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ABSTRACT The paper presents a novel sensor-based disease symptoms evaluation method which can be
applied in the domain of neurological treatment monitoring and efficiency analysis. The main purpose of
the method is to provide a quantitative approach for symptoms recognition and their intensity, which can be
used for efficient medicine intake planning for Parkinson’s Disease patients. This work presents an innovative
method, which enables to objectify the process of clinical trials. The developed solution implements sensor
data fusion method, which analyses time correlated wearable sensor biomedical data and symptoms survey.
We have merged two separate methods of recognizing and assessing the intensity of Parkinson’s Disease (PD)
symptoms using time-constrained survey as well as sensor and interaction-based algorithms, which enable
to objectively assess the intensity of disease symptoms. Based on process-based analysis and clinical trials
observations, a set of requirements for validating symptoms of neurological diseases have been formulated.
Proposed solution concentrates on PD indicators connected with arms movement and mental reaction
delays, which can be registered using wearable sensors. Since 2017 the tool has been tested by a group
of four selected neurologists and 10 users, 3 of which are PD patients. To meet the project’s supplementary
(efficiency, security) requirements, a test clinical trial has been performed involving 3 patients executing trials
which lasted two weeks and was supported by the continuous application usage. After successful deployment
the method and software tools has been presented for commercial use and further development in order to
adjust its usage for other neurological disorders.

INDEX TERMS Machine learning, biomedical signal processing, computer aided diagnosis, Parkinson’s

disease, medicine intake prediction.

I. INTRODUCTION

One of the crucial problems for people suffering from
Parkinson’s disease is the difficulty to precisely adjust and
tune pharmaceutical treatment involving both dosage and
intake frequency [19]. From patient’s point of view, the sup-
port for monitoring the PD symptoms in order to minimise
the treatment bias is extremely important. It delivers lower
costs for the patient but also prolongs available usage of the
assigned treatment designed in form of mono or polytherapy,
lowering the risk of drug tolerance. In order to optimize the
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dosage and composition of the pharmaceuticals, neurologist
apply commonly effective treatment strategies, which may
be inefficient, for many reasons among which major role
plays the drug composition and dosage. It can be observed
that in the earlier stages of the treatment the lower amounts
are effective, but the conventional methods rely only on neu-
rological consultations, thus making the adjustment process
very inert. The introduction of handheld, personal devices
in form of configured smartphones integrated with wearable
sensor, can offer new means of quantitative disease symptoms
assessments. The tool presented in the paper is aimed at
evaluating symptoms of the disease therefore indirectly sup-
porting the evaluation of drug dosage and usage. The clinical
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trials [25] and their methodology have been constructed as
a process of testing new drugs in comparison to reference
pharmaceuticals and placebo products, however, the main
problem is the subjective evaluation of the drug effects made
by patients. Ordinarily patients report the daily treatment
effects and health events at the end of day, making the process
inaccurate and remembering in which state they have been
during the day, making the assessment process inaccurate and
biased.

The major, original findings of presented research provide
three correlating aspects of pharmaceutical therapy evalua-
tion: subjective health state evaluation - based on the patient
survey reports; tremor and movement disorders recognition
and evaluation of their intensity — based on the inertial
and biomedical sensor signals; reflex and mental perception
assessment - based on dedicated exercises requiring interac-
tion with the touch screen (not discussed in this paper).

The developed method and sensor data processing algo-
rithms provide all three aspects in correlation with the pre-
scribed therapy (mono or poly - therapy) assigned to patient
in conducted clinical trial. IQPharma Clinical Trials Assis-
tant can also be used by medical institutions to assess effi-
ciency of treatment providing alternative usage scenario.
The constructed tool and its methodology utilizes conven-
tional surveying supplemented with biomedical sensor signal
recording for neurological symptoms recognition and inten-
sity evaluation, making testing more time-constrained and
compliant with prescribed treatment [1]. Developed mobile
system is using wearable sensors and exercises to assist
clinical trials in order to supplement used assessments with
quantitative approach evaluating registered symptoms. Such
approach is a supplement for patient’s subjective evaluation
of health state. Existing on the market methodology relies
often on patient’s health state evaluation based on iteratively
answered diagnostics questions, which can be easily post-
poned thus biasing accurate patient’s health state evaluation
and consequently treatment efficiency. The paper proposes a
method for planning the medicine intake schedule; beginning
with sensor data acquisition, through biomedical signal pro-
cessing (for state evaluation), finishing with an optimization
problem solving adjusted and personalised pharmaceuticals
daily schedule. This work main purpose is to describe soft-
ware tool supplemented with method for data validation and
functionality testing. Presented data have been collected and
further extended as test sets in order to check the consistency
of the system and implemented methods.

Il. RESEARCH BACKGROUND

Parkinson’s disease is a neurodegenerative disorder affecting
the central nervous system. It is caused by neuronal loss in
the substantia nigra which leads to lower dopamine level and
accumulation of alpha-synuclein — a protein that forms Lewy
bodies [5]. However, the diagnosis does not rely on the cause
but on visible symptoms including bradykinesia, tremor,
rigidity, postural instability and asymmetry of motor symp-
toms. To rule out other diseases blood tests are conducted
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and in order to confirm the diagnosis a positive response
to levodopa is expected. Levodopa is one of the medication
used in treatment, it is a precursor of dopamine that is able
to cross the blood-brain barrier and is later metabolized to
dopamine in the brain, leading to the increase in concentra-
tion of dopamine decreasing the intensity of symptoms [18].
Wrong administration of medication in Parkinson’s disease
can lead to severe side effects, overdosing may lead to
hypotension, dyskinesia, arrythmias, freezing during move-
ment and dopamine dysregulation, but the doses must be big
enough to restrict the symptoms. During treatment clinicians
try to limit the dosage of this drug as much as possible.
This is why it is necessary to predict the dosage and interval
of medication intake accurately. The implemented system
provides a solution to predicting both the size of the dosage
and the intake time to keep the dopamine level optimal for
patients with diagnosed Parkinson’s disease. The solution
presented in this paper bases on the profile of a patient — his
medical history provided at the beginning and the evaluation
of his state using subjective data (provided by the patient) and
objective indicators (data acquired from sensors).

For the purpose of the research presented in the paper
sensor data has been collected from 3 selected tem-
plate patients (P1, P2 and P3 on Fig. 3) experiencing
the Parkinson’s tremor of the Medical Center Pratia in
Warsaw based on informed consent. Using acquired data
and knowledge additional 11 patients have been generated
(P4-P14). An example of an examination has been presented
on Fig. 1.

FIGURE 1. Test trials with multi-sensor examination conducted by a
patient using Myo armband during project’s testing and calibration phase.

Ill. TOOL REQUIREMENTS AND PROCESS COMPOSITION
The described solution consists of two applications, the
mobile application designed to serve the patient with his daily
examinations and a web application which is mostly used by
the clinical trials supervisor e.g. a medical doctor. The activity
of the patient is tracked by external as well as internals sensors
of the mobile device. All the data is transmitted to the web
application, where the supervisor can view and manually
adjust the treatment. The structure of the system is presented
on Fig 2.

VOLUME 9, 2021



T. Gutowski, M. Chmielewski: Algorithmic Approach for Quantitative Evaluation of Parkinson’s Disease Symptoms

IEEE Access

«web application E
IQPharma CTA Trials Ma ent
Portal
! flow: !
«use» \y « » \y
«services» El
IQPharma CTA Trials Management
Services API O<<-
authenticationtService
= -
regis!ra!ionSemidle
I
<
clinical Trial DdtabefinitionService
- __
—O<-m
clinic; TdaIDataRebo‘r}.ingService
<= —1-F ++1
sensorDataRe;ilor*inéS%rvlce
|
- [ |
noti; o [
prn : |
[
«mobile application» El : : [ :
IQPharma Clinical Trials Assistance P [
[
AR
«activity» gl P I
CTA Ul Multi Fragment Activ ity 1! [ : |
[
1 l
—C-_q_l [
— Ty
Y b
L ! quse» _C'—I__‘ [
Py «service» gl  «use» | [
I 1 1| | =|Clinical Trials Schedule a | [
R I —C-5-== 1
[ Management Service ¢ T !
— — STl - Senso | I
| [ | datal ) : |
| g ! C e
| 1 : 1! «service» El ONSUMRErE— f :
|r——|—|—|—|—|——- Sensor Test Service ol ! | |
| == v
I [ | | |
N} [ «use»l | H |
eotg! H |
||,——+-r-:»+——— «service» gl — 11 : : 1
1t 11 | l-—=> Survey Management [ | | 1
[l I «use» Service [ | | 1
neer wer | | 1 [
i g ratd| i . |
: I:.— —:—:—0———— — «service» El < : : | «use» |
1 L — — => Communication Service g‘ | ! !
e s -l p=C-r----=
| I |
[N ‘ |
g b _ El ctaNohfcat‘on |
||| I—J- _____ «service» -
«use»: :_ I L _ > Notification Service O I~ :': :
I«Ll.sé;n : Kuse» 1 |
IRATIN 1 |
1 !
—————— «service» [l :
_____ Configuration Service : | |
«use» I : |
1 |
I |
notify |
1 |
I |
1 |
«service DAO» g] e
CTA Database Retention Service : : |
1 !
1 !
1 !
1 :
ctaNotification : : |
——————— |
provider T :
|
«service» |
Google Firebase Integration —O<!
Services notify

FIGURE 2. The architecture and main logical components of the CTA
system mobile application and server services integrated with MYO
multi-sensor wearable. Diagram represents subsystems, functional
components and service providers-consumers.

Upon registration every user is required to provide data
about his condition: age, sex, coexisting diseases, length of
treatment, taken medication, addictions, weight, height, aver-
age sleeping hours and blood type. Provided information will
be used to indicate an appropriate treatment most accurately.
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FIGURE 3. Newly added patient in relation to other patients regarding
first two principal components.

Patients that are already in treatment, pose as a base to
the nearest neighbors algorithm that is used to find patients
in similar conditions and their current and most successful
treatment. The nearest neighbor algorithm finds patients that
are the closest to the analyzed node in the multidimensional
space using specific metrics to calculate distance between
the nodes. Most commonly used metrics include Euclidean,
Manhattan, Minkowski and Mahalanobis [22].

To define a point in the space for each patient, the pro-
vided attributes will be treated as coordinates along specific
axis. Continuous attributes (age, length of treatment, weight,
height, sleeping time) of the patient are used directly, coexist-
ing diseases, taken medication and addictions are aggregated
and afterwards represented by binary values, e.g. the addic-
tions are aggregated to the following values: none, alcohol,
drugs, nicotine and others. Each of the addiction type is rep-
resented by a binary value indicating whether it occurs. The
coexisting diseases are aggregated according to the ICD-10
[4] resulting in 21 binary features and the taken medication in
additional 20 (14 regarding basic classification and 6 regard-
ing Parkinson’s disease). The resulting vector consist of many
features what results in bad time performance (when there
are many patients) in case of nearest neighbors algorithms.
Principal component analysis (PCA) [29] has been used to
reduce the number of features dimensions to 4, delivering
satisfactory calculation time and classification accuracy. PCA
is a statistical method often used for dimension reduction,
it computes principal components making sure that every next
component accounts for the largest remaining variance. There
can be as many principal components as there are variables,
but every newly introduced component is less significant and
depending on the level of required accuracy (usability in the
method) only the first few are considered. PCA can decrease
the required computation time, at the cost of accuracy and
interpretation of newly defined variables (each of them is a
combination of primary variables that are easy to understand
and interpret).

Fig. 3 presents finding closest, most similar patients to
the newly registered user. Treatment schedule for a new
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patient will be based on schedules of his nearest neighbors.
In this example Euclidean metrics was used because it has
proven to give the best results in this situation. Specific
variable values for current patient and his nearest neighbors
are shown in Table 1, a feature vector for the new patient (P14)
is (65,0,1,182,82,8,6,22,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0).

TABLE 1. Features of newly added patient and his nearest neighbors.

Patient 1 Patient 13 Patient 14
Age 67 73 65
Sex Male Male Male
Blood type 0+ 0+ 0+
Height 178 182 182
Weight 86 81 82
Length of 8 months 10 months 8 months
treatment
End sleep 7:00 6:00 6:00
time
Sleep start  22:00 22:00 22:00
time
Addictions - Nicotine Nicotine
Coexisting  Cardiovascular - Cardiovascular
diseases disease disease
Taken Levodopa, Levodopa Levodopa,
medication Cardiovascular Cardiovascular

system related system related

After the registration process is complete the supervi-
sor, based on similar cases (k-Nearest Neighbors algorithm),
assigns a new schedule to the patient. Once the schedule
is made available, the mobile device is notified, schedules
events and notifies the user about all of them according to
the provided schedule. The whole process, since the registra-
tion to completion of first examination is presented using a
sequence diagram on Fig. 4.

IV. PROCES OF DATA ACQUSITION

The application captures signals registered by sensors built
into the mobile device as well as data from external sensors
e.g. Thalmic Labs Myo armband, Shimmer + ECG/EMG
units. The data from external devices is transmitted via Blue-
tooth to the mobile device. The signal data is saved to the
device and is persisted to the global database via Internet
connection.

The process of data acquisition can be carried out in two
modes: continuous and on-demand — as remotely scheduled
by the neurologist.

The on-demand mode focuses on the calendar with planned
events that require user interaction. These events include
examination, survey and medicine intake. Each examination
has an assigned duration and sensors that will be providing
data. The patient can also evaluate his state as one of the
following: ON, OFF, ON-OFF — meaning in between states.
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FIGURE 4. Sequence diagram presenting basic patient interaction with
the system.

Before the examination, it is required to put on all of the
sensors and to limit movement for the duration of examina-
tion. During the examination the user is provided with live
view of collected data. The survey is a short questionnaire
about the current condition of the patient. It allows to receive
a subjective evaluation of his condition. The survey usually
consists of four question, with the last one asking the user
to grade his current state in scale of 0 (no symptoms) to 4
(hard to bear symptoms), but any kind of questionnaire can
be used including UPDRS [20], as long as it is defined by
the supervisor in the management portal. At the time of
answering, the sensors of the mobile device collect data to
persist it later to the server. The medicine intake event is
just a simple remainder, forcing the user to either accept it
or dismiss it, the information about the intake time is also
saved and sent to the server. All of the presented events can
be delayed by the patient by 5 minutes.

In the continuous mode data from the sensors is received
and saved with no interaction from the user needed. The only
requirement is a prior sensor pairing. The drawback of this
approach is a faster battery discharge, but it allows to capture
more data regarding the patient. In continuous mode the data
from built-in sensors is only collected when the screen is on
(it is assumed that only then the users is using and holding
the device). In case of external sensors, that can be worn non-
stop, data is saved if two conditions are met: the amplitude
of signal is above a certain threshold (signal specific) and the
frequency of signal is within expected range.

To discover the time of activity two methods are used, the
fast wavelet transform and the fast Fourier transform, they
are applied to the magnitude of the accelerometer signal of
the wearable device. The wavelet transform [3], [9] is used
to process real-time data in order to discover the exact time,
the component with a frequency within the interesting range
(0.7 — 15 Hz) appears. Fig 5. presents a wavelet transform
for filtered accelerometer signal with frequency on y axis and
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FIGURE 5. Wavelet transform (Morlet) evaluated for inertial data
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time on X axis, The starting time of activity (hand movement)
is easy to read from the chart (high magnitude for frequencies
within range).

Fourier transform does not provide any information about
the time of event (change in frequencies of signal), just
information about frequency components. To be able to esti-
mate the time of an event (user activity) the signal is split
into smaller parts (5 seconds long) and for every piece the
transformation is calculated. This solution makes it possible
to track events with accuracy to 5 seconds. It is not as accurate
as Continuous wavelet transform (CWT) but is computed
faster. The visualization for the Fourier transform of the
same signal is presented on Fig. 6, the magnitude changes
every 5 seconds, with the highest value around the same time
as in previous example.

Both modes can operate simultaneously, but it is advised
to use the ‘on-demand’ mode at the beginning of trials with
a new patient, because it allows to learn more precise infor-
mation about the patient (their subjective state evaluation
through surveys).

After each examination is saved to the web application, the
signals from all of the sensors are processed in order to predict
future doses, what has been presented on Fig. 7. All of the
steps are further described in following chapters.

V. BIOMEDICAL DATA SOURCES

The mobile devices that were used in the trials presented in
this paper are Samsung Galaxy S10+ and Samsung Galaxy
Note 4. The application consumes accelerometer, gyroscope,
magnetometer and touch data.

The accelerometer and gyroscope signals are registered
by LSM6DSO inertial module [26]. It is stable in temper-
atures from —40° to +85° C with sensitivity 0.01 %.
The accelerometer signal is captured within +2, +4, +£8,
416 g with sensitivity accordingly 0.061, 0.122, 0.244,0.488,
mg/LSB (1 g ~ 9.81 m/s?). The angular velocity module
also provides data with sensitivity depending on the range,
it is 0,0244% of the range (£125, +250, +500, £1000,
42000 dps — degrees per second). The output data rate of the
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FIGURE 7. The process of predicting the intake time and size of future
doses using sensor data.

sensor can be one of the following: 12.5, 26, 52, 104, 208,
416, 833, 1666, 3332, 6664 Hz for both accelerometer and
gyroscope data. The Android interface provides accelerome-
ter data as three float values describing the acceleration along
three axes X, y, z, the result unit is m/s?, for the gyroscope
also three float values are returned that indicate the rotation
around each of the axis in rad/s.

The magnetometer signal is provided by AK09918C [27]
magnetic field sensor that can operate in temperatures from
—30° C to +85° C, its sensitivity at 25° C is 0.15 uT/LSB
with the measurement range £4912 uT. Itis capable of trans-
mitting measurements at one of the following frequencies: 10,
20, 50 or 100 Hz, the ambient magnetic field measured along
three axes.

Unfortunately the Android interface does not allow setting
the exact frequency at which data from any of the sensors
will be received. It only allows to provide a hint about the
frequency, but the events may be received faster or slower.
For signal processing algorithms it is necessary to have a
constant sampling rate, to ‘stabilize’ the output frequency
an interpolation is performed as the signal is received by
the application. All of the measurements are received with
a timestamp, what simplifies the alteration of the signal to a
constant frequency of 50 Hz. This sampling rate will allow
to discover frequencies up to 25 Hz what is above the typical
frequency for Parkinson tremor [12].
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FIGURE 8. Sensor placement details with EMG segments tuned to specific
muscle activity recognition.

The external sensor used in the trials is an armband
— Thalmic Labs — Myo armband [15]. The device was
designed for gesture recognition, but it is also capable of
transmitting sensor data via Bluetooth Low Energy [13],
intended to reduce power consumption. The signals captured
by the application are electromyogram (electromyograph),
linear acceleration (accelerometer) and angular acceleration
(gyroscope). The device does not provide any timestamp
associated with the measurement, what might be a prob-
lem considering data transmission with high frequencies,
in situations where it is essential to have the timestamp,
the arrival time at mobile device is used. The electromyo-
graphy (EMG) signal is described to be transmitted with a
frequency of 200 Hz and inertial sensor data (gyroscope and
accelerometer) at 50 Hz [16]. During trials it was noticed that
the frequency of EMG data was far from 200 Hz. A series
of 200 test was conducted and the mean measured frequency
was 159.5 Hz with standard deviation of 4.4 Hz. Interpolation
has been used to keep the data samples at constant intervals.
The Myo armband has 8 EMG segments, their positioning has
been presented on Fig 8., every EMG data package consists
of two measurements for each of the sensors. During trials
it is necessary to always put on the armband the same way
(to make sure that each segment always touches the same
muscles), the desired positioning is presented on Fig 8.

Fig. 8 shows that the armband and the mobile device are
collecting sensor data from only one arm. This is because of
the asymmetric nature of the disease [5]. For every exam-
ination it is required to indicate which hand was holding
the sensors (by the supervisor or patient). In most cases the
examinations are carried out only for one arm, chosen by the
supervisor as the one more affected by the disease. During
first trials it was noticed that whenever the patients knew that
the examination was in progress, they were able to partially
suppress the tremor. Giving them something to hold in the
other hand, to focus on, has reduced this adverse behavior
(Fig. 9).

VI. SIGNAL CHARACTERISTICS

The data collected from sensors is disrupted by noise,
in order to rectify the signal, filtering has been applied.
The inertial sensor data from accelerometer, gyroscope and
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FIGURE 9. Sensor-based examination with built-in sensors and MYO
armband for patient P2 holding another object in the other hand to
distract her from suppressing the tremor.

magnetometer (mobile device and Myo armband) have been
all filtered using a low-pass filter with a cut-off frequency
of 20 Hz. For accelerometer signal a high-pass filter has been
applied with a cut-off frequency of 1 Hz to remove the gravity
component. For EMG signal no additional filtering has been
applied because the signal provided by the sensor is already
filtered.

Inertial sensor data is evaluated based on the aggregated
features described in [2], [6], [9], [14], [17], [24] and com-
posed into homogenous data vectors for each sensor channel
(accelerometer, gyroscope, magnetometer, each electromyo-
graph out of 8 sensing segments). All of the selected features
(Table 2) are calculated for every component separately (e.g.
X, y, z) and also for magnitude, as the data at this stage of
development, will be used to determine all possible variants
of limbs movement characteristics:

Magnitude = |/ x% + y2 + 72 (1

The time domain features presented in the first section of
the table are all normalized to the length of the signal, the
values of the rest might be proportional to the duration. It is
essential to compare only feature values from the signals of
the same length, to solve the problem of different lengths
of measurements all of these parameters will be calculated
for 2 seconds windows. The frequency domain features are
calculated using the Fourier transform [23].

For EMG the set of features is extended by 3 additional:
Integral of EMG, Myopulse percentage rate and Log detector,
which provides an estimate of muscle contraction force.

Capturing the touch in mobile devices is different than
previously described signals. It is not a signal with measur-
able frequency or amplitude, it is an action. Unfortunately
in Android devices it is not possible to capture touch events
from the background, which restricts registering these events
in the continuous mode. However, all touch events that take
place within the application can be registered. Whenever a
user answers questions in the survey or confirms medicine
intake as well as performs other clicks, the attributes of the
actions are saved. Since this is not a continuous signal there
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TABLE 2. Features extracted from inertial sensor signals.

Sym. Feature name
MIN Minimum value

Interpretation

The minimum value of the signal,
usually a negative number.

The maximum value of the signal,
usually a positive number.

MAX Maximum value

ENA Approximate Measure of repeatability to quantify
entropy levels of complexity within a time
series. High regularity leads to low
entropy value.
ENS Sample entropy ~ Measure of complexity, does not
include self-similar patterns.
MN Mean Arithmetic sample mean.
SD Standard Measure of dispersion of values in the
deviation dataset.
MD Median The “middle value”, separation of the
lower and higher half.

SKW Skewness Measure of asymmetry of the signal
distribution about its mean. The sign
of the value indicates whether the
maximum value is on the left or right
of the mean.

Quantification of the distribution
shape of a signal relative to Gaussian
distribution. A transient signal
produces a positive value, a fixed
signal a negative.

Median value of absolute deviations

KRT Kurtosis

MAD Median

absolute from signal median.
deviation
MAV Mean absolute Arithmetic sample mean of absolute
value signal values.
MAVI1,  Modified mean Arithmetic sample mean of absolute
MAV2 absolute value values amplified (if are in the middle
half) or diminished (otherwise).
DASD Difference Standard of the difference between
\% absolute the adjacent samples.
standard
deviation value
P Power Amount of energy (sum of squared

signal values) consumed per unit
time.
MPD Mean peak Arithmetic mean of time between
distance peaks.
IQR Interquartile Measure of statistical dispersion,
range difference between the upper and
lower quartiles.
RMS Root mean Sum of squared signal values divided
square by sample count.
AAC Average Absolute gain value per unit time.

amplitude
change
zC Zero crossing Number of crossings of the time axis
by the signal (above a certain
threshold).
SSC Sign slope Number of slope changes.
change
WL Waveform Length of signal along the magnitude
length axis.
E Energy The sum of squared values of the
- signal.
s PC Peak count Number of peaks in the signal.
% SSI Simple square Sum of squared signal values.
2 integral
£ WAMP  Wilson Number of value changes above a
= amplitude threshold.
= _MNF Mean frequency  Weighted arithmetic frequency mean.
% MDF Median Frequency with median power.
1 frequency
= TTp Total power Sum of power for every frequency.

is no need for signal processing all of the features are passed
to the event callback. The following features/attributes are
collected from every touch:
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TABLE 2. (Continued.) Features extracted from inertial sensor signals.

PKF Peak frequency
R1,R2 Range
MNP Mean power

Frequency with maximum power.
Cutoff frequency range.

Arithmetic mean power of the power
spectrum.

Registered touch events usually do not occur with a con-
stant frequency, mostly they appear in series. To minimal-
ize the data redundancy and improve the accuracy, similar
actions, that are taking place with little intervals (within 2
minutes) are aggregated and all of the continuous consid-
ered features are represented by their mean and standard
deviation.

VII. FEATURE SELECTION AND MACHINE LEARNING

The features extracted from the signals are to be used for
predicting the future medication doses, but directly they can
be used for predicting the intensity of Parkinson’s disease
symptoms: in comparison with other patients or in compar-
ison with previous measurements of the patient. This paper
does not focus on comparing the symptoms (their intensity
based on sensor data) between patients, the aim is to keep the
predictions as accurate as possible and after the initial period
only measurements of the patient are taken into account. The
characteristics of symptoms and sense of their disruptiveness
can differ among patients and this is why this approach has
been selected.

The considered target value for symptom intensity pre-
diction (in the beginning of treatment) will be the symptom
severity provided by the user in the survey. Every patient
while completing the survey will evaluate his current momen-
tary state on a scale of 0-4, 0 — no symptoms, 4 — very
severe symptoms. The answer provided has a discrete value.
The problem of predicting the intensity of symptoms can be
solved with many regression machine learning algorithms,
but first, the number of features must be reduced. Since the
characteristics of tremor can differ between patients it was
decided that the feature reduction process will be carried out
separately for every patient.

The number of extracted features for each of the mea-
surement types is too large (e.g. 324 features for EMG sig-
nal). To make the prediction process faster and to reduce
overfitting it was decided to reduce the number of variables.
Feature selection was carried out in two steps. First step
was performed using only features values, the relationship
with target values was not considered. At this step the CFS
(Correlation-based feature selection) algorithm [10] was used
to exclude features that are highly correlated with another
within the tested subset of measurements. To achieve this a
correlation matrix was built. All of the values were between
—1 and 1 and the closer they were to 0, the weaker the
correlation. For each pair of variables with a high Pearson
correlation coefficient one of them was removed from the list.
The system uses a threshold of 0.75, which in case of inertial
and EMG signals allows to remove a large part of features
that could be correlated due to their mathematical formula or
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FIGURE 10. The correlation matrix for selected features of the touch
action.

are correlated just in case of this specific patient, because the
symptoms vary in their intensity and characteristics between
cases.

Fig. 10 shows the correlation matrix of features for touch
actions, due to no redundancies, none of them had correlation
above the threshold. SD stands for Standard deviation and
AVG for arithmetic mean.

CFS is carried out for each sensor separately. Evaluating
the state of a patient during examination is executed based on
data from all of the selected sensors, what requires another
feature selection to reduce overfitting. After merging the
data, the RreliefF [11] algorithm is executed. This algorithm
evaluates the quality of attributes in reference to the predicted
value (evaluation of the state provided in the survey), it is
a modification of the ReliefF algorithm [10] (dedicated for
classification problems) to support regression problems. Fea-
ture selection can be done by choosing a number of features
with highest quality or choosing features with quality above a
certain threshold. In this case only 20 with the highest quality
are chosen. The features that turn up in the final vector used
by machine learning algorithms depend strictly on the patient.
The most commonly chosen features are placed in Table 5.

In the beginning of treatment, when there are not enough
examinations carried out by the patient, the measurements
from similar patients (k-NN) are treated as training data,
after 7 days of treatment foreign examinations will be no
longer used — only if the patient has earnestly completed
assigned examinations and surveys.

For predicting the current state, machine learning meth-
ods [14] from the scikit-learn library have been used. The
system has defined a number of methods with set parameters
that are compared using cross validation (10 fold) and the
one resulting with highest score is assigned to the patient.
Currently used methods include: Bayesian ridge, Logistic
regression, Support vector machines, Decision tree, Ran-
dom forest, Multilayer perceptron, Gradient boosting (deci-
sion tree), Ada boost (decision tree). The score value for
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TABLE 3. Features selected for state evaluation from touch actions of the
patient.

Name Description

Timestamp Time and date of the event.

Size Size of fingertip touching the screen
corresponds to the pressure applied by the

finger.

Duration Time in milliseconds since the user touched the
screen to the occurrence of action.

Orientation Orientation of the finger performing the action.

X Distance from the center of the component to
the touch point along the X axis.

Y Distance from the center of the component to
the touch point along the Y axis.

Action type Type of action the user was performing.

TABLE 4. Results of feature selection with CFS.

Sensor Number of Removed Remaining
features features features
number percentage
EMG 342 267 21,9%
Accelerometer 128 100 21,9%
Gyroscope 128 96 25,0%
Magnetometer 128 98 23,4%

TABLE 5. 20 most commonly chosen features with RreliefF algorithm out
of features extracted from mobile device and myo armband sensors.

Device Sensor X Y Z Mag
Mobile Gyroscope PKF, KRT, PKF, MNP,
device MAV1  PKF SD PC,
ENS
Accelerometer MAV1 MAVI, MNP,
PKF MDF
Myo Gyroscope PKF
armband  EMG 4: AAC, 7:PKF,SSC PKEF,
MD

regression is calculated the following way:

2
. Z (ytme - ypred)
Z Orrue — ytrue)2

YVrue - target value, y;, - target value mean,

Ypred - predicted value.

The closer the score to 1, the better the regressor. Score
equal to O indicates a model that predicts always the target
mean value disregarding the input features.

The score mean and standard deviation presented in Table 6
indicate that, in this case, the Ada boost and Multilayer
perceptron were performing the best. None of the scores for
the regressors are close to the perfect regressor (score equal
to 1), this is due to the fact that the target values used are
subjective, provided by the patient. The values are granulated,
the patient has to classify his state to one of the 5 levels of

R =1

@)
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TABLE 6. Score for ML algorithms used for symptom intensity regression
based on measurements carried out during examinations.

TABLE 8. Features required for every medication used with the system.

Name Description Example value
ML algorithm Parameters A G Drug name -—-
SVM RBF, C: 1, y: scaled 0.541 0.112 Active Ingredients that influence the Levodopa  with
Decision tree criterion: mse, split: best ~ 0.497 0.283 ingredients ~ weakening of the symptoms carbidopa
Random forest 100 trees, criterion: mse  0.672 0.140 Active Dose of active ingredients inone  Levodopa: 250
Ada boost 50 trees, L. rate: 1 0.731 0.145 ingredients  pill mg, carbidopa: 25
Gradient boosting 100 trees, LS, 1. rate: 0.1 0.648 0.218 content mg
Bayesian ridge 300 iterations 0.579 0.176 Intake Number of daily doses 2-8 doses
Multilayer perceptron  hidden layers: (200, 100, 0.701 0.218 frequency
100) Maximum  Maximum daily intake 8 pills
Logistic regression 250 iterations 0.52 0.169 daily dose
Maximum  Maximum dose to  be 4pills
TABLE 7. Score for ML algorithms used for symptom intensity regression dose administered at one time.
based on touch events from completing the survey. Halflife After this time only half of the 1h
ML algorithm Parameters A c taken dosage will be left.
Random forest 60 trees, criterion: mse 0.764 0.062 Absorption  The percentage of dosage that ~ 60%
Ada boost 50 trees, 1. rate: 1 0.822 0.069 rate can be absorbed, cross the
Gradient boosting 100 trecs, LS, L rate: 0.1 0.817  0.054 blood-brain barrier.
Bayesian ridge 300 iterations 0.634 0.177 Absorption  The percentage of dosage that is ~ 30%
speed absorbed in one time unit
Peak After that time the medication 2h
intensity, what can sometimes be inaccurate also the survey has reached its peak value in the
completing does not take place at the exact same time as used system
Sensor measurements. Threshold ~ Minimum dosage to be 0,5 pill
The touch actions are aggregated separately what causes dose administered at one time.
a separate state prediction. Based on experimentation the
following regressors were selected: Bayesian ridge, Random .
. . 4.0 +  Sensor and touch data
forest, Gradient boosting and Ada boost. 15 T — Surveys
—— Medicine intake
VIIl. MEDICAL TREATMENT MODELS z 30 , N
Every medication to be used with the system must be pro- g25
vided with a set of necessary data that is essential for future é 207
dosage prediction to avoid suggesting unsuitable doses. The 215 -
necessary features are listed in Table 8 [7], [8], [19]. # 10 +
The medication intake for some of the PD medicine (e.g. 05 . .
Levodopa) is divided into morning bolus dose and mainte- 0.0 - [
nance doses throughout the day. The morning dose is called 10°00 15:00 20'00

an effective dose (ED), its aim is to increase the level of
dopamine to an effective level after the night [21]. The main-
tenance doses are applied to make sure the medicine concen-
tration does not drop below the threshold. Maintenance doses
are meant to keep the level of dopamine steady with little
fluctuations [19].

The prediction of future dosage bases on the following:
currently assigned schedule, realization of schedule, current
and previous states (symptom intensity), patient profile and
drug profile. No modification of the schedule is performed
without the verification of Clinical trials supervisor.

Fig. 11 demonstrates symptoms measurements (their inten-
sity) in relation to treatment schedule and answers provided
by the patient in the survey. In the beginning, after the patient
wakes up, the symptoms are very severe, after taking the
morning dose the symptoms decrease until they fully disap-
pear. After some time the level of levodopa gets reduced, and
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Time [t]

FIGURE 11. Symptoms intensity assessment based on data gathered in
the CTA mobile application fusing sensor data and surveys in relation to
medicine intake for patient P1.

in order to prevent the return of the symptoms a maintenance
dose must be taken. The fifth dose (Fig. 11) has been taken
with a long delay what led to an increase in the symptom
intensity. To predict the time and size of the doses a threshold
value for the symptom intensity must be defined - 6, every
dose will be planned to make sure the intensity never exceeds
it and the minimum time interval between doses - tyin. The
rest of variables in the Table 9, except the estimated decision
variables d; and ¢; are extracted from medicine information,
patient profile and acquired signals:

Finding the dosage requires solving the following opti-
mization task with decision variables #; and d;, minimizing
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TABLE 9. Definition of variables and functions used in the optimization
task in order to predict the size and time of future doses.

ty fall asleep time R.

t, wake up time [0, tq)

[ threshold symptom intensity [0,4]
st(t) patient’s state at time t based on R, — [0,4]

sensor data

st T, D) predicted patient’s state at time t for
daily medicine intake schedule
defined by T — intake times and D —
intake doses
N number of doses during the day No
ne number of last doses considered for No
prediction of symptom intensity
/ dose number during the day {l,...,n}
t; time of i-th dose [ty ta]

T set of n dose intake times {ti:ie
{1,..n}}

Lnin minimum time interval between doses R.

d; size of i-th dose No
D set of n dose intake sizes {d;:ie
{1,..n}}

Ayax maximum single dose R.:
Ain minimum single dose [0, dimax]

D, maximum daily dose R.

t, time to reach peak medicine R+

concentration after intake
At time step used for prediction and R

constraint verification

the amount of medicine taken during the day — in order to
reduce side effects:
Objective Function:

n

min i d; 3)
Constraints:
ti—ti—1 > tpin, fori=2,....n “4)
di < dpay, fori=1,...,n 5)
di > dpin, fori=1,...,n 6)
n=t @)
In < g ®
> di < Dy ©)
s, T,D) <0, forty+1 <t<ly (10)

The values of s(z,T,D) function, required for finding the solu-
tion, are known only for sets of arguments that have appeared
in the past — Fig. 12., to predict the values of the function
for various set of arguments regression methods were used,
fitted using datasets from the past. The data needed for the
algorithm includes previous medication intake times and their
doses, the values of previous symptom intensity, time passed
since the wake up and current symptom intensity as the target
value. These form a vector (11) used for machine learning of
length dependent on 7, — number of last doses considered for
prediction (when there are not enough previous doses in the
day the vector is filled with O values).

v=_(s(t —At, T,D), (T [lg — iDi=1,..n0»
x (D[lg — i])i:l,...n[,» t—1t,) (1D

where [; is the index of the last dose before t.
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FIGURE 12. Comparison of symptom intensity values predicted with ridge
and gradient boosting regressors to values based on sensor data for
patient P1.
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FIGURE 13. IQPharma CTA application views presenting the patient
health state identified on the basis of sensor data and surveys (left), view
of the gyroscope signal from the application (right).

An example vector definition for the past, when n, = 3 and
t > t3is (st(t—At),t —t3,t —t2,t —t1.d3,dr,di t — 1)
with a target value of s#(z). Based on experimentation ridge
and gradient boosting regressors were chosen for predicting
future values of symptom intensity. The results of their pre-
diction are presented on Fig. 12. The used methods provided
good results considering predicting the symptom intensity
until the next intake.

The s(t, T, D) function is a black box, to check con-
straint (10) for a schedule (represented by 7' and D), a sim-
plified method is used, which verifies the inequality only
for some values of the function using a time step - At.
The solutions of the optimization task are discovered using
simulation-based optimization methods [28]. The proposed
model is currently applied in the Clinical Trials Application
and the suggestions are provided to both: the user through
the mobile application (if permissions are assigned) and to
the supervisor through the web application.

IX. CONCLUSION

The developed quantitative assessment method and imple-
mented mobile tool set have proven that remotely planned and
executed symptom intensity evaluation can optimize treat-
ment and help to organize complex time constrained therapy.
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Based on the results collected during the IQPharma CTA
application testing phase it was possible to compare and
correlate patient’s health state reported in conventional sur-
veys with the results of reasoning, based on wearable sensor
captured movement and muscle activity. The accuracy of the
health state classification depends on the quality of gathered
sensor data and calibrated threshold used for classification
and recognition of ON/OFF states and their intensity, which
at this stage of development have not been validated on real
clinically tested data. This work promotes specific approach
to acquire quantitative data for medical reasoning processes
allowing to correlate outcomes of patient’s self-assessment
and recorded inertial and biomedical data. The estimation of
patient’s health state is based on the sensing process evalu-
ating limbs movement and activity data in reference to the
answers taken from medical questionnaires. Often medical
survey results are subjective and strictly depend on the patient
awareness and sensibility. Provided in the paper quantitative
assessment method objectifies the survey results and can be
treated as supplementary data source for clinical trials effec-
tiveness assessment. Measuring the tremor, rigidness of arms
movement or the other motion based symptoms (bradykine-
sias) can be efficiently performed using proposed set of sen-
sors and algorithms. The tool has been subjected to functional
testing by IT team but also PD patients (3) which provided
several important adjustment for the algorithms and software
behavior.

The described in the paper methodology, research results
and tool itself deliver means for medication efficiency
assessment and planning of medicine intake based on
measurable characteristics of movement and muscle activity.
Provided 3 level evaluation (survey, sensor, interactions) sup-
plement each other and provide wide spectrum of quantitative
tools for assisting therapy. Elaborated analytical method and
obtained conclusions demonstrate the applicability of smart-
phones with dedicated, highly integrated with the system
software, controlling and guiding the patient through efficient
health state and events reporting. Many observations and
requirements for the tool come from analogue clinical trials
observations. In result a set of requirements for validating
symptoms of neurological diseases have been formulated,
concentrating on the ones which can be registered using
wearable sensors. The IQPharma CTA delivers extended,
configurable scheduling options, for trials managers to adjust
specific treatment process parameters — schedule, intake,
therapy composition. A calibration of algorithms supports
patient personalization, which enables more accurate recog-
nition of significant health states but also supports symptom’s
intensity evaluation and prediction of medication dosage.
Proposed solution constantly aggregates gathered survey
reports and time correlated biomedical data. Such approach
supplements patient’s subjective evaluation of health state,
what makes this method attractive for neurologists who seek
for treatment adjustment methods, but most of all monitoring
of patient’s compliance. Currently we have gathered a set of
few preliminary PD patient data sets (~ 2 GB sensor and

VOLUME 9, 2021

survey datasets with video recordings). To extend the base for
reasoning, we have chosen a simulation as a data generation
engine, which has been able to provide the test data sets
in correspondence with significant health events and their
specificity.

The paper demonstrates successful application of clinical
assistance tool for assessment of complex treatment pro-
cesses, based on effectiveness and usefulness of selected sen-
sor signals — functionally validated and prepared for clinical
trials execution process. Presented in the paper innovative
techniques can be used to supplement remote medical exam-
inations with specific physical exercises as well as reflex
evaluations in order to improve the accuracy of treatment
composition and configuration. To achieve that goal the tool
is currently extended to record a wider spectrum of sen-
sor data as well as deliver more tuned classification and
regression methods in order to develop recognition of more
complex neurological symptoms e.g. rigidness, bradykinesia,
impaired posture and balance, or even loss of automatic
movements, disturbed handwriting and speech.
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