve skeleton decomposition, decomposing a tubular
object into maximal-length, approximately straight parts.
The object is cut at the intersection of parts using transla-
tional sweeps and reconstructed by generalized cylinders. We
demonstrated the application of CSD on biomedical imaging
volumes and synthetic objects. In particular, we applied CSD
as instance segmentation to deep learning-based semantic
segmentation of myelinated axons. Hundreds of thousands
of myelinated axons were automatically evaluated for under-
segmentation error, and under-segmented myelinated axons
were decomposed into their constituent axons, using the same
parameter values for all objects in all electron microscopy
datasets. We showed that CSD outperforms state-of-the-art
techniques in decomposing voxel-based objects and is robust
to severe surface noise. CSD is highly parallelizable, sub-
stantially reducing the computation time of the segmentation
in large biomedical imaging datasets. The proposed CSD
algorithm allows for including the cylindricity as a global
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shape-objective for a fast 3D segmentation of tubular objects
in large biomedical imaging datasets.
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