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ABSTRACT The appropriate control and management of reactive power is of great relevance in the electrical
reliability, stability, and security of power grids. This issue is considered in order to increase system efficiency
and to maintain voltage under the acceptable value range. In this regard, novel technologies as FACTS,
renewable energies, among others, are varying conventional grid behavior leading to unexpected limit
capacity reaching due to large reactive power flow. Thus, optimal planning of this must be considered. This
paper proposes a new application for a simple and easy implementation optimization algorithm, called Rao-3,
to solve the constrained non-linear optimal reactive power dispatch problem. Moreover, the integration of
solar and wind energy as the most applied technologies in electric power systems are exploited. Due to the
continuous variation and the natural intermittence of wind speed and solar irradiance as well as load demand
fluctuation, the uncertainties which have a global concern are investigated and considered in this paper.
The proposed single-objective and multi-objective deterministic/stochastic optimal reactive power dispatch
algorithms are validated using three standard test power systems, namely IEEE 30-bus, IEEE 57-bus, and
IEEE 118-bus. The simulation results show that the proposed optimal reactive power dispatch algorithms
are superior compared with two recent algorithms (Artificial electric field algorithm (AEFA) and artificial
Jellyfish Search (JS) algorithm) and other optimization algorithms used for solving the same problem.

INDEX TERMS Renewable energy, uncertainty, time-varying demand, optimal reactive power dispatch

(ORPD), RAO algorithm, backward reduction algorithm.

I. INTRODUCTION
Optimal reactive power dispatch (ORPD) is considered one
of the most very important conditions for the secure and eco-
nomic operation of power systems. It is achieved by suitable
coordination of the system equipment used to manage the
reactive power flow with the aim of minimizing the active
power losses and/or improving the voltage profile of the
system.

The ORPD aims at the control and management of reactive
power to minimize total active power loss, and a total of
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voltage deviations, and the voltage stability margin improve-
ment while preserving equality and inequality constraints
within their acceptable limits [1], [2]. The active power losses
are set as an objective in the ORPD problem. In order to
achieve the desired objective, the generator bus voltages, set-
tings of passive devices such as transformers and shunt VAR
compensators are adjusted to reduce the active power losses.
The cumulative sum of voltage deviations of load buses is
also set as an objective. The purpose of this objective is to
ensure that voltages at consumer terminals are closed to the
required level (usually from 0.95 to 1.1 p.u.) with control of
reactive power flow. The ORPD problem is a nonlinear com-
plex optimization problem. These types of non-convex and
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non-linear optimization problems can be solved by classical
methods such as Newton-Raphson [3], the interior point [4],
linear programming (LP) [5], non-linear programming [6],
and Quadratic programming (QP) [7]. These classical meth-
ods suffer from massive computation, local optimal trapping
especially when it is used in large-scale systems [8].

Metaheuristic techniques are more suitable than classic
methods in solving non-linear optimization problems like
ORPD. There are many metaheuristic optimization tech-
niques were used to find the best solution for the ORPD
problem such as; Whale Optimization Algorithm (WOA) [9],
Particle Swarm Optimization (PSO) [10], Ant Lion Optimizer
(ALO) [11], Improved Social Spider Optimization Algo-
rithm (ISSO) [12], Improved Antlion Optimization Algo-
rithm (IALO) [13], Genetic Algorithm (GA) [14], Ant
Colony Optimizer (ACO) [15], Opposition-Based Grav-
itational Search Algorithm (OGSA) [16], Wind Driven
Optimization Algorithm (WDO) [17], modified differen-
tial evolution algorithm (MDEA) [18], Specialized Genetic
Algorithm (SGA) [19], evolutionary programming [20], com-
prehensive learning particle swarm optimization [21], fuzzy
adaptive PSO (FAPSO) [22], seeker optimization algorithm
(SOA) [23], cuckoo search algorithm (CA) [24], Hybrid Evo-
lutionary Programming (HEP) [25], harmony search algo-
rithm [26], Teaching Learning-Based Optimization [27],
biogeography-based optimization [28], modified sine cosine
algorithm [29], water cycle algorithm [30], hybrid Fuzzy-
Jaya optimizer [31].

In [32], Moth Swarm Algorithm (MSA) has been used
for ORPD considering the stochastic of renewable energy
generation and load. The ORPD problem considering load
uncertainty has been solved using an enhanced grey wolf
optimizer (EGWO) in [33]. ORPD with uncertainties in
load demand and renewable energy sources has been solved
based on SHADE algorithm [34], Fractional Calculus with
Particle Swarm Optimization Gravitational Search Algo-
rithm (FPSOGSA) [35], and improved lightning attachment
procedure optimization (ILAPO) [36]. In [37], Marine Preda-
tors Algorithm (MPA) has been used for solving ORPD
problems with time-varying load, wind, and solar energy
uncertainties. In [38], an enhanced firefly algorithm has been
introduced for multi-objective optimal active/reactive power
dispatch with uncertainties consideration. Also, in [39] a
quantum-behaved particle swarm optimization differential
mutation (QPSODM) algorithm is used to solve the multi-
objective ORPD with renewable energy uncertainty. From
an environmental, economic, and technical point of view,
the switch from fossil-fueled-based generation to renewable
energy sources is a must. This integration leads to reducing
greenhouse emissions, generation fuel cost, and enhancing
the system operation. The most applied technologies for
RES are the wind and solar energy generation systems. Due
to the continuous variation and the natural intermittence of
wind speed and solar irradiance, moreover, load demand
fluctuation there is an increasing concern of uncertainties of
electrical power systems [40]. As it is a strenuous duty for

VOLUME 9, 2021

effective planning, there are many approaches for modeling
system uncertainty comprising probabilistic methods [41],
possibilistic methods [42], hybrid possibilistic —probabilistic
methods [43], robust optimization [44]. A comprehensive
review of the stochastic techniques which have been imple-
mented for the optimization of solar-based renewable energy
systems has been presented in [45]. Moreover, Ref. [46]
has considered the uncertainty of the renewable distributed
generators for the management of battery energy storage
employing a double deep Q-learning method. Analyzing the
interdependency of natural gas, coal, and electricity infras-
tructures considering their operation constraints and wind
power uncertainties using a robust optimization model has
been introduced in [47].

The significant contributions of this research can be sum-
marized as follows:

« Solving ORPD problem considering uncertain wind, and

PV energy resources and time-varying load.

Applying the Monte-Carlo simulation method for coping

with many scenarios considering load, solar irradiance,

and wind speed uncertainties.

Proposing a new application for the Rao-3 algorithm for

solving the ORPD problem with and without RES.

» Comparing the performance of the Rao-3 algorithm with
the recent techniques for solving the ORPD problems.

« A comprehensive investigation of the deterministic and
stochastic OPRD problem with compliance with all con-
straints.

» A single and multi-objective stochastic optimization

framework for the ORPD problem.

The results show the superiority of proposed optimal

reactive power dispatch algorithms based on three stan-

dard test power systems.

The rest of this manuscript is structured as follows; the
mathematical formation of ORPD is presented in Section II.
Section III presents the mathematical equations for represent-
ing the uncertainties of load demand and RES. Section IV
presents the developed ORPD algorithm based on the RAO-3
optimizer for solving the ORPD problem. Section V presents
the main obtained results and discussion. The conclusion
drawn from this research is introduced in Section VI.

Il. PROBLEM FORMULATION

In this section, the mathematical formulation of the ORPD
as an optimization problem will be presented. The objective
function F of ORPD can be generally formulated as follows:

MinF (x, u) @))
Sub.to gy (x,u) =0 k=1,2,...,m 2)
hy(x,u) <0 n=1,2,...,p 3)

where, x, u represent the state and control variables vectors,
respectively. The state vector comprises slack bus real power,
load bus voltage, generators reactive power, and transmission
line apparent power flow. On the other hand, generators’
bus voltage, injected reactive power of compensator and
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transformers tap setting constitute the control variable vector.
The state and control variables vectors are given as:

xT =[Py, VL, Oc, St] )
u’ = [Vg, QOc, Tp] o)

A. OBJECTIVE FUNCTIONS

As mentioned previously, the ORPD mainly aims at finding
the optimal working point of a given power grid. In this
paper, two objectives functions are used to achieve this goal
as follows:

i. Active power loss minimization:

N
Fi=Prs =Y Gy (vﬁ + V2 —2V;Vjcos 5,) 6)
i=1
ii. Voltage deviation minimization:
No
Fy=VD=) Vi1 ™
i=1
where, V; is the voltage of bus i, Gj is line i — j
conductance and §;; is the voltage phase difference.
‘While reaching the optimal operating point of a power
system based on the previous objective functions, the
equality and inequality constraints given by (8)-(16)
must not be violated.

i < Pox <P K=12,....Ng @

O < Qok < Q0 K=1,2,....Ng (9
viin < Vog <VMe& K =1,2,...,Ng (10)
TMin < 7, <TM™ n=1,2,...,Ng (11)
OMin < Qe < QM n=1,2,....Ny (12)
Spn < SMM p=1,2,...,Ng (13)
vMin <y, <yMax g —1,2,...,Ng (14)
Np
Pgi—Pri =YV, Z V; (Glfl' cos §;;+B;j sin 5,'/') (15)
j=1
Np
Qci — Qi = Vi Y V; (Gyjsin8;—Bjjcos8;)  (16)
j=1

The multi-objective functions are handled using the weighted
sum approach as given in (17):

2 N2
F=Fi+k (QGi - ng,") +ky (VLi - VLllim>

lim 2
+hs (S =str)”am

lim

where, ki, k2, k3 are the penalty factors, while x"" can be
determined from the following equation:
max . max
xltm _ !xmm l?x > xmin (18)
X if x <x

However, the penalty factors usually depend on the opti-
mization problem and their values are selected by trial and
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error approach [48]. The effect of the choice of these penalty
factors in the case of solving the optimal reactive power
dispatch problem has been studied in [48]. The study recom-
mended the weight factor values to be k; = 10, k; = 5 and
kz = 5[48]. Hence, these values are used in the current paper.

Ill. LOAD DEMAND AND RES UNCERTAINTIES

The continuous probability density function (PDF) is utilized
to incorporate the uncertainties in loads demand, wind, and
solar energy as:

A. MODELING THE SPEED WIND UNCERTAINTY
Weibull PDF can be applied for the wind speed uncertainty
modeling as [49]:

ror=(5) ()" en |- (2) Josv<w a9

where, «, 8 are the Weibull PDF scaling and shaping param-
eters. Figure 1 shows the 1000 Monte-Carlo wind speed
distribution scenario utilizing Weibull PDF.

N

Frequency

w

0 5 10 15 20 25 30 35
Wind speed in m/s

FIGURE 1. A 1000 Monte-Carlo wind speed distribution scenario utilizing
Weibull PDF (« = 9, g = 2) for the wind generator at bus 5.

As a function of wind speed, wind turbine output power
can be determined as follows [50]:

0 Jor v, < Vi & Vg > Vo
Vo — Vi
Py (Vw) = | Por (H) Jor (Vwi < vy < Ver)
wr — VYol
Py Jor (Wor < vy < Vo)
(20)

where, P, is the wind turbine rated output power
(Por =3W), vy =3 m/s, vy =25 m/s and v, = 16 m/s,
are the wind turbine cut-in, cut-out, and the rated speeds,
respectively. In this paper, the wind farm consists of 25 wind
turbines, and the total output power is 75 MW.

The probability of wind speed for each wind scenario is
calculated using (21).

U/I;I’L{Lx
Twind k = ) Sy (w)ydv (21)
U;{nlﬂ
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where, v,’:’i", V'™ denote the starting and ending points of
wind speed’s interval at k™ scenario, Twind, k 1S the probability
of the wind speed being in scenario k.

B. SOLAR IRRADIANCE UNCERTAINTY MODELING
Formulation of the solar irradiance uncertainty can be
attained using the lognormal PDF as [51]:

(InG—py)?

1
exp|—
Go/ 21 |: 2072

f6 (G) = ] for G>0 (22)

where, o, iy are the stranded deviation and the mean
of the random variables which are selected to be equal
to 0.5 and 5.5, respectively [34].

Frequency

1000 1500 2000
Solar irradiance in \W/m?

FIGURE 2. PV unit solar irradiance scenarios (without zero irradiance).

Figure 2 shows the solar irradiance scenarios employing
the Monte-Carlo simulation. Due to sun unavailability during
half of the daytime, the initialization of zero irradiance with
50% is used. While the remaining 50% probability covers
the scenarios of solar irradiance generated using lognormal
distribution mean pg = 5.5 and standard deviation o, = 0.5.

The PV array output power as a function of irradiance can
be calculated as [52]:

G2
Py | ——— 0<G<X
* (Gstd X Xc) for = -0
o (G
¥ G

where, Gy is the standard solar irradiance which equals
1000 W/m? while, X, denotes a certain irradiance point which
is set as 120 W/m? [34]. P, is the PV array output power
which equals 50 MW in this paper.

Calculating the solar irradiance probability could be
attained from [53]:

Py (G) = (23)

for G = X,

G%ax
Tsolar,m = / ) J6 (G)dG (24)
Gn'lml'l
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C. UNCERTAINTY MODELING OF LOAD DEMAND
The normal distribution PDF can be used to represent load
modeling uncertainty as [54]:

1 (P — pa)?
S 25
ogvV2m “r |: 203 :| =

where, g and o4 are the mean and standard deviation values,
respectively. While P, denotes the probability density of load
normal distribution. Load demand Monte- Carlo scenarios
created using normal distribution PDF (sample size 1000,
g =70, 04 = 10) as shown in Figure 3.

Ja (Pg) =

(9] [ ~ [+-]
T T T T

Frequency
'

w
T

N
T

-

40 50 60 70 80 90 100
Network loading in %
FIGURE 3. Monte-Carlo simulation of demand scenarios.

Load demand probability and expected load scenario can
be attained using the following equations [49]:

(Pg — pa)?

e [T
puin - Gg/2m 207

1 (P P Py — pa)?
Td,i JPhin  og/2m 20

where, PZ”?, P7/%* represent the border limits of interval i.

PIT 1

] dpPy (26)

Py =

D. LOAD GENERATION MODEL

Combining load scenarios, wind speed, and irradiation model
probabilities can be attained by multiplying their probabilities
in (21), (24), and (26) as:

Ts = Td,i X Tsolar,m X Twind k (28)

E. BACKWARD REDUCTION ALGORITHM

Using the backward reduction algorithm (BRA) in scenario
reduction steps are illustrated in [34]. Table 1 lists the des-
ignated demonstrative scenarios with their corresponding
probabilities. Each row in this table provides data for each
scenario including the percentage of loading, wind speed,
solar irradiance, wind power, PV power, and the probability
for the scenario.
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TABLE 1. Designated scenarios and corresponding parameters for studied scenarios.

Scenario o . . Irradiance, Wind power PV power Scenario

no. o Loading Pd Wind speed vi(m/s) G, (W/m?) (MW) (MW) probability, Ay
1 60.293 6.514 918.376 20.272 45.919 0.001
2 76.831 13.347 1924.466 59.697 50.000 0.001
3 69.559 11.289 1340.112 47.819 50.000 0.001
4 77.134 15.633 655.062 72.882 32.753 0.003
5 49.093 20.535 179.330 75.000 8.967 0.001
6 65.263 8.282 784.890 30.473 39.245 0.001
7 67.261 9.530 205.853 37.673 10.293 0.119
8 92.929 11.278 343.400 47.757 17.170 0.001
9 42.659 4.289 0.000 7.439 0.000 0.007
10 72.131 5.227 0.000 12.845 0.000 0.489
11 68.524 11.584 614.511 49.523 30.726 0.008
12 66.030 2.439 568.783 0.000 28.439 0.009
13 66.065 8.047 718.424 29.118 35.921 0.002
14 67.521 7.052 1435.959 23.378 50.000 0.001
15 61.892 9.308 57.991 36.394 1.401 0.003
16 74.331 8.387 166.863 31.077 8.343 0.119
17 68.012 7.955 280.474 28.586 14.024 0.090
18 59.917 6.432 435.519 19.798 21.776 0.017
19 72.927 6.206 748.389 18.497 37.419 0.001
20 66.075 7.357 529.017 25.136 26.451 0.007
21 65.005 11.852 327.512 51.068 16.376 0.045
22 62.978 11.275 485.290 47.738 24.265 0.014
23 72.318 8.387 382.131 31.078 19.107 0.028
24 98.525 0.617 180.523 0.000 9.026 0.003
25 79.921 5.220 93.790 12.810 3.665 0.029

IV. OVERVIEW OF RAO-3 P

Rao is a recently developed optimization algorithm [55].

There are three proposed Rao algorithms namely Rao-1, Initalize Pop size, Dim, Lb, Ub,

Rao-2, and Rao-3. It’s selected for use in this research as Max teration

a population-based algorithm due to its simplicity, ease of y

implementation in optimization applications. Moreover, it has Identify best and worst solutions

fewer control parameters as it has not a metaphorical expla- inthe population

nation. The swarm size is the only control parameter that !

needs adjustment once the stop condition is attained. Like No Modify the solutions based on the

best and worst solutions

iterative optimization algorithms, Rao algorithms explore
the search space to get iteration finest solution, iteration
worst solution, and arbitrary exchanges among the swarm.
In [55], the performance Rao method has been validated
using 23 benchmark functions, 25 unconstrained benchmark
functions and 2 standard constrained optimization problems.
The experimental results have been shown that the RAO
algorithm can guarantee the performance of explorations
while achieving superior exploitations, thus maintaining an
outstanding balance between exploitations and explorations,
which reflects the superior performance of the algorithm in a
statistical sense compared with other algorithms. Roa method
has been used for solving several engineering optimization
problems [56]-[61].

The three algorithms of Rao are similar in their steps but
they only differ in the movement equation as illustrated in the
following steps and depicted in Figure 4 [60]:

1. Express population size Nyp, the dimension of opti-
mization variables, dim, Minimum and Maximum lim-
its of variables, Var™™" Var™® and the predetermined
stop criteria.
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s the modified solution better

than the previous solution
No

Keep the previous
solution

Yes

Accept and replace

the previous solution

Is the termination criterion

satisfied Report the best solution

FIGURE 4. Flowchart for implementation of Rao-3 algorithm.

2. Random initialization of population and corresponding
fitness function evaluation.

3. Extract the best and worst solutions from the popula-
tions based on their objective function values.
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4. Update the new solution for all population p =
1,2,...,Npgp, in the current k™ iteration which
depends on the selected Rao- algorithm as follows:

a) Rao-1 Algorithm, the following equation is used
to find the updated solution x’:

x;n,p,k = Xm,p,k + rimk (xm,q,k - xm,w,k) (29)

where, X,  is m” variable value for the p™ solu-

tion during the i iteration. The best candidate
solution is denoted by x,, 4.k while X, is the
value of the worst solution.

b) The Rao-2 algorithm, the following equation is
used to obtain the updated solution:

Xppk = Ympk + FLmk (Sm.gk = Xmowk) F2.m

X (|Xm.p.k OF Xm.d k| —|Xm.d.k OF Xmpkl|)

(30)

where 71k, 2,m k are random numbers in the

range of [0, 1] for the m™ variable value in i

iteration. The additional term in (30) represents
the random interaction through the population.

¢) Rao-3 algorithm, the following equation is used

to obtain the updated solution:

x,/n,p,k = Xm,p,k + ¥1,mk (xm,q,k - |xm,w,k |)
+ r2.mk ([Xmp.k O Xim,a k|
- (xm,d,k or xm,p,k)) (3D

5. Inthis phase, the cost function is evaluated according to
the updated population. The objective function values
are sorted to get the best solution to be compared with
the old solution. If the new solution is better than its old
value, then the old value will be updated by the new one.

6. Finally, the termination criterion will be investigated.
If this condition isn’t attained, go to Step 3 else print
the optimal solution of the optimization problem.

V. SIMULATION RESULTS AND DISCUSSION
In the present work, the standard configurations of the IEEE
30-bus, IEEE 57-bus systems, and IEEE 118-bus are consid-
ered for the implementation of selected cases of deterministic
ORPD. Moreover, comparing the results of those cases using
the proposed Rao-3 algorithm with recent results concluded.
All generators in standard configurations are thermal gener-
ators. While a modification to the IEEE 30- bus system by
replacing the thermal generator at bus 5 with wind power
generating source and the thermal generator at bus 8 with
a photovoltaic (PV) power unit is considered. Optimal loca-
tions of the wind farm and PV power generation depend
on several factors such as wind speed and solar radiation,
respectively [58]. In this paper, the locations of wind and PV
units are selected as in [34], with the aim of comparing the
obtained results with those mentioned in [34].

This will lead to executing stochastic ORPD including a
wind generator and a PV unit. Figure 5 shows a diagram of
the modified system.
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FIGURE 5. The customized IEEE 30-bus system with wind power
generator and PV power unit.

This section investigates the capability of the Rao-3 opti-
mization algorithm to solve the ORPD problem with and
without considering the uncertainty of renewable energy
resources [62]. IEEE 30-bus, 57-bus, and 118-bus are con-
sidered as test systems. Two recent optimization techniques,
Artificial electric field algorithm (AEFA) [63], and artificial
Jellyfish Search (JS) [64] algorithms as well as other well-
known algorithms are used to validate the proposed algorithm
to solve the ORPD problems. Table.11 in the appendix sum-
marizes the details of studied cases; configuration, variables
number, and limits. Generators data for the IEEE 30-bus and
IEEE 57-bus systems are given in the Appendix, Table 9, and
Table 10. The limit setting for control variables of the IEEE
118-bus system is presented in Table 12 in the Appendix.
The proposed Rao based ORPD is executed via MATLAB
2016a platform using an Intel ® core TM 15-7200U CPU,
2.50 GHz, 8 GB RAM Laptop. Test system-1: IEEE 30-bus
test system (Base-case).

A. TEST SYSTEM-1 (BASE CASE): IEEE 30-BUS SYSTEM

Case (1) will handle the minimization of real power loss
(Pjoss) while Case (2) will investigate the minimization of
cumulative voltage deviation (VD) of PQ buses for the
standard configuration of the IEEE 30-bus system. These
two cases consider more realistic mixed-integer optimization
problems where the capacitor banks and transformer taps are
treated as discrete variables. The capacitor can be switched
in discrete steps of 0.2 MVAr and transformer tap settings
can be changed in steps of 0.02 p.u. from 0.90 to1.10 p.u.
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TABLE 2. Results of studied cases for 30-bus system.

Case 1(Min. Pjo)

Case la(Min. Pyys)

Case 2(Min. VD) Case 2a (Min. VD)

Parameters Min  Max

JS AEFA  Rao-3 JS AEFA  Rao-3 JS AEFA  Rao-3 JS AEFA  Rao-3
Generator voltage
V1 (p.u.) 0.95 1.1 1.0647 1.0652 1.0693 1.0709 1.0716 1.0718 1.0085 1.0091 1.0030 1.0105 1.0130 1.0026
V2 (p.u.) 0.95 1.1 1.0566 1.0570 1.0609 1.0616 1.0616 1.0626 1.0072 1.0074 0.9999 1.0075 1.0110 0.9981
V5 (p.u.) 0.95 1.1 1.0333  1.0335 1.0373 1.0392 1.0372 1.0405 1.0202 1.0225 1.0180 1.0230 1.0202 1.0162
V8 (p.u.) 0.95 1.1 1.0392 1.0394 1.0433 1.0398 1.0376 1.0407 1.0064 1.0049 1.0079 1.0036 1.0057 1.0084
V11 (p.u.) 0.95 1.1 1.0754 1.0915 1.0821 1.0749 1.0818 1.0906 1.0277 1.0306 1.0425 1.0026 1.0368 1.0742
V13 (p.u.) 0.95 1.1 1.0690 1.0737 1.0469 1.0593 1.0672 1.0517 1.0083 1.0359 1.0145 1.0360 1.0289 1.0151
Transformer tap
ratio
T11 (p.u.) 0.9 1.1 1.0089 1.0388 1.1 1.0139 1.0132 1.0756 1.0229 0.9771 1.0618 1.0135  1.0271  1.1000
T12 (p.u.) 0.9 1.1 1.0049 09199 0.9004 0.9696 0.9178 0.9008 0.9217 09151 0.9000  0.9024  0.9000  0.9000
T15 (p.u.) 0.9 1.1 1.0248 1.0220 0.9763 0.9989 1.0003 0.9883 0.9703 0.9942 0.9964 1.0230  0.9885  0.9980
T36 (p.u.) 0.9 1.1 09822 0.9604 09809 09743 0.9611 09751 0.9660 0.9567 0.9510 0.9630 0.9661  0.9696
Capacitor bank
8\%\1/(1)“) 0 5 49294 29937 4.6402 45288 2.5307 0.0000 4.8648 1.0064 4.9928  4.9997 34076  4.9998
8\51:\1710 0 5 4.2358 2.4933 3.2615 3.0668 22560 3.6542 2.3527 2.1341 5.0000 0.0229 24756 4.9858
g\flj\llir) 0 5 4.7241 2.7821 3.9266 3.7421 1.5519 4.2518 49099 0.6094 4.9992  4.9999 1.7885  5.0000
8\?\1/3&) 0 5 49272  2.6618 5 49854 23641 5.0000 0.0455 2.2762 0.0786  0.0052  1.6987  0.0011
85[:\2,(;0 0 5 2.5270 2.4448 39943 39833 3.0356 3.9864 49659 26099 49123 49997 1.8460 4.9997
?]\%\zllAr) 0 5 4.9503 39928 5 4.9996 33146 4.9999 4.8045 1.6892 49859 49930 4.1092  4.9999
8\5\2]’1“) 0 5 3.0033 3.1462 29479 29786 1.3546 28600 49103 3.6124 49813 49999 3.6816  5.0000
8\%211“) 0 5 4.9555 0.7065 5 4.9980 1.7375 4.9980 4.9020 29580 4.9998  5.0000 1.6443  4.9999
8\%2,?“) 0 5 2.3300 1.4672 25716 23982 1.9316 24654 2.0288 3.4338 1.8802 24052 42120 2.6200
Objective function
Ploss (MW) NA NA 44289 44711 4.4124 48635 4.9393 4.8612 53390 53886 54632 58489 5.7490  6.0307
VD (p.u.) NA NA 08564 0.8839 0.8840 0.9207 0.8938 0.9205 0.0947 0.1418 0.0883  0.0944  0.1313  0.0873
Generator reactive power
QGl (MVAr) -20 150 -3.599 -3.101 -0.530 -0.499 23175 0.0488 -19.99 -20.000 -20.00 -19.963 -20.000 -19.998
QG2 (MVAr) -20 60 12427 13.111 16.114 15498 18279 15949 1.2864 -0.1970 -13.896  -4.041  4.0171 -19.909
QG5 MVAr) -15 62.5 24721 24929 24702 24336 24.144 24.619 58536 61.717 59.281 58.468  52.582  53.685
QG8 (MVAr) -15 48.7 26.529 28983 28.789 30.616 35.140 29.937 48.700 48.700 48.700  48.694  48.700  48.681
(Ql\fl}\l//l\r) -10 40  13.706 24.840 28.105 14.194 16.897 28210 11.704 7.3723 21.920 1.6546  15.357  38.727
8\/?\13“) -15 447 15.083 18.767 -1.685 7.3226 13.348 1.5319 0.1252 16.445 4.7783  20.115 11.335  4.8920

The optimization technique performs a rounding operation in
order to handle these discrete variables [34].

As the generators’ active power settings (except the swing
generator) are necessary for the ORPD, the values of the
active power are carefully selected around the generators’
specified limits. The values of the active power of generators
are listed in Table 9 in the Appendix. Besides cases 1 and 2,
the other two cases Case (1a) and Case (2a) are investigated
with the same aim of minimizing Pj,s and the total VD,
respectively.

These cases consider the setting values of the active power
of generators which are presented in [65], and also listed
in Table 9.
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Table 2 provides all the control variables’ settings and their
permissible limits to study the objective function of 4 cases
(i.e.Case (1), Case (2), Case (1a), and Case (2a)) related to the
IEEE 30-bus system. The negative values of reactive power
imply the absorption of reactive power by the generator.
Figure 6 shows the voltage profile of PQ buses for the four
study cases.

In Case (1) and Case (1a), voltage values of a few PQ buses
increased and became close to the maximum limit to achieve
minimum power loss. While in Case (2) and Case (2a) of
reducing the cumulative VD shall not drive to an increase of
voltage because the main objective in these cases is to keep
the buses voltage nearby 1.0 p.u.
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FIGURE 6. PQ buses Voltage profiles for the investigated cases of IEEE
30-bus test system.
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FIGURE 7. The convergence characteristics of the proposed Rao-3, AEFA,
and JS algorithms for studied cases of power losses for the IEEE 30-bus
system (a) Case 1 (b) Case 1a.

The convergence characteristics of the Rao-3, AEFA, and
JS algorithms for the Case (1) & Case (1a), and Case (2) &
Case (2a) are shown in Figure 7 and Figure 8, respectively.
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FIGURE 8. The convergence characteristics of the proposed Rao-3, AEFA,
and JS algorithms for studied cases of voltage deviations minimization for
IEEE 30-bus system (a) Case 2 (b) Case 2a.

In Figures 7 and 8, the focus has been made on the proposed
Rao-3 and JS algorithms, because the results of AEFA is
the worst in these cases. The least power losses obtained
by the proposed algorithm in Cases (1) and Case (la) are
4.4124 MW and 4.8612 MW, respectively, although the opti-
mal value of VD in Case (2) and Case (2a) are 0.08830 p.u.
and 0.0873 p.u, respectively.

Table 3 shows a comparison of the results obtained by the
proposed algorithm in the current study with certain previ-
ously published ORPD results. There are few references in
the table which specifically address the active power settings
of the specific generators. All these references are presumed
to have tracked the given data in [65].

The proposed algorithm achieves the optimum solution in
Case 1 (4.4124 MW) compared with the two recent AEFA
and JS algorithms and the other published algorithms as
shown in Table 3. The detailed analyses of infeasible solu-
tions using some algorithms in Table 3 are mentioned in [34].
In a comparison of Case (2) and Case (2a), the results of
previous papers using several algorithms reached relatively
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TABLE 3. Results comparison of investigated cases for IEEE 30-bus system.

Case no. Algorithm P}?Zj:eg\/}(\);/s) V;I;a%;i‘;v.
Case 1 Rao-3 4.4124 0.8840
AEFA 44711 0.8839
JS 4.4289 0.8564
SHADE-EC [34] 4.4126 0.9029
Case la Rao-3 4.8612 0.9205
AEFA 4.9393 0.8938
JS 4.8635 0.9207
SHADE-EC [34] 4.8612 0.9205
DE [66] 4.5550 1.9589°
QOTLBO [27] 4.5594 1.9057°
MFO [67] 4.5128 -
EMA [65] 4.4978 0.8123
IGSA-CSS [68] 4.7660* -
OGSA [69] 4.4984 0.8085
HFA [70] 4.529 1.625°
FAHCLPSO [71] 4.4877 -
NGBWCA [30] 4.4801 0.8413
Case 2 Rao-3 5.4632 0.08830
AEFA 5.3886 0.1418
JS 5.3390 0.0947
SHADE-EC [34] 5.4495 0.08886
Case 2a Rao-3 6.0307 0.0873
AEFA 5.7490 0.1313
JS 5.8489 0.0944
SHADE-EC [34] 6.0099 0.08724
QOTLBO [27] 6.4962 0.0856
MFO [67] - 0.12154
EMA [65] 6.241 0.06131
IGSA-CSS [68] - 0.08968*
OGSA [69] 6.9044 0.0640
HFA [70] 5.75 0.0980
FAHCLPSO [71] - 0.04315
NGBWCA [30] 6.3142 0.0458

@ Higher limit for PQ buses voltage and generator reactive power are utilized
b Infeasible approach, bus voltage load restriction is violated

lower values of VD, but no publication listed here checked the
actual reactive power generation status or the PQ-bus voltage
profile [34].

B. TEST SYSTEM-2 (BASE CASE): IEEE 57-BUS SYSTEM
Minimizing Pj,s and cumulative VD for the IEEE 57-bus
system have been studied in Case (3) and Case (4). The setting
values of the generators’ active power for the IEEE 57-bus
system have been listed in Table 10.

In Case (3) and Case (4), the active power of thermal units’
isn’t adjusted to zero. Three thermal units are selected with
zero active power in Case (3a) and (4a). Hence, they are either
absorbing or producing reactive power.

Like the IEEE 30-bus system, Table 4 provides the set-
tings of all control variables and their permissible limits to
study the objective function of the four cases (i.e. Case (3),
Case (4), Case (3a), and Case (4a)) related to the IEEE 57-bus
system. Figure 9 shows the voltage profile of PQ buses for
the four cases of the IEEE 57-bus system. The convergence
characteristics of the Rao-3, AEFA, and JS algorithms are
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displayed in Figure 10 for Case (3) and Case (3a) while
Figure 11 shows the convergence characteristics of the pro-
posed Rao-3, AEFA, and JS for Case (4) and Case (4a).
Because the results of the JS technique are the nearest to those
obtained by the Rao-3, the focus in the convergence curves
has been made on both of them. All convergence curves of
Figures 10 and 11 prove that the Rao-3 gives the best solutions
for the ORPD problem.

Table. 5 presents the results IEEE of the 57-bus sys-
tem obtained by the developed algorithm compared with
those obtained by other well-known optimization techniques.
The developed algorithm achieves the optimal solution in
Case (3) with 18.1494 MW compared with the solution
obtained by the SHADE-EC algorithm (18.4000 MW). While
the SHADE-EC and the Rao-3 achieve the best solutions
in Case (3a) among the results of all algorithms listed
in Table.7, these solutions are 23.3031 MW and 23.3040 MW,
respectively. The Rao-3 algorithm achieves also the opti-
mal solution (0.6160 p.u.) in Case (4) compared with the
SHADE-EC algorithm (0.62632 p.u.) while the SHADE-EC
and Rao-3 achieve the best result in Case (3a) among the
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TABLE 4. Numerical results of studied cases for IEEE57-bus system.

Case 3(Min. Pioss)

Case 3a(Min. Piogs)

Case 4(Min. VD)

Case 4a (Min. VD)

Parameters Min Max
JS AEFA Rao-3 JS AEFA Rao-3 JS AEFA Rao-3 JS AEFA Rao-3
Generator voltage
VI (p.u.) 0.95 1.1 1.0810 1.0533 1.0951 1.0837 1.0466 1.0883 1.0187 1.0512 1.0152 1.0107 1.0468 1.0209
V2 (p.u.) 0.95 1.1 1.0733 1.0426 1.0874 1.0732 1.0318 1.0774 1.0168 1.0372 1.0119 0.9968 1.0327 1.0116
V3 (p.u.) 0.95 1.1 1.0581 1.0189 1.0716 1.0624 1.0095 1.0652 1.0212 1.0146 1.0125 1.0075 1.0126 1.0102
V6 (p.u.) 0.95 1.1 1.0584  0.9932 1.0626 1.0559  0.9907 1.0559 1.0129  0.9798 1.0027 1.0126 0.9876 1.0043
V8 (p.u.) 0.95 1.1 1.0723  0.9970 1.0771 1.0746 1.0012 1.0752 1.0262  0.9578 1.0166 1.0492 0.9751 1.0309
V9 (p.u.) 0.95 1.1 1.0459 0.9811 1.0522 1.0448 0.9776 1.0427 1.0068 0.9617 1.0020 1.0169 0.9681 1.0072
V12 (p.u.) 0.95 1.1 1.0484  0.9982 1.0556 1.0521 0.9944 1.0442 1.0271 1.0095 1.0316 1.0326 1.0178 1.0345
Transformer tap ratio
T19 (p.u.) 0.9 1.1 1.0110 1.0261 0.9000 1.0186 09704  0.9953 0.9964 1.0345 0.9130 0.9489 0.9529 1.0945
T20 (p.u.) 0.9 1.1 0.9904 0.9262 1.0534 0.9786 0.9289 0.9904 1.0215 0.9453 1.0239 1.0090 1.0418 0.9024
T31 (p.u.) 0.9 1.1 1.0021 1.0244 1.0132 1.0040 1.0016 1.0032 09868  0.9813 0.9738 0.9723 0.9732 0.9729
T35 (p.u.) 0.9 1.1 1.0492 1.0069  0.9871 1.0287 1.0508 1.0589 09738  0.9613 1.0979 1.0005 0.9626 1.0494
T36 (p.u.) 0.9 1.1 1.0277 1.0675 1.0802  0.9961 1.0043 0.9675  0.9533 1.0764 0.9931 1.0990 1.0625 1.0956
T37 (p.u.) 0.9 1.1 1.0201 1.0202 1.0250 1.0028 1.0118 1.0061 1.0278 1.0418 1.0219 1.0418 1.0030 1.0075
T41 (p.u.) 0.9 1.1 1.0258  0.9242 1.0098 0.9969 09330  0.9967  0.9877  0.9207 0.9894 0.9924 0.9503 1.0001
T46 (p.u.) 0.9 1.1 0.9591 0.9474  0.9658 0.9533 0.9518 0.9541 0.9767  0.9421 0.9165 0.9185 0.9302 0.9175
T54 (p.u.) 0.9 1.1 1.0028  0.9406  0.9000  0.9103 0.9430  0.9083 0.9056  0.9098 0.9002 0.9000 0.9000 0.9000
T58 (p.u.) 0.9 1.1 09898 09557  0.9936  0.9884  0.9379 0.9899  0.9596 1.0003 0.9328 0.9746 0.9667 0.9305
T59 (p.u.) 0.9 1.1 0.9891 0.9419 09797  0.9723 0.9168 0.9685 0.9791 0.9202 0.9869 0.9562 0.9162 0.9882
T65 (p.u.) 0.9 1.1 0.9923 09394 09854  0.9813 0.9157 0.9729 1.0083 0.9618 1.0075 1.0070 0.9871 1.0011
T66 (p.u.) 0.9 1.1 0.9686  0.9236  0.9491 0.9450  0.9000  0.9402  0.9041 0.9026 0.9055 0.9000 0.9000 0.9000
T71 (p.u.) 0.9 1.1 09535 09187 09919 09728  0.9033 0.9705 0.9449 09216 0.9482 0.9535 0.9287 0.9598
T73 (p.u.) 0.9 1.1 1.0213 09784  0.9755 0.9874  0.9943 0.9921 1.0161 0.9755 1.0415 1.0339 0.9668 1.0049
T76 (p.u.) 0.9 1.1 0.9849 09052  0.9601 0.9596  0.9825 0.9582  0.9406  0.9427 0.9002 0.9009 0.9166 0.9008
T80 (p.u.) 0.9 1.1 1.0225  0.9405  0.9980  0.9869  0.9204  0.9857  0.9987  0.9586 1.0073 1.0170 0.9257 0.9895
Capacitor bank
QC18 (MVAr) 0 20 10.569 8.3834 0.0908 9.9950 9.5114 7.5083 14.382 6.4584 3.5534 0.4752 9.0094 0.0177
QC25 (MVAr) 0 20 16.691 17.894 15.533 14.904 14.414 14.585 14.081 15.205 16.306 14.8260 15.744 19.9031
QC53 (MVAr) 0 20 14369  4.8200 13.385 13.122 18.227 13.085 19.049 19.093 19.998 19.9967 4.8656 19.9693
Objective function
Ploss (MW) NA NA 18.594  20.610 18.149 23356  25.648 23.304  21.361 22.841 21.973 28.4017 27.639 27.5977
VD (p.u.) NA NA 1.2894 1.0288 1.7845 1.7323 1.3024 1.7397  0.7050  0.8377 0.6160 0.6443 0.7747 0.5993
Generator reactive power
QGI1 (MVAr) -140 200 54376  96.461 60.995  40.413 88.285 55.475 -18.17 100.27  -16.001 -7.4453 67.127 -9.0039
QG2 (MVAr) -17 50 49.999 50 49.986  50.000  50.000  49.986  49.999 36.695 49.553 17.5333 50.000 47.1818
QG3 (MVAr) -10 60 21.258  41.136  39.278  41.816  39.466  47.891 59.991 47.067 59.801 59.9602 48.721 59.9360
QG6 (MVAr) -8 25 -2.551 -3.724 -6.279 -0.111 1.8748 -2.204 -7.985 16.615  -7.4606 -5.1635 24.999 -5.5818
QG8 (MVAr) -140 200 56.529 28.126 35.355 63.394 37.199 70.002 40.872 41.293 29.808 90.5450 18.272 342915
QG9 (MVAr) -3 9 54.376 9 8.9829  9.0000  9.0000 8.9304  8.9984  6.4983 8.9146 8.7947 8.9999 8.6487
149.912
QGlaMvAa) TP 15 49999 se21a N esios ersa P 3034 i P40 us;mer 131as 8

results of all algorithms by 0.59673 p.u.and 0.5993 p.u.,
respectively.

C. TEST SYSTEM-3: MODIFIED IEEE 30-BUS TEST SYSTEM
In this subsection, the modified IEEE 30-bus system is stud-
ied. In the modified test system, the thermal generator at
bus #5 is substituted by a wind turbine generator while the
thermal generator at bus #8 is replaced with a PV unit. The
load demand, wind turbine generated power, and PV power
is variable based on diverse scenarios as explained previ-
ously. Shunt reactive power compensators and transformer
tapping settings are discrete steps as in Case (1) and Case (2).
Table 9 in the appendix provides the active power thermal
generator settings values (except swing generator). Hence,
the swing bus must be able for achieving the balance of
real power whenever there is a shortage in the supply from
these renewable energy sources. The ultimate value of the
active output power of the swing generator is considered
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high enough (200 MW) in this research which satisfies load
needs even if the active power output from the RES is
ZEero.

The range of the wind power generator and the PV unit
VAR is assumed almost in the range of [—0.4, 0.5] p.u.
within their range of real output power. An explanation for
this assumption is given in [46]. Table 9 in the appendix
lists these values of reactive power. The two objectives
(Pioss & VD) of the ORPD problem are minimized as
single objectives, and then, jointly, as a multi-objective
function.

D. SINGLE OBJECTIVE STOCHASTIC ORPD

The stochastic ORPD with uncertain wind power has been
proposed in [49], [74] where the detailed information about
stochastic ORPD has been presented in [34]. The minimiza-
tion of expected power loss (EPL) in Case (5) needs an
optimization algorithm to run 25 times for 25 scenarios.
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FIGURE 9. Voltage profiles of PQ buses for the studied cases of 57-bus
system.
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FIGURE 10. The convergence curves of the proposed Rao-3, AEFA, and JS
algorithms for studied cases of Py, for 57-bus system (a) Case 3
(b) Case 3a.

For each scenario, Table 6 provides the minimized value
of power loss (Pjyss). Defining the scenario probability as
Agc and minimized power loss is Py, the estimated power

23274

920 T T T T T T T
—— Rao-3
8o ——AEFA | |
—JS
70
3
3-: 60 |- ~
s
= 50 - b
S
H 0.7
o 40 — 0.68 1
f=2]
£ 30 o.08 1
S 0.64
20 0.62 il
- 1600 1800 2000
400 450 500
10 / E
o
600 800 1000 1200 1400 1600 1800 2000
Iteration
@
120 T T T T T
——Rao-3
—— AEFA
100 Js B
3
S 80 J
o
2
=
©
S 60 i
) x
° 0.64
)
g
= 40 0.62 1
>
0.6 e
20 |- 1600 1800 2000 -+
500
0
800 1000 1200 1400 1600 1800 20
Iteration
(b)
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FIGURE 12. Optimum values of PV bus voltages for studied scenarios
in Case 5.

loss (EPL) is evaluated for all scenarios as follows:

Nsc
EPL = Z AscXPloss,sc

sc=1

(32)

where, Ngc denotes the total number of evaluated scenarios.
Similarly, VD for every scenario is minimized in Case 6.
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FIGURE 13. Optimal values of PV bus voltages for studied scenarios

in Case 6.

TABLE 5. Results comparison of evaluated cases for the IEEE 57-bus
system.

Case no. Algorithm Pl?:::z\/}(\);fs) V;l[t)a%;lcll.e)v.
Case 3 Rao-3 18.1494 1.7845
AEFA 20.610 1.0288
JS 18.594 1.2894
SHADE-EC [34] 18.4000 1.5207
Case 3a Rao-3 23.3040 1.7397
AEFA 25.648 1.3024
JS 23.356 1.7323
SHADE-EC [34] 23.3031 1.7322
MFO [67] 24.2529 -
IGSA-CSS [68] 22.2718* -
OGSA [69] 23.43 1.1907
ICA [72] 24.1607 -
PSO-ICA [72] 24.1386 -
MICA-IWO [73] 24.2568 -
Case 4 Rao-3 21.9733 0.6160
AEFA 22.841 0.8377
JS 21.361 0.7050
SHADE-EC [34] 21.6013 0.62632
Case 4a Rao-3 27.5977 0.5993
AEFA 27.639 0.7747
JS 28.4017 0.6443
SHADE-EC [34] 27.7317 0.59673
IGSA-CSS [69] - 0.60347°
OGSA [69] 32.34 0.6982
ICA [72] - 0.6137
PSO-ICA [72] - 0.6031

“ Different limits of generator reactive power are utilized

Table 7 presents the optimized values of VD, for all scenar-
ios. The expected voltage deviation (EVD) over all scenarios
is expressed as:

Nsc
EVD =Y Ay XVDy, (33)

sc=1
The value of EPL obtained for Case (5) is 2.4998 MW and
EVD for Case (6) is 0.06314 p.u. In Table 6, the power loss is
the lowest value when system loading is at its minimum level
(scenario 9, loading = 42.659%). Minimum loading implies
the lowest current in the network and hence low power loss.
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FIGURE 16. Reactive power values of the generators for all scenarios
of Case 5.

In the contrast, the highest value of the power loss is achieved
when the system loading is at its maximum level with the
absence of wind power (scenario 24, loading = 98.525%,
wind power = 0 MW). Because of the lack of wind power,
the swing generator has to supply surplus power to relatively
faraway loads.
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TABLE 6. Single-objective ORPD evaluated cases with time-varying demand and uncertain renewable power.

Scenario % Loading Wind power PV power Scenario Scenario-based Py, Scenario-based VD
no. Pqy (MW) (MW) probability, A (MW) (p-u.)
1 60.293 20.272 45919 0.001 1.128 0.054
2 76.831 59.697 50.000 0.001 1.106 0.063
3 69.559 47.819 50.000 0.001 1.056 0.056
4 77.134 72.882 32.753 0.003 1.078 0.068
5 49.093 75.000 8.967 0.001 1.308 0.041
6 65.263 30.473 39.245 0.001 1.110 0.052
7 67.261 37.673 10.293 0.119 1.356 0.056
8 92.929 47.757 17.170 0.001 3.469 0.088
9 42.659 7.439 0.000 0.007 0.886 0.039
10 72.131 12.845 0.000 0.489 3.241 0.067
11 68.524 49.523 30.726 0.008 0.964 0.057
12 66.030 0.000 28.439 0.009 2.291 0.062
13 66.065 29.118 35.921 0.002 1.147 0.057
14 67.521 23.378 50.000 0.001 1.318 0.054
15 61.892 36.394 1.401 0.003 1.241 0.056
16 74.331 31.077 8.343 0.119 2.283 0.063
17 68.012 28.586 14.024 0.090 1.594 0.058
18 59917 19.798 21.776 0.017 1.172 0.047
19 72.927 18.497 37.419 0.001 1.930 0.066
20 66.075 25.136 26.451 0.007 1.332 0.054
21 65.005 51.068 16.376 0.045 0.935 0.058
22 62.978 47.738 24.265 0.014 0.836 0.059
23 72.318 31.078 19.107 0.028 1.758 0.064
24 98.525 0.000 9.026 0.003 8.920 0.113
25 79.921 12.810 3.665 0.029 4.247 0.076
Case 5 EPL 2.4998
Case 6 EVD 0.06314
TABLE 7. Multi-objective ORPD evaluated cases with time-varying 2QC10 1QC12 mQC15 QC17 1 QC20
demand and uncertain renewable power. 1QC21 QC23 mQC24 QC29
40
. Scenario Objective Scenario- Scenario- Z 35
Scenario probability, value, based based E
number . <30 I
Age LVDOb_] Ploss,sc VDge (pu.) = I I I
1 0.001 1.8659 1.2786 0.0587 £25 I | | | | | i
2 0.001 1.8457 1.2006 0.0645 £20 I I | i I I I I
3 0.001 1.7215 1.1467 0.0575 £is I I I I
4 0.003 1.8403 1.1931 0.0647 S I I I
5 0.001 1.8946 1.4823 0.0412 E‘t 10
6 0.001 1.7861 1.2127 0.0573 >
7 0.119 2.1111 1.5407 0.0570 I I I I I I I
g ggg; A]‘;gg? ?ggzg 88??3 123456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25
10 0.489 42873 3.5870 0.0700 Scenario number
i; gggg ;?ggz ;gg;g 882(9)2 FIGURE 17. Optimal VAR compensator settings for all scenarios of Case 5.
13 0.002 1.9522 1.3412 0.0611
14 0.001 2.0955 1.5059 0.0590
}2 g:??; ;33‘;‘; ;223? 8:83:2 the desired 1.0 p.u. Due to the low current in scenario 9,
17 0.09 2.4069 1.8134 0.0594 a minimum aggregate VD is attained in this scenario. On the
}g gg(l)z ;g;? ;-;’:02 8-8296 contrary, when network loading is maximum and the unavail-
20 0.007 2:0771 1:5033 Ozosg; ability of wind turbine power in scenario 24, this leads to the
21 0.045 1.6515 1.0500 0.0601 highest aggregate VD of the system.
22 0.014 1.4592 0.9519 0.0507 Figure 12 and Figure 13 show the optimal values of the
23 0.028 2.6591 1.9701 0.0689 . . .
4 0.003 10.8308 0.6683 0.1163 control variables for all scenarios in Case 5 and Case 6,
25 0.029 5.4893 4.6944 0.0795 respectively. Generally, the values of generator buses voltage
Case 7 EPL 2.7799 in Case 5 are higher than those in Case 6. It is noted that
EVD 0.06649

The EVD results can also be examined in the same
approach. With the lowest loading level (scenario 9), the bus
voltage levels are maintained all over the network near to
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bus#11 has the highest value of voltage setting, especially in
Case (6) because it is directly linked to the adjacent load buses
without any parallel reactive power compensators.

Figure 14 displays the PQ buses voltage profiles of
scenario 9 and scenario 24 for both Case (5) and Case (6).
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TABLE 8. Single-objective ORPD evaluated cases with time-varying demand and uncertain renewable power.

Control ~ CPVEIHBMO OGSA CLPSO GWO NGBW
Variables [77] GSA[78] PSO[21] DE[79] [69] 1] [80] CA [30] JS AEFA Rao-3
Generator voltage
V1 0.9926 0.9600 1.0853 1.0336 1.0350 1.0332 1.0204 1.0215 1.0026 0.9965 1.005619
V4 1.0108 0.9620 1.0420 1.0474 1.0554 1.0550 1.0257 1.0431 1.0332 1.0324 1.041145
\' 1.0037 0.9729 1.0805 1.0316 1.0301 0.9754 1.0208 1.0312 1.0256 1.0230 1.031482
V8 0.9976 1.0570 0.9683 1.0334 1.0175 0.9669 1.0419 1.0539 1.0377 1.0101 1.04171
V10 1.0215 1.0885 1.0756 1.0347 1.0250 0.9811 1.0413 1.0271 1.0579 0.9948 1.055457
Vi2 1.0093 0.9630 1.0225 1.0433 1.0410 1.0092 1.0232 1.0316 1.0276 1.0193 1.026048
V15 1.0075 1.0127 1.0786 1.0266 0.9973 0.9787 1.0207 1.0129 1.0197 0.9944 1.025839
V18 1.0259 1.0069 1.0498 1.0272 1.0047 1.0799 1.0270 1.0075 1.0271 0.9955 1.026774
V19 0.9943 1.0003 1.0776 1.0307 0.9899 1.0805 1.0204 1.0102 1.0198 0.9888 1.021509
V24 1.0179 1.0105 1.0827 1.0319 1.0287 1.0286 1.0137 1.0208 1.0255 0.9981 1.034654
V25 1.0177 1.0102 0.9564 1.0435 1.0600 1.0307 1.0270 1.0531 1.0588 1.0029 1.059846
V26 0.9990 1.0401 1.0809 1.0104 1.0855 0.9877 1.0386 0.9941 1.0593 1.0409 1.06
V27 1.0084 0.9809 1.0874 1.0189 1.0081 1.0157 1.0188 1.0291 1.0259 0.9798 1.031847
V31 0.9838 0.9500 0.9608 1.0481 0.9948 0.9615 1.0138 1.0275 1.0194 0.9819 1.021502
V32 0.9827 0.9552 1.1000 1.0215 0.9993 0.9851 1.0135 1.0201 1.0231 0.9826 1.029159
V34 1.0065 0.9910 0.9611 1.0277 0.9958 1.0157 1.0261 1.0014 1.0223 1.0170 1.047777
V36 1.0190 1.0091 1.0367 1.0254 0.9835 1.0849 1.0261 1.0412 1.0201 1.0150 1.04616
V40 1.0267 0.9505 1.0914 1.0224 0.9981 0.9830 1.0125 1.04 1.0272 1.0008 1.029714
\) 0.9865 0.9500 0.9701 1.0226 1.0068 1.0516 1.0233 1.0512 1.0218 1.0018 1.026529
V46 1.0084 0.9814 1.0390 1.0245 1.0355 0.9754 1.0272 1.017 1.0249 1.0112 1.028834
V49 1.0035 1.0444 1.0836 1.0426 1.0333 0.9838 1.0401 1.051 1.0376 1.0188 1.040376
V54 0.9806 1.0379 0.9764 1.0135 0.9911 0.9637 1.0230 1.0392 1.0224 0.9535 0.989651
V55 0.9969 0.9907 1.0103 1.0153 0.9914 0.9716 1.0221 1.0331 1.0186 0.9505 0.987586
V56 0.9881 1.0333 0.9536 1.0131 0.9920 1.0250 1.0226 1.0372 1.0192 0.9523 0.988918
V59 1.0197 1.0099 0.9672 1.0405 0.9909 1.0003 1.0379 1.0564 1.0275 0.9863 1.030353
Vol 0.9956 1.0925 1.0938 1.0249 1.0747 1.0771 1.0241 1.0565 1.0257 1.0056 1.058546
V62 1.0064 1.0393 1.0978 1.0161 1.0753 1.0480 1.0199 1.0489 1.0241 1.0055 1.050738
V65 0.9883 0.9998 1.0892 1.0414 0.9814 0.9684 1.0465 1.0435 1.0495 1.0431 1.059397
V66 1.0101 1.0355 1.0861 1.0563 1.0487 0.9648 1.0378 1.0435 1.0509 1.0446 1.059996
V69 0.9931 1.1000 0.9665 1.0571 1.0490 0.9574 1.0501 1.0489 1.0556 1.0464 1.048068
V70 1.0127 1.0992 1.0783 1.0323 1.0395 0.9765 1.0243 1.0113 1.0256 1.0033 1.012537
V72 1.0145 1.0014 0.9506 1.0454 0.9900 1.0243 1.0187 1.0382 1.0264 1.0018 1.02606
V73 1.0174 1.0111 0.9722 1.0331 1.0547 0.9651 1.0397 0.9926 1.0279 1.0021 1.014203
V74 1.0025 1.0476 0.9713 1.0374 1.0167 1.0733 1.0170 0.9934 1.0009 0.9825 0.990476
V76 0.9842 1.0211 0.9602 1.0407 0.9972 1.0302 1.0080 1.0324 0.9930 0.9737 0.977726
V77 0.9914 1.0187 1.0781 1.0438 1.0071 1.0275 1.0192 1.0185 1.0201 1.0194 1.020787
V&0 1.0257 1.0462 1.0788 1.0468 1.0066 0.9857 1.0329 1.0021 1.0312 1.0380 1.034043
V85 0.9876 1.0491 0.9568 1.0206 0.9893 0.9836 1.0224 1.0312 1.0255 1.0159 1.042649
V87 1.0213 1.0426 0.9642 1.0206 0.9693 1.0882 1.0361 1.0212 1.0258 1.0239 1.06
V&9 1.0069 1.0955 0.9748 1.0436 1.0527 0.9895 1.0558 1.0387 1.0425 1.0271 1.059856
V90 1.0298 1.0417 1.0248 1.0166 1.0290 0.9905 1.0290 1.0071 1.0261 0.9943 1.037478
Vo1 0.9839 1.0032 0.9615 1.0146 1.0297 1.0288 1.0127 0.9989 1.0215 0.9894 1.041481
V92 1.0021 1.0927 0.9568 1.0374 1.0353 0.9760 1.0360 1.0001 1.0250 1.0092 1.038338
V99 0.9853 1.0433 0.9540 1.0034 1.0395 1.0880 1.0297 1.0467 1.0296 1.0110 1.020295
V100 1.0281 1.0786 0.9584 1.0384 1.0275 0.9617 1.0360 1.0213 1.0340 1.0179 1.028325
V103 0.9802 1.0266 1.0162 1.0450 1.0158 0.9611 1.0232 1.0416 1.0313 1.0131 1.013428
V104 1.0187 0.9808 1.0992 1.0459 1.0165 1.0125 1.0180 1.0174 1.0193 1.0022 0.990548
V105 1.0209 1.0163 0.9694 1.0383 1.0197 1.0684 1.0176 1.0223 1.0203 1.0015 0.985946
V107 1.0234 0.9987 0.9656 1.0141 1.0408 0.9769 1.0201 1.034 1.0247 0.9951 0.974218
V110 0.9842 1.0218 1.0873 1.0518 1.0288 1.0414 1.0207 1.0103 1.0259 1.0118 0.996554
V111 1.0000 0.9852 1.0375 1.0342 1.0194 0.9790 1.0261 1.0345 1.0322 1.0279 1.010089
V112 0.9930 0.9500 1.0920 1.0454 1.0132 0.9764 1.0066 1.016 1.0244 1.0013 0.982382
V113 1.0200 0.9764 1.0753 1.0281 1.0386 0.9721 1.0251 1.0181 1.0337 1.0074 1.036863
V116 1.0016 1.0372 0.9594 1.0508 0.9724 1.0330 1.0342 1.033 1.0365 1.0246 1.056441
Transformer tap ratio
T8-5 1.0255 1.0659 1.0112 0.9937 0.9568 1.0045 1.0208 1.0051 0.9909 0.9878 0.971785
T26-25 0.9891 0.9534 1.0906 1.0081 1.0409 1.0609 1.0279 0.9614 1.0314 1.0398 1.047094
T30-17 0.9932 0.9328 1.0033 0.9789 0.9963 1.0008 1.0323 0.9961 1.0136 0.9923 0.987013
T38-37 0.9873 1.0884 1.0000 1.0169 0.9775 1.0093 1.0209 0.9523 1.0154 0.9618 0.962936
T63-59 0.9868 1.0579 1.0080 0.9973 0.9560 0.9922 1.0091 1.0521 1.0365 1.0591 1.011313
T64-61 1.0235 0.9493 1.0326 1.0258 0.9956 1.0074 1.0366 0.952 1.0343 1.0188 0.999329
T65-66 1.0090 0.9975 0.9443 1.0342 0.9882 1.0611 1.0301 0.9812 0.9776 1.0173 0.978985
T68-69 1.0075 0.9887 0.9067 0.9873 0.9251 0.9307 1.0234 0.951 1.0173 1.0031 0.955607
T81-80 0.9872 0.9801 0.9673 0.9930 1.0661 0.9578 1.0211 0.9754 0.9904 0.9263 1.009623
Capacitor bank
QCs 0 0 0 -16.315 -0.3319 0 -39.76 —-0.0723 -7.1679 -5.8878  -0.30522
QC34 6.0111 7.4600 9.3639 7.9425 0.0480 11.7135 13.7900 0.0483 7.7281 10.5145  13.98544
QC37 0 0 0 —9.4528  -0.2490 0 —24.73 -0.2390  -10.6387  -2.0182 0
QC44 6.0057 6.0700 9.3078 5.8755 0.0328 9.8932 9.9571 0.044 6.9277 8.1177 9.999989
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TABLE 8. (Continued.) Single-objective ORPD evaluated cases with time-varying demand and uncertain renewable power.

QC45 3.0001 3.3300 8.6428 5.0360 0.0383 9.4169 9.8678 0.0372 6.9649 6.2519 1.36366
QC46 5.9838 6.5100 8.9462 3.5833 0.0545 2.6719 9.9186 0.0624 6.5598 7.1264 9.999985
QC48 3.9920 4.4700 11.8092 4.7675 0.0181 2.8546 14.8900 0.0172 9.5609 4.6386 14.97538
QC74 7.9862 9.7200 4.6132 6.9687 0.0509 0.5471 11.9720 0.0013 5.9780 9.7290 12
QC79 13.9892 14.2500 10.5923  10.2978 0.1104 14.8532 19.6490 0.0621 13.5997 13.4850  19.99572
QC82 17.9920 17.4900 16.4544  11.6685 0.0965 19.4270 19.8900 0.0463 11.5350 13.5978  19.66949
QC83 4.0009 4.2800 9.6325 4.0756 0.0263 6.9824 9.9515 0.056 5.1837 5.4863 9.991201
QC105 10.9825 12.0400 8.9513 5.0313 0.0442 9.0291 19.9680 0.0653 8.3469 102112 19.96196
QC107 2.0251 2.2600 5.0426 3.0884 0.0085 4.9926 5.9136 0.0072 2.9259 4.1279 3.156209
QC110 2.0272 2.9400 5.5319 2.6946 0.0144 2.2086 5.8834 0.0108 3.3661 2.2775 5.473934
Objective function
Pposs (MW) 124.098 127.76 131.99 122.3603  126.99 130.96 120.65 121.47 120.6093  126.7595 118.4664
TABLE 9. The IEEE 30-bus system generators data.
Bus 1o Poin Prax Qmin Qumax Settings of thermal units, P (MW)
) (MW) (MW) (MVAr) (MVAr) Case 1,2 Case la, 2a Case 5, 6
1 50 200 -20 150 Swing Swing Swing
2 20 80 -20 60 75 80 75
5 (thermal) 15 50 -15 62.5 40 50 -
5 (wind) 0 75 -30 35 - - Variable
8 (thermal) 10 35 -15 48.7 30 20 -
8 (PV) 0 50 -20 25 - - Variable
11 10 30 -10 40 25 20 25
200 1 HAllowMin ®AllowMax ®Actual Min 1 Actual Max =Q1 =Q2 =Qwind QPV  mQIl =QI3
~ 160
f‘E 10 140
E = 120 I
3 100 >
£ £100 I
9 =
o os5p g 80 I i I
2 2 60
g g
5 oo g 40 I | | ‘ ‘
. S 20
Q61 QG2 Qwind Qpv QG11 QG13 o I ‘ | I | | ‘ ‘ ‘ |
50 Generator no. < 0
>
i -20
FIGURE 18. Upper and lower reactive power values of the generators for
all scenarios in Case 6. -40

Upper and lower ranges of reactive power contributions of
all generators, actual ultimate and lowest values of reactive
power across all scenarios for Case (5) and Case (6), respec-
tively are displayed in Figure 15, and Figure 18. The reactive
power values of the generators for all scenarios in Case (5)
and Case (6) are shown in Figure 16, and Figure 19, respec-
tively. Also, the optimal VAR compensator settings for all
scenarios in Case (5) and Case (6) are displayed in Figure 17,
and Figure 20, respectively.

E. MULTI-OBJECTIVE STOCHASTIC ORPD

In this subsection, both Pjoss and VD minimization will be
achieved as a multi-objective function (MO-ORPD). The
weighted sum approach [27], [38], [75], is used to convert two
objectives or more to a single objective, where each optimized
function is multiplied by weight factor before summation of
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FIGURE 19. Reactive power values of the generators for all scenarios of
Case 6.

the cost functions [75], [76]. The cost function for MO-ORPD
can be formulated as:

LVDobj = M Ploss + Aya VD (34)

where, Pj,ss and VD are evaluated using (2) and (3), respec-
tively. The weight factor values are A; = 1 and A,y = 10.
Case (7) with the above-declared cost functions is executed
on the modified 30-bus system. The conditions of this case are
the same as in Cases (5) and (6). Table 7 lists the objective
values (LVD,p)), scenario-based losses (Pjoss,), and voltage
deviations (VD). In this case, EPL and EVD values are
higher than those values in Cases (5) and (6). The main
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TABLE 10. The IEEE 57-bus system generators data.

Bus no Poin Prax Qumin Qumax Settings of thermal units, PG (MW)
' (MW) (MW) (MVAr) (MVAr) Case 3, 4 Case 3a, 4a
1 0 576 -140 200 Swing Swing
2 30 100 -17 50 50 0
3 40 140 -10 60 60 40
6 30 100 -8 25 50 0
8 100 550 -140 200 400 450
9 30 100 -3 9 50 0
12 100 410 -150 155 300 310
=QC10 =QC12 =QCI15 QC17 1QC20 260
mQC21 QC23 mQC24 =QC29 —— Rao-3
45 240 —— AEFA | |
= ——Js
‘Ef 40 220 8
35 —
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_5 30 I I l | I % 200 126
E=} » 124
225 I I I I l I I I 3 180 122 1
S \
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FIGURE 20. Optimal VAR compensator settings for all scenarios of Case 6.
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FIGURE 21. Reactive power values of the generators for all scenarios of
Case 7.
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FIGURE 22. Optimal VAR compensator settings for all scenarios of Case 7.

reason is that the multi-objective optimization tries to achieve
the best compromise solution of the constituting cost func-
tions. Figure 21 displays the reactive power values of the
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Iteration

FIGURE 23. The convergence curves of Rao-3, AEFA, and JS algorithms for
the studied case of Py, ¢ for the 118-bus system (Case 8).
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FIGURE 24. Values of the Pj,¢¢ during 20 runs for the 118-bus
system (Case 8).

generators for all scenarios of Case (7) while the optimal VAR
compensator settings for all scenarios in Case (7) are shown
in Figure 22.

F. TEST SYSTEM-4: IEEE 118-BUS TEST SYSTEM

The IEEE 118-bus test system consists of 54 generators, 9 tap
changing transformers, 12 capacitor devices, and 2 reactor
devices. The total system demand is 4242 MW [62]. Table 6
presents the optimal settings of control variables correspond-
ing to the best value of real power losses. In this table,
the solutions obtained by Rao-3 are better than those obtained
by other metaheuristics algorithms. Figure 9 depicts the
convergence characteristics of the proposed Rao-3, JS, and
AEFA algorithms. Figure 5 displays the values of the power

23279



IEEE Access

M. H. Hassan et al.: Optimal Reactive Power Dispatch With Time-Varying Demand and Renewable Energy Uncertainty

1.08 T T T T T T T T T
Upper bound bO—Case 8
1.06
1.04
S 1.02
=
D
g 1
=
0.98
0.96 |- .
Lower bound
0.94
o 12 24 36 48 60 72 84 96 108 118
bus no.
FIGURE 25. Voltage profiles of Load buses for the 118-bus system (Case 8).
TABLE 11. Designated scenarios and corresponding parameters for the scenarios.
Items 30-bus system 57-bus system
standard configuration Adapted configuration standard configuration
Number Info Number Info Number _Info
Buses 30 Table S.1 (Supp. doc.) 30 Variable load 57 [62]
Branches 41 [62] 41 [62] 80 [62]
Thermal generators 6 Buses: 1 (swing), 2,5,8, 4 Buses: 1 (swing), 2, 7 Buses: 1 (swing), 2, 3,
11 and 13 11 and 13 6,8,9and 12
Wind generator - 1 Bus 5 -
PV unit - 1 Bus 8 -
Shunt VAR 9 Buses: 10, 12, 15,17,20, 9 Buses: 10, 12, 15, 17, 3 Buses: 18, 25 and 53
compensation 21,23, 24 and 29 20,21, 23,24 and 29
Transformer with tap changer 4 Branches: 11,12, 15and 4 Branches: 11, 12, 15 and 17 Branches: 19, 20, 31,
36 36 35, 36, 37, 41, 46, 54,
58, 59, 65, 66, 71, 73,
Control variables 19 - 19 - 27 76 and 80
Connected load - 2834 MW, 126.2 MVAr - Variable - 1250.8 MW, 336.4 MVAr
Load bus voltage range allowed 24 [0.95 - 1.05] p.u. 24 [0.95—1.05] p.u. 50 [0.94 — 1.06] p.u.

loss during 20 runs for the 118-bus system. Figure 9 shows
the voltage profile of PQ buses of the IEEE 118-bus system
obtained by the proposed Rao-3.

VI. CONCLUSION

In this research, a new application for the Rao-3 algorithm
has been proposed to solve the non-linear optimal reactive
power dispatch problem. The integration of wind and solar
energy generation systems as the most applied technologies
for RES has been considered. In addition, the time-varying
load and uncertainties of wind and solar energy resources
have been investigated. Deterministic ORPD solutions for
two standard systems (IEEE 30-bus and 57-bus) with only
thermal generators have been performed in the first section
of this paper. Afterward, stochastic ORPD solution in case
of considering time-varying load, the uncertainty of wind
and solar PV units have been considered by a scenario-
based approach for the adapting 30-bus system. Various sce-
narios were created by Monte Carlo simulations. EP, and
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TABLE 12. Limit setting for control variables of IEEE 118-bus system.

Variables Lower limit Upper limit
Voltages for generator bus 0.94 p.u 1.06 p.u
Voltages for load bus 0.95 p.u 1.05 p.u
Tap setting 0.9 p.u 1.1 pu
QCs5 —40 MVar 0 MVar
QC34 0 MVar 14 MVar
QC37 —15 MVar 0 MVar
QC44 0 MVar 10 MVar
QC45 0 MVar 10 MVar
QC46 0 MVar 10 MVar
QC48 0 MVar 10 MVar
QC74 0 MVar 12 MVar
QC79 0 MVar 20 MVar
QC82 0 MVar 20 MVar
QC83 0 MVar 10 MVar
QC105 0 MVar 20 MVar
QC107 0 MVar 6 MVar
QCI110 0 MVar 6 MVar

EVD values have been calculated with the optimization of
network parameters under several scenarios of load demands,
wind power, and PV power. Finally, Deterministic ORPD
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solutions for the standard IEEE 118-bus with only thermal
generators have been performed. The results provided the
effectiveness and superiority of the proposed single-objective
and multi-objective algorithms in solving the deterministic
and stochastic ORPD problem compared with two recent
algorithms (AEFA and JS) and other optimization algorithms
used for the same problem. They readily lead the search
process towards the feasible zone and subsequently ensure
quick convergence to the global optimal solution.

APPENDIX
See Tables 9-12.
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