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ABSTRACT Air temperature is one of the critical factors influencing the bearing ability and performance of
temperature-sensitive asphalt materials. This research investigates the relationship between air temperature
at different depths and time to predict asphalt pavement temperature and evaluate asphalt performance. This
paper discusses four deep learning-based regression models for calculating asphalt pavement temperature
based on air temperature, depth from the asphalt surface, and time. Measurement of pavement temperature
wasmade in the Gaza Strip.Monitoring stations were set up tomeasure asphalt pavement temperature and air
temperature at different depths and times. The data were collected by hand measurement for the period from
March 2012 to February 2013. The data is trained and validated using the Convolutional Neural Network
(CNN), Long Short-TermMemory (LSTM), Bidirectional Long Short-TermMemory (Bi-LSTM), andGated
Recurrent Unit (GRU). Bi-LSTM has an R2 of 0.9555 for the generated dataset and outperforms other
algorithms because of its superiority in feature extraction and multidimensional data processing. Through
deep learning techniques, Bi-LSTM has demonstrated outstanding robustness and promising potential in
predicting asphalt pavement temperature.

INDEX TERMS Geophysical monitoring, deep learning, Gaza Strip, pavement temperature, prediction,
LSTM, GRU.

I. INTRODUCTION
Temperature is a critical factor in the design and analysis
of pavements. There are three critical factors in pavement
design. First, asphalt material properties change with tem-
perature because of the viscoelastic behavior of the asphalt.
Second, the asphalt pavementmay experience fatigue damage
because of thermal contraction and expansion [1]. Third,
transverse top-down cracking may occur in asphalt pave-
ments due to the extreme temperature drop in a day.

Researchers have developed regression models for predict-
ing asphalt temperature by measuring pavement temperature
using solar radiation and air temperature (AirT) [2]–[10].
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These models produced false data for continuous tempera-
ture variations because they did not consider the environ-
mental factors that may influence the surface temperature
prediction, such as wind speed, wind direction, and rela-
tive humidity (RH). Solaimanian et al. introduced a system
for predicting pavement temperature using AirT and solar
radiation [11]. The model assumed a high-temperature equi-
librium. However, Hermansson revised this model by con-
sidering a wind speed of 4 m/s [12]. Hermansson designed
a new model for measuring summer pavement tempera-
ture by considering AirT, airspeed, and solar radiation and
validated the model using one-month long-term pavement
results [13]. However, the model validation did not consider
the RH and wind direction for the summer data. Wang et al.
used a different approach to design an analytical, numeric
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model for predicting pavement surface temperature based
on AirT, solar radiation, and RH. There is a 5◦C differ-
ence between the predicted and actual value at very high
temperatures [14].

The analytics-based models for pavement temperature
prediction were developed and introduced later. Feng et al.
designed a numeric model for solving surface energy equa-
tions to estimate surface temperature by considering solar
radiation and heat flux. The model was validated using
24-hour data, which is moderately small. Validation of mul-
tiple datasets is critical to validate the model because lim-
ited datasets could produce biased results. The model also
disregarded other environmental variables, such as RH and
wind direction [15]. Yavuzturk et al. designed a model for
predicting hourly temperatures anywhere on the pavement.
The model considered thermal conditions, including tem-
perature, solar radiation, geometry, pavement orientation,
wind speed, and thermal properties of pavement. However,
the approach for validating the model, which considered
the thermal properties of asphalt concrete (AC), is problem-
atic [10]. Wang et al. designed an algorithm for predicting a
one-dimensional temperature profile in a multi-layered pave-
ment using the ACs thermal properties and pavement surface
temperature. The Kallas research validated this algorithm in
1964-1965. Despite this, the algorithm is no longer valid
because of the tremendous improvement in the design and
manufacture of AC mixes [16].

These findings were confirmed using field data calculated
from theKallas study during 1964–1965. This type of old data
may not be valid in today’s asphalt conditions as significant
changes have been made in AC mix design and construc-
tion. The temperature-based model designed by Marshall or
Hveem can’t make an accurate prediction for AC, except for
those designed using the Superpave mix design process [1].

A review of the different approaches revealed that,
at present, there is no system for predicting the Asphalt
Pavement Temperature (APT) at different depths and AirT.
The effect of AirT at different depths and times on APT pre-
dictions is still uncertain. For this reason, this study considers
AirT and depth in the development of a regression-based
model for determining surface temperature.

Researchers throughout the globe are using neural net-
works and deep learning techniques to predict APT. Among
the techniques often used to predict time-series patterns are
Convolutional Neural Network (CNN), Long Short-Term
Memory (LSTM), Bidirectional Long Short-Term Memory
(Bi-LSTM), and Gated Recurrent Unit (GRU).

Hochreiter and Schmidhuber proposed using LSTM to
examine the features that vary with time. Thus, exploring
the dynamic nature of rainfall-induced displacement is more
appropriate [17], [18]. The benefit of using LSTM is fewer
long-term dependence problems than Recurrent Neural Net-
work (RNN). RNN has a straightforward structure but can-
not use long-term details in the training process because
of a lack of critical information. Even though LSTM has
the same architecture as RNN, there are variations in the

recurrent modules. Unlike the CNN approach, four layers
communicate, often to address long-term dependency prob-
lems. To predict APT, the LSTM model is used to test the
time-domain dynamic characteristics. The APT prediction
was made by evaluating the AirT at different depths and
times. The model was validated by comparing the predicted
values with one-year measured values.

This research contributes to the field of APT prediction in
the following ways. This study collected the data for AirT,
depth of pavement at a different time from the entire Gaza
Strip. It achieved a high determination coefficient (R2), min-
imum Mean Absolute Error (MAE), Minimum Mean Square
Error (MSE), minimum Mean Absolute Percentage Error
(MAPE), and minimum execution time of the model by using
different deep learning-based prediction models to develop
a robust APT prediction system and fine-tune the training
parameters.

II. NEURAL NETWORK MODELS
A. CONVOLUTIONAL NEURAL NETWORK (CNN) MODEL
CNN and RNN are the two frequently used neural net-
work architectures. CNN architecture is appropriate for
two-dimensional data processing. The traditional convolu-
tional neural network architecture is designed with a Con-
volution Layer (CL), activation function layer, pooling layer,
and fully connected layer (FCL) [19]. Figure 1 shows the
structure of a CNN model for predicting APT.

FIGURE 1. CNN structure for asphalt temperature prediction.

The convolution layers perform the convolution operation
for extracting the local features. The convolutional operation
for 2D data is given by equation (1) [12]:

Si,j =
m∑
a=0

n∑
b=0

Ii−a,j−bKm+a,n+b (1)

where I is the matrix of the input variable, K is the convo-
lutional filter, a and b are the row and columns of the input
matrix, and S(i,j) is the output of the convolutional operation
at location (i, j). The pooling layer reduces the output neuron
dimension by pooling or down-sampling and consolidating
many values into one using max-pooling (MP). The FCL
takes the output from the previous layer, process it using
activation functions, and feed it as an input for the next layer.

In this study, the input parameters are time, AirT, and
depth of the asphalt pavement, and the output is asphalt
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temperature. This method has two convolutional layers, and
each layer is followed by a batch normalization layer, ReLu
layer, MP Layer of stride 2, and dropout layer with a dropout
probability of 0.2. The performance consists of as many
values as the number of filters and is connected to the FCL to
predict APT [20].

B. LONG SHORT-TERM MEMORY (LSTM)
Hochreiter et al. proposed the LSTM model in 1997 [21],
and later modified the model and elaborated the LSTM’s
forget gate [22]. LSTMs are a special type of RNN that
can learn long-term dependencies and remember information
for extended periods. A chain structure organizes the LSTM
model [23]. Figure 2 shows the architecture of the LSTM
neural network.

FIGURE 2. Structure of the LSTM network.

Figure 2 shows the cell in a box, which is the key to
the LSTM. The horizontal lines across the section perform
the computation. The cell’s information state goes directly
through the chain, with some linear interactions to keep the
information running smoothly. The horizontal lines are used
to add or discard the information to and from the cell. The
sigmoid neuron layer is used to select the data. LSTM has
three gates to protect and control cell status.

The forget gate is the first gate of LSTM that decides
which information should be discarded from the cell. The
outputs of the gate are ht−1and xt with 0 or 1 in the Ct−1cell
state. The information is kept if the output 1 and discarded if
the output is 0.

The input gate is the second gate that calculates the
amount of information that should be added into the cell state
and updated. It then uses a thin layer to generate a vector for
editing the alternative ct−1 content. These steps decide the
status of the cell. It multiplies the old state ct−1 with ft , which
is the output of the forget gate at time t. The ct−1 upgrades
to ct . The equations for ft , ct−1, and ct are as follows (2)-(6).

ft = σg(Wf xt + Uf ct−1 + bf ) (2)

it = σg(Wixt + Uict−1 + bi) (3)

Ot = σg(Woxt + Uoct−1 + bo) (4)

ct = ft ∗ ct−1 + it ∗ σc (Wcxt + bc) (5)

ht = ot ∗ σh(ct ) (6)

The Output gate is the third gate that decides the network
output dependent on the cell status. The sigmoid function cal-
culates the exportation of the cell. A thin component selects
the cell state and multiplies it with the sigmoid function’s
output as shown in equations (7) -(8).

ot = σ (Wo [ht−1, xt ]+ bo) (7)

ht = ot ∗ tanh(ct ) (8)

where, Wo is the coefficient matrix for ot , xt is the input
at time t, bo is bias for ot , ht is the output of the current
block. The size of the loss function and cross-entropy is
given by (9).

J = −Tx ∗ Ti = Yi ∗ log(hi) (9)

where T be the time period, Yi is sample data, hi is the LSTM
output.

C. BIDIRECTIONAL LONG SHORT-TERM MEMORY
(BI-LSTM)
Graves proposed Bi-LSTM, a reverse LSTM network that
can better capture the bidirectional semantic dependence and
is widely employed in natural language processing [24].
Bi-LSTM reverses the data, and the hidden layer synthesizes
the forward and reverses information so that the network
cells can simultaneously obtain context information. Figure 3
presents the Bi-LSTM structure.

FIGURE 3. Diagram of the Bi-LSTM structure.

The Bi-LSTM estimation formula is as follows:

hf = f (wf 1xt + wf 2ht−1) (10)

hb = f (wb1xt + wb2ht+1) (11)

where hf and hb are the forward and reverse LSTM network
output, respectively. The resultant hidden layer output is
given by:

yi = g(wo1 ∗ hf + wo2 ∗ hb) (12)

D. GATED RECURRENT UNIT (GRU)
GRU is an LSTM-based model that optimizes the LSTM
network structure while maintaining its performance. It has
two gate systems, the update and reset gate, which solve
the long delay in the time-series prediction problem [25].
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The update gate tracks the amount of previous moment infor-
mation passed to the current moment, while the reset gate
controls the last information. Figure 4 presents the structure
diagram of GRU.

FIGURE 4. GRU structure diagram.

GRU performs better than LSTM in terms of com-
putational cost and parameter generalization, and updates
using the fixed number of training parameters on specific
datasets [26].

In Figure 4, Xt is the input at time t , Zt is the update gate
output at time t, ht and ht−1 are the output at time t and t−1,
respectively, σ is the activation function, and rt is the reset
gate output at time t . Equations (13)-(17) give the calculations
process of the memory unit.

rt = σ (Wr ∗ [ht−1,Xt ]) (13)

Zt = σ (Wz ∗ [ht−1,Xt ]) (14)

ĥt = tanh(Wĥ ∗ [rt ∗ ht−1,Xt ]) (15)

ht = (1− Zt) ∗ ht−1 + Zt ∗ ĥt (16)

ŷt = σ (W0 ∗ ht ) (17)

E. MODEL EVALUATION METHODS
The performance of each model was evaluated using
MAE, MSE, MAPE, and R2 [27], which were calculated
using (18)-(21) [28], [29].

MAE =
1
N

N∑
i=1

∣∣ŷi − yi∣∣ (18)

MSE =
1
N

N∑
i=1

(
ŷi − yi

)2 (19)

MAPE =
1
N

N∑
i=1

∣∣ŷi − yi∣∣
ŷi

(20)

R2 =

 ∑N
i=1 (yi − ȳ)

(
ŷi − y

)√∑N
i=1 (yi − ȳi)

2
√∑N

i=1
(
ŷi − y

)2


2

(21)

FIGURE 5. Location of the study area.

where ŷi is the measured value, yi is the predicted value, ȳi,
is the mean of the measured value, and N is the number of
sample sets.

III. METHODOLOGY
A. DATA DESCRIPTION
Measurement of the pavement temperature was made in the
Gaza Strip. The monitoring stations were set up to measure
pavement temperature and AirT at different depths (0, 2, 5.5,
and 7 cm) and times in different seasons (winter, summer,
spring, and autumn). The measurements were made during
the period from March 2012 to February 2013. Figure 5
shows the geographical location of the study area.

This study developed an empirical statistical model to pre-
dict the APT for the typical Mediterranean weather condition
in the Gaza Strip, which has specific climate characteristics.
Gaza is located in the southwestern part of occupied Palestine
on the eastern shore of the Mediterranean Sea within the
tropic of cancer at latitude 31◦30′0 ′′N, 34◦28′0.01′′E. A total
of 7,200 temperature measurements were made in the Gaza
Strip. Figure 6 shows the time sequence distribution diagrams
and data distribution histograms.

The distribution histogram shows that the data is evenly
distributed. The time sequence distribution diagrams show
that there are unique disruptions and noises in the data. There
is no clear regulatory pattern in the time sequence, making it
difficult to predict the APT.

B. DATA PRE-PROCESSING
The data contains outliers since measurements were made in
the field. Data pre-processing is necessary to remove outliers.
Standardization and normalization were performed to remove
the outliers from the dataset and improve the trained model’s
performance [30]. Sections (1), (2), and (3) describe the
pre-processing of the data.
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FIGURE 6. Distribution of each measured variable (a) Time sequence distribution diagrams (b) Data distribution histograms.

1) BOXPLOT ANALYSIS AND OUTLIER DETECTION
Boxplot is a data analysis method for detecting outliers in
a dataset. The boxplot method is used when most of the

parameters show variation at the higher end. A boxplot pro-
vides visualization of the outlier thresholds depending on
the problem domain [31]. In this study, the boxplot analysis
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FIGURE 7. Representation of the measured and estimated asphalt
temperature validation using CNN, LSTM, Bi-LSTM, and GRU models
(a) Boxplot, and (b) Cumulative distribution function.

showed that most of the parameters lie outside the box and
must be filtered out. The outliers were identified, assigned
the highest threshold value, and removed manually to prevent
data loss. The selection of the upper parameter threshold was
not too lenient to avoid skewing the dataset and loosely penal-
ize the values above the threshold value. Figure 7 shows the
boxplot and cumulative distribution function of the observed
and predicted APT of the validation data for CNN, LSTM,
Bi-LSTM, and GRU models.

2) DATA STANDARDIZATION AND NORMALIZATION
Standardization is a technique of rescaling the data so that
their standard deviation and mean are 1 and 0, respec-
tively (22). This technique is beneficial if the data follows
a Gaussian distribution and equalizes the range and data
variability.

X ′ =
X − µ
σ

(22)

whereµ is themean of the feature values and σ is the standard
deviation of the feature values.

FIGURE 8. Flowchart for using the models to predict APT.

FIGURE 9. Pearson’s correlation of the input parameters.

Normalization is a scaling technique that shifts and
rescales the values within small ranges from 0 to 1 [32].
It is also called Min-Max scaling [33]. Normalization is often
used in classification algorithms such as neural networks and
nearest neighbor. The min-max normalization is mathemati-
cally expressed as (23).

X ′ =
X − Xmin

Xmax − Xmin
(23)

where, Xmax and Xmin are the maximum and the minimum
values of the data variables, respectively.

C. METHODOLOGY FRAMEWORK
Figure 8 shows the methodology framework for predicting
APT. The first step in this process is splitting the data into
training and testing. In this study, the training dataset contains
6480 samples (80% of the dataset), and the testing dataset
contains 720 samples (10% of the dataset) of collection
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FIGURE 10. Distribution of the actual temperatures and the temperatures predicted by the (a) CNN, (b) LSTM, (c) Bi-LSTM, and (d) GRU
models.

data. The model was able to predict advance day APT. This
approach comprises four deep learningmodels, CNN, LSTM,
Bi-LSTM, and GRU. Section 2 gives a detailed explanation
of each algorithm. Table 1 presents the training parameters
used to train the algorithms.

IV. RESULTS AND DISCUSSION
A. CORRELATION ANALYSIS
Pearson’s correlation coefficient (PCC) is a proven metric for
calculating the data’s relationship probability. In this case,
"X" and "Y" are field temperature measurements. The PCC
between the pair of variables "X" and "Y" is given by (24).

rxy =

∑n
i=1 (xi − x̄i)(yi − ȳi)√∑n

i=1 (xi − x̄i)
2
√∑n

i=1 (yi − ȳi)
2

(24)

TABLE 1. Training parameters.

The PCC variables between time, depth, and AirT were
calculated using correlation analysis, and the result shows a
good correlation between the variables and can predict APT
in advance.
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TABLE 2. Performance of the trained model on validation data.

FIGURE 11. The measured APT and predicted APT for the CNN, LSTM,
BiLSTM, and GRU models.

Figure 9 shows the PCC between time, depth, and AirT,
which indicates a strong correlation between the variables.
The PCC between depth and time is -0.006527. However, the
PCC is -0.08903 and is lower than time and AirT, which were
negatively correlated with the other parameters but positively
correlated with one other. Therefore, all parameters were con-
sidered for LSTM modeling in this study. It also represents
an absolute positive correlation between depth and AirT and
thus can be used to develop an asphalt temperature prediction
model. PCC can only be used as a comparison predictor
because nonlinear relationships cannot be adequately tested.

B. MODEL PREDICTIONS
The results were implemented on an Acer aspire computer
with 8GB RAM, Windows 10, 64 bit, and MATLAB 2020a
version. Table 2 shows a comparison of the MAE, MSE,
MAPE, and R2 of the four models. It shows that Bi-LSTM
has the best performance.

TABLE 3. Training time of CNN, LSTM, BI-LSTM, and GRU.

Figure 10 shows the distribution of predicted and
measured data for CNN, LSTM, Bi-LSTM, and GRU.
Figure 10 (a) and (b) shows that the CNN and LSTM model
were not sensitive to data change and have lower prediction
accuracy. Figure 10 (c) and (d) show that the temperature

FIGURE 12. Comparison of the predicted and experimental values for
(a) CNN, (b) LSTM, (c) GRU., and (d) BiLSTM.

predicted by BI-LSTM and GRU were close to the measured
temperature.

Table 2 shows that the MAE, MSE, and MAPE for
Bi-LSTM increased by 0.3652, 1.6576, and 0.6234 compared
to the values for GRU. TheMAE,MSE, andMAPE values for
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Bi-LSTM increased by 0.2759, 0.904, and 0.0139 compared
to those for LSTM, and 0.1766, 0.5267, and 0.0087, com-
pared to those for CNN. The R2 for Bi-LSTM is 0.9555 and is
0.0218, 0.137, and 0.0132 higher than those for CNN, LSTM,
and GRU. These values show that Bi-LSTM is similar to
GRU, and both models can accurately predict APT. Practical
applications must consider the efficiency of training time.
CNN has amuch shorter training time than the other networks
(refer to Table 3). However, the R2 shows that Bi-LSTM
has better performance. It is reliable with Bi-LSTM using a
smaller number of gates. In conclusion, Bi-LSTMhas the best
performance and can be used in practical applications.

C. TRAINING AND VALIDATION RESULTS OF CNN, LSTM,
BI-LSTM, AND GRU MODEL
Figures 11 and 12 show the measured APT and the APT
predicted by CNN, LSTM, Bi-LSTM, and GRU for an epoch
size of 20 and a batch size of 128. The x-axis represents the
experimental data, and the y-axis represents the measured
and predicted APT. Evaluation of model performance was
based on MSE, MAE, MAPE, and R2. The blue line rep-
resents the measured APT, and the red, yellow, violet, and
green dotted lines represent the predicted APT for CNN,
LSTM, Bi-LSTM, and GRU, respectively. The graph shows
that the APT predicted by Bi-LSTM and GRU almost match
the measured values, although large deviations caused some
variations in the dataset. The peaks or discrepancies in the
plots may be attributed to outliers. The prediction technique
eliminates or plots these points by determining if such out-
liers were present in the training process. A comparison
of Figures 11 and 12 with Table 2 show that the predicted
values for CNN, LSTM, and GRU are higher and test data
error than Bi-LSTM, particularly at high APTs, indicating
that Bi-LSTM is stronger than CNN, LSTM, and GRU in
predicting APTs.

V. CONCLUSION AND FINAL REMARKS
This paper is the first paper to make a comprehensive com-
parison of the performances of four deep learning prediction
methods, CNN, LSTM, Bi-LSTM, and GRU. These methods
predicted APT based on the AirT at different depths and
times. Even though basic deep learning models such as CNN
and LSTM can make good APT predictions, the performance
Bi-LSTM and GRU are more superior based on the R2values.
The Bi-LSTM algorithm showed the best prediction capabil-
ity after hyper-parameters tuning with R2 values of 0.9337,
0.9418, 0.9555, and 0.9423 for CNN, LSTM, BI-LSTM,
and GRU, respectively. The evaluation metrics showed that
Bi-LSTM and GRU are superior to CNN and LSTM and have
a minimum training time of 42 seconds, which is, equal to
LSTM. This shows that the Bi-LSTM model is more suitable
and applicable for real-time prediction of APT.

Future researchers should integrate loss balancing algo-
rithms for multitask learning to enhance a difficult task’s
performance by using the experimental data collected for
asphalt temperature prediction. This work has shown that

Bi-LSTM is appropriate for predicting real-time APT based
on the R2 and computation time. However, some attempts can
still be made in future work. Future studies should consider
the relationships between parameters such as air temperature,
solar radiation, wind speed, and RH in predicting APT.
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