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ABSTRACT Baseline wander (BW) and electrocardiogram (ECG) noise reduction play an important role
in ECG data analysis and disease diagnosis. This article introduces a sparse optimization method, which
takes into account the group sparse characteristics of the signal, and combines low-pass filter to denoise
the ECG signal and estimate the baseline. Derived from the classic total variation (TV) denoising method,
a denoising method considering the structural characteristics of ECG signals is proposed. This method uses
a band matrix to represent the sparse optimization problem, and adopts majorization-minimization (MM)
algorithm to optimize the solution of the convergence problem. Through data comparison and detailed
analysis, we first compares the method with two TV denoising methods. Then, the proposed method is
validated in the MIT-BIH arrhythmia database of ECG signals, and compared with nonlocal means (NLM)
and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) methods. The
simulation experiment results show that the proposed algorithm has lower root mean square error (RMSE)
and higher signal-to-noise ratio improvement (SNR_imp).

INDEX TERMS ECG denoising, baseline estimation, sparse optimization, group sparsity penalty.

I. INTRODUCTION
Electrocardiogram (ECG) is an important tool for cardio-
vascular disease diagnosis, while during signal acquisition
process, it is inevitably subject to various interferences,
including random noises and baseline wander (BW). BW is
usually caused by human breathing and movement. This is an
inevitable common problem in the process of collecting ECG
information. Its noise frequency is very low, usually less than
0.7Hz, which belongs to low-frequency information interfer-
ence and often overlaps with the ST-segment component of
ECG.

Research on the denoising of ECG signals and the correc-
tion of BW has always been a hot topic. For BW correction,
the use of traditional nonlinear filters can easily cause wave-
form distortion. For this problem, empirical mode decompo-
sition (EMD) was proposed to solve the problem by virtue of
its good time scale characteristics [1]. In [2], the combination
of EMDmethod and low-pass filter (LPF) was proposed, and
in [3], a denoising method combining EMD and morpho-
logical filtering is proposed. More BW denoising works are
presented in [4]–[7]. In view of the complex decomposition of
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EMD problems, a correction method combined with Hilbert
transform is proposed in [6], but the details of the signal
waveform are still incomplete. In [7], the method of EMD
combined with mean-median filter has a good effect on the
estimation of BW.

On the other hand, as one of the most effective methods,
ECG denoising adaptive filtering has been recently stud-
ied in [8]–[11]. Due to the P-waves and QRS-waves in the
ECG signals are similar to some wavelet bases, therefore,
the wavelet transform is used to locate the peaks, and then a
method of threshold noise reduction is proposed [12]–[15].
However, these methods will reduce the QRS peak of the
ECG signals, After denoising, there will be underestimation,
leading to the loss of ECG signal characteristics and useful
information.

Sparse processing, as a new direction of signal process-
ing, is now widely used in [16]–[18], especially the total
variation (TV) denoising. TV is a commonly used penalty
function sparse signal processing, which is widely used for
denoising [19]–[22], reconstruction [23], nonlinear decom-
position [24], [25], compression induction [26], deconvo-
lution [27], [28]. However, TV noise reduction also has
some disadvantages. After the signal is denoised, it usu-
ally produces step-like artifacts and underestimates the peak
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value. Among the sparse methods, Ref. [29] proposed a
sparse representation-based noise reduction and ECG signal
BW correction algorithm. This method uses the input ECG
records to train a redundant dictionary, and uses a well-
trained dictionary to sparsely represent the ECG records
to achieve signal noise reduction. The statistical method
divides the atoms in the dictionary into clean signals and
noises. However, this method has high algorithm complex-
ity and takes a long time. In [30], the TV method using
sparse derivative was designed to reduce the noise of the
chromatogram, and the baseline was designed as a low-pass
signal. In [31], an improved sparse assisted signal smoothing
(SASS) formula was proposed to remove unsmooth points
in the signal. In [32], [33], the sparse penalty function was
further improved based on [30] to solve the problem of peak
underestimation, but it cannot effectively eliminate BW inter-
ference. In [34], it was proposed to use an asymmetric penalty
function to improve the sparsity of ECG signals, and consid-
ered the information of the positive and negative peaks of the
signal to achieve precise punishment. In addition, signals with
different differential orders have different denoising results.
Normally, the more obvious the sparsity of high-order differ-
ential information, the better the denoising effect. However,
since high-order difference information will lose more infor-
mation components, it is still necessary to explore the choice
of order. The author verifies that the sparsity characteristics
of the third-order difference combined with the asymmetric
penalty of TV noise reduction results have achieved good
results through experimental results of different orders. It is
worth mentioning that although certain achievements have
been witnessed in TV problem combined with asymmetric
penalty functions, the study of TV problems with different
penalty functions still has great significance.

In this paper, we consider the group sparsity characteristics
of the signal or signal derivative, and proposes a new TV
denoising algorithm (GSTV). Specifically, we assume that
the larger value derivatives of the signal are not independently
distributed, and usually have a distribution within a certain
range. From this perspective, the signal point value changes
rapidly and has a cluster attribute or a group attribute. The
proposed new TV noise reduction method is similar to the
traditional TV method. Both of them are based on minimiz-
ing a convex cost function, and use multiplier optimization
minimization (MM) to solve the optimization problem of con-
struction [35]. In addition, a sparse-based ‘fusion lasso signal
approximator’ is proposed in [36]. Different from TV and
GSTV, it is a compound penalty called CTV. This method not
only considers the sparse characteristics of the signal, but also
includes the sparse characteristics of the first-order difference
of the signal. This composite function can be regarded as
a special example of articles [37], [38], where two or more
regularization functions are used to promote sparse signal
expression.

Considering that in the existing technology, BW correc-
tion and noise removal are addressed separately, researchers
have designed a method that integrates these two parts to

improve efficiency. In [5], some researchers applied wavelet
transform to locate the wave, and then set a threshold function
to remove noise, but it could not effectively remove changing
BW interference. In [29], using dictionary training to sparsely
represent the signal, thismethod takes a long time and reduces
the peak of QRS-waves.

In order to further reduce the influence of BW interference
and the peak underestimation, a denoising method based on
LPF filter and group sparsity is proposed. This article lists its
main contributions.

1) The characteristics of ECG signals are analyzed from
the perspective of sparsity. Using the group sparsity penalty
function cannot only improve the sparsity of ECG signals,
but also improve the convexity of the objective optimization
function.

2) The performance of group-based sparse denoising algo-
rithm has been thoroughly tested, which is a derivative of
the TV algorithm. We conducted a series of comparative
experiments to explore the denoising performance algorithm
based on group sparsity threshold. The relationship between
parameter settings and performance is verified through exper-
iments. The experimental results also show that the denoising
algorithm based on the group sparsity threshold has a better
denoising performance than the TV and CTV algorithms.

3) Use LPF filter and group sparse algorithm to correct BW
and denoise ECG signals, effectively improve the ECG signal
ST-segment elevation and peak underestimation problems.
In addition, in comparison with the method in [34], we verify
in detail the denoising performance under different differen-
tial orders and analyze the experimental data. Combining the
group sparse TV denoising method, it has a certain degree of
scalability in the sparse field denoising.

The structure of the paper is as follows. The relevant pre-
knowledges is in Section II. In Section III, several optimiza-
tion algorithms are compared through analysis and derivation.
The simulation results are discussed in detail in Section IV.
Section V draws the conclusion.

II. PRE-KNOWLEDGES
A. NOTATION
In this paper, lowercase and uppercase boldface for vec-
tors and matrices are adopted respectively. The N -point sig-
nal x with the length of N is represented by the vector
x = [x(0), x(1) . . . , x(N − 1)]T ∈ RN , where [·]T is the
transpose. The signal is expressed in the discrete domain,
so the first-order difference characteristic of the signal can
be expressed as

D =


−1 1
−1 1

. . . . . .

−1 1

 . (1)

The first difference of signal x can be represented by Dx,
where the magnitude of D is (N − 1)× N .
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A K -point group of the vector v can be expressed as

vn,K = [v(n), . . . , v(n+ K − 1)] ∈ RN . (2)

This is the K points of the vector v starting from index n.
Except these, The `1 norm is

‖x‖1=
∑
n

|xn|. (3)

The soft-threshold function in [39] is defined as

soft (x,T ) =

{
0, |x| < T
x − T (x/ |x|) , |x| > T

(4)

for x ∈ C and T > 0. This is the soft threshold function
expression of a continuous signal. In the discrete domain for
a signal x(n) or vector x, the soft (x,T ) is an application to
every signal point.

B. SPARSITY CHARACTERISTIC OF ECG SIGNALS
The sparsity of a signal means that most of its components
are close to zero. As shown in Fig. 1, a complete ECG signal
consists of T, Q, R, S and P waves. In the P-R and S-T inter-
vals, the characteristics of the signal are relatively flat and
sparse. Considering the sparsity characteristics, comparing
the results after the difference in Fig. 2, it can be seen that the
sparsity of the first-order difference is higher, and that of the
third-order difference is basically zero.

FIGURE 1. A complete ECG signal waveform.

C. GROUP-SPARSE TOTAL VARIATION DENOISING
Sparse derivative denoising refers to the problem of esti-
mating the sparse characteristic or the derivative approxi-
mate sparse signal x based on the observation of noise. The
model is

y = x+ w, (5)

where w stands for noise component. In [40], the `1 norm is
a convex proxy for sparsity. For discrete data, the first-order

FIGURE 2. Comparisons of ECG signal differential results.

difference is the simplest approximation. To estimate compo-
nent x it can consider the minimization of ‖Dx‖1. Assuming
g is Gaussian white noise with variance σ 2, a suitable data
fidelity constraint for x is ‖y − x‖22 ≤ Nσ 2. That is to solve
the constrained optimization problem

arg min
x
‖Dx‖1, (6a)

such that ‖y− x‖22 ≤ Nσ
2. (6b)

For a suitable regularization coefficient λ, change to a uncon-
strained optimization problem.

arg min
x

{
1
2
‖y− x‖22 + λ‖Dx‖1

}
, (7)

we describe the solution to problem (7) as TV (y,λ),

TV(y,λ): = arg min
x

{
1
2
‖y− x‖22 + λ‖Dx‖1

}
. (8)

In addition, here, as described in the introduction, it is
assumed that the derivative (first-order difference, Dx) has
group sparsity behavior. The x estimation in Eq. (5), we can
introduce a function φ(x) to promote group sparsity and
replace the constraint problem in Eq. (7)

arg min
x

{
1
2
‖y− x‖22 + λφ(Dx)

}
. (9)

Joint Eq. (2), mark v = Dx, so φ(v) has the following
expression

φ(v) =
∑
n

[
K−1∑
k=0

|v(n+ k)|2]

1/2

. (10)

The φ(v) regularizer is used to promote group spar-
sity [40]–[43], the parameterK is the size of group. Note that,
if K = 1, φ(v) = ‖v‖1 and problem Eq. (9) is TV denoising
problem. If K > 1, the function φ(v) is a convex measure of
group sparsity. We refer to problem Eq. (9) as group-sparse
total variation (GSTV) denoising.

GSTV(y,λ,K ): = arg min
x

{
1
2
‖y− x‖22 + λφ‖Dx‖1

}
.

(11)

VOLUME 9, 2021 23597



H. Shi et al.: ECG Baseline Estimation and Denoising With Group Sparse Regularization

D. FUSED LASSO SIGNAL APPROXIMATOR
TV and GSTV, consider the sparse characteristics of signal
derivatives and the structural characteristics of the signal
respectively. Next we consider a more complex situation.
If both the signal x and its derivative are all sparse, then the
denoising problem is more appropriately formulated through
Eq.(7) as

argmin
x

{
1
2
‖y− x‖22 + λ0‖x‖1 + λ1‖Dx‖1

}
. (12)

This is an example that considers a compound penalty
function, with two regulators regularizers used to pro-
mote signal recovery [37], [38], [44], [45]. The problem
Eq. (12) is called the ‘fused lasso signal approximator’. Here,
it is described as compound penalty total variation (CTV)
denoising.

CTV(y,λ0, λ1) :=arg min
x

{
1
2
‖y−x‖22+λ0‖x‖1+λ1‖Dx‖1

}
.

(13)

Note that, in Proposition 1 in [36] shows that problem
Eq. (12) is equivalent to Eq. (7) in the sense that the solution
to Eq. (12) can be obtained explicitly from the solution to
Eq. (7). So the solution of Eq. (12) can be

x = soft(TV(y, λ1), λ0). (14)

It is not necessary to use a new algorithm for solving
problem Eq. (12) here, it is enough to have a method to solve
TV denoising.

E. MAJORIZATION-MINIZATION
In solving convex optimization problems, the MM algorithm
replaces difficult minimization problems with simple prob-
lems [35]. To minimize the F(x), the MM approach defines
an iterative algorithm via:

x(i+1) = arg min
x
G
(
x, x(i)

)
, (15)

where i is the iteration index, i > 0, and the function Gi(x)
is any convex majorizer of F(x) (i.e., Gi(x) > F(x)∀ x), and
when F(x) at xi (i.e., Gi(xi) = F(xi)). Initialize x0, and then
iterate Eq. (15) until it converges to the minimum value of
F(x). Learn more details in [35] and references therein.

F. HIGHER-ORDER HIGH-PASS FILTER
The use of linear filters, applied to the processing of
one-dimensional signals, must require the design of the fil-
ter structure to meet zero-phase non-causality, Because it
can avoid some unnecessary distortion. It can be achieved
by calculating some band matrices. A discrete-time filter is
described by the difference equation∑

i

a (i) y (n− i) =
∑
i

b (i) x (n− i), (16)

where y(n) and x(n) are the output and input signals
respectively.

Signal processing problems based on sparsity are usually
expressed by finite-length signals, especially in the case of
TV noise reduction. The difference Eq. (15) for finite-length
signals, we write

Ay = Bx, (17)

where A and B are banded matrices. The output is y equals to

y = A−1Bx. (18)

In this paper, we setH = A−1B,H represents the high-pass
filter. Regarding the setting of the filter, wementioned that the
filter H and LPF need to meet the zero-phase characteristic,
so as to avoid unnecessary losses in the signal processing
process. The matrices A and B are required to have specific
properties. This kind of filter is proposed in [40], the param-
eter is by order o and cutoff frequency fc.

Let P be reversal matrix, the filter should satisfy

PHP = P, (19)

where the dimension of P is determined by the dimensions of
H. If A and B satisfy

PAP = A and PBP = B. (20)

then H = A−1B satisfies Eq. (19).
Examples of recursive zero-phase high-pass filters can be

obtained in Ref. [40] Section II.

G. SYSTEM MODEL
A complicated ECG signals includes the original clean ECG
signals, BW signals and noises.

y = x+ f+ w, (21)

where x is the original clean ECG signals, f represents the
BW signals, and w is the Gaussian white noises with vari-
ance is σ 2.
Our goal is to estimate the BW signals f, and clean ECG

signals x. Observed in y seek estimates

x̂ ≈ x, f̂ ≈ f. (22)

Given an estimate x̂ of x, we will estimate f as

f̂ := LPF
(
y− x̂

)
, (23)

where LPF is low-pass filter. Therefore, we seek x̂,
Using Eq. (23) in Eq. (22), we can know

LPF
(
y− x̂

)
≈ f. (24)

Using Eq. (21) in Eq. (24)

LPF
(
y− x̂

)
≈ y− x− w. (25)

Using Eq. (22) in Eq. (25)

LPF
(
y− x̂

)
≈ y− x̂− w, (26)

or

(y− x̂)− LPF
(
y− x̂

)
≈ w. (27)

23598 VOLUME 9, 2021



H. Shi et al.: ECG Baseline Estimation and Denoising With Group Sparse Regularization

The left side of Eq. (27) is a high-pass filter y − x̂. H : =
I− LPF, so Eq. (27) equals to

H
(
y− x̂

)
≈ w. (28)

The Eq. (27) contains the data y, the estimate x̂ that we seek
to determine. The noise component w can be used to derive
an estimate x̂.

To solve the problem Eq. (21), generally, convex optimiza-
tion techniques are used to estimate transient components
from observed signals. According to the Eq. (7), Eq. (9)
and Eq. (12), we can solve this problem. After obtaining the
estimate of x̂, using Eq.(24), f can be obtained.

III. OPTIMIZATION ALGORITHM
Regarding the problem of the form like Eq. (8), Eq. (11),
Eq. (13), non-differentiable phenomena often appear in
image processing/signal processing tasks (compressed sens-
ing, deconvolution, reconstruction, ect.). In this papaer,
we use the MM as the solution algorithm [35]. We change
variable

x = Ru, (29)

where R is a matrix of size N × (N − 1)).

R :=



0
1 0
1 1 0
...

. . .

1 1 · · · 1 0
1 1 · · · 1 1


. (30)

This is a cumulative sum.

DR = I, (31)

R is a discrete anti-derivative. So

Dx = DRu = u. (32)

Introduce the filter introduced in Section II. D, the matrix B
equals to

B = B1D. (33)

where B1 is a banded matrix. Using Eqs. (18), (31), (32),
we can get

HR =A−1BR =A−1B1DR =A−1B1. (34)

A. GROUP SPARSE PENALTY MODEL
We use MM algorithm to minimize objective function.
Using Eq. (30) in Eq. (8), Eq. (11) gives respectively

x* = argmin
u

{
F(u) =

1
2
‖H(y− Ru)‖22 + λ‖u‖1

}
. (35)

x* = argmin
u

{
F(u) =

1
2
‖H(y− Ru)‖22 + λφ(u)

}
. (36)

Reference Eq. (2), the penalty function φ(u) equals to

φ (u) =
∑
n

‖un,k‖2. (37)

To find amajorizor ofF(x) in Eq. (36), firstly find amajorizor
of φ(u). Note that

1
2‖z‖2

‖u‖22 +
1
2
‖z‖2 > ‖u‖2, (38)

for all u and z 6= 0 with equality when u = z. Using Eq. (38)
for each group, a majorizor of φ(u) is given by

g(u,z) =
1
2

∑
n

[
1∥∥zn,K∥∥2

∥∥un,K∥∥22 + ∥∥zn,K∥∥2
]
, (39)

with

g(u,z) > φ(u), g(z,z) = φ(z), (40)

provided
∥∥zn,K∥∥2 6= 0 for all n. Note that g(u,z) is quadratic

in u. It can be written as

g(u,z) =
1
2
uT3(z)u+ C, (41)

where C is not related with v. 3(z) is a diagonal matrix

[3(z)] =
K−1∑
j=0

[
K−1∑
k=0

|z(n− j+ k)|2
]−1/2

. (42)

At the i-th iteration, with Eq. (41), a majorizor of F(u) is
given by

Gi(u) =
1
2
‖H(y− Ru)‖22 + λ g(u,z)

=
1
2
‖H(y− Ru)‖22 +

λ

2
uT3i(z)u+ λC

=
1
2

∥∥∥A−1By− A−1B1u
∥∥∥2
2
+
λ

2
uT3i (z)u+ λC

=
1
2
(A−1By− A−1B1u)T (A−1By− A−1B1u)

+
λ

2
uT3i (z)u+ λC, (43)

i.e., G (u, z) ≥ F (u) , G (z, z) = F (z).
To minimize F(x), using Eq. (15) after iterative is

ui+1 = (B1
T (AAT )−1B1 + λ3i(z)−1)−1BT (AAT )−1By,

(44)

As the number of iterations increases, many values of ui will
be 0, and some entries of 3i

−1 will reach infinity. Refer
to [46], solve the problem by matrix inverse lemma:

(B1
T (AAT )−1B1 + λ3(z)−1)−1

=
1
λ
3i (z)−

1
λ
3i (z)B1

T (λAAT
+ B13i (z)B1

T )−1B13i (z),

(45)

The indicated matrix is banded because A, B and 3i are all
banded. Using MM update

b ←
1
λ
B1

T (AAT )−1By

3i ←

K−1∑
j=0

[
K−1∑
k=0

|zi(n− j+ k)|2
]−1/2

ui+1 ← 3i [b− B1
T (λAAT

+ B13iB1
T )−1B13ib]. (46)

And when K = 1, its TV Denoising, a special form of
GSTV. The complete algorithm is proposed in Algorithm 1.

VOLUME 9, 2021 23599



H. Shi et al.: ECG Baseline Estimation and Denoising With Group Sparse Regularization

Algorithm 1 LPF / GSTV
Input: y, K , λ > 0
Output: f, x
1. u← Dy
2. b← (1/λ)BT1

(
AAT )−1 By

3. repeat

4. 3←
∑K−1

j=0

[∑K−1
k=0 |z (n− j+ k)|

2
]−1/2

5. M← λAAT
+ B13BT1

6. u← 3
[
b− BT1M

−1B13b
]

7. until convergence
8. f← (y− x)− A−1B (y− x)
9. x← Ru
10. return f, x

B. COMPOUND SPARSE PENALTY MODEL
In the optimization solution of Eq. (13), the regularization
term constraint problem includes the first-order difference
form of the signal. As in Section IV.A, we will estimate
the BW signals f by applying a low-pass filter to (y − x̂).
To estimate x̂, instead of solving Eq. (13), we solve

arg min
x

{
1
2
‖H (y− x)‖22 + λ0‖x‖1 + λ1‖Dx‖1

}
. (47)

To solve the optimization problem above, it needs to be
pointed out. If the MM algorithm is used to solve Eq. (47),
the final iterative equations need to solve N equations, where
N is the signal length. Therefore, for CTV denoising solution,
the alternating directionmethod ofmultipliers (ADMM) opti-
mizationmethod is adopted [35], [42], [47], it is also amethod
for solving dual problems [48], [49].

As in [35], we apply ‘variable splitting’ to decouple the
terms of the cost function. so Eq. (47) can be rewritten as the
constrained problem:

arg min
x,p

{
1
2
‖H (y− x)‖22 + λ0‖p‖1 + λ1‖Dp‖1

}
(48a)

such p = x. (48b)

Applying ADMM to Eq. (47) yields the iterative algorithm:

x ← arg min
x
‖H (y− x)‖22 + µ‖p− x− d‖22 (49a)

p ← arg min
p
λ0‖p‖1 + λ1‖Dx‖1 + 0.5µ‖p− x− d‖22

(49b)

d ← d− (p− x) (49c)

Go to Eq. (48a). (49d)

It should be noted that in the algorithmEq. (49), the parameter
µ needs to be a positive number. The value of µ will not
affect the convergence of the algorithm, but it will affect
the convergence speed. Parameters d and p also need to be
determined before the loop, but because the cost function is a
convex function, the algorithmwill converge to theminimum,
so we set d and p to be zero vectors of the same size as y.

The solution to Eq. (49a) can be expressed as

x←
(
HTH+ µI

)−1 (
HTHy+ µ (p− d)

)
. (50)

From Eq. (18), we write

HTHy = BT
(
AAT

)−1
By. (51)

Introducing the matrix inverse lemma, we can get(
HTH+ µI

)−1
=

1
µ

[
I−B

(
µAAT

+BBT
)−1

B
]
. (52)

Using Eqs. (51) and Eq. (52) in Eq.(50), line Eq. (49a) is
implemented as

g ←
1
µ
BT

(
AAT

)−1
By+ (p− d) , (53a)

x ← g− BT
(
µAAT

+ BBT
)−1

Bg. (53b)

Note that because ywill not be updated in Eq. (49), the first
term on the right side of Eq. (53b) only needs to be calculated
once; so it can be precomputed prior to the iteration. Using
Eq. (14), the problem Eq. (49b) equals to

u← soft (TV (x+ d,λ1/µ) , λ0/µ) , (54)

with the above support, the ADMM algorithm Eq. (49) can
be implemented for LPF/CTV.

Algorithm 2 LPF/CTV
Input: y, λ0 > 0, λ1 > 0, µ > 0
Output: f, x
1. b← (1/µ)BT

(
AAT

)
By

2. d,p← 0
3. repeat
4. x← b+ p− d− BT

(
µAAT

+ BBT
)−1

Bg
5. v← soft (TV (d+ x, λ1/µ) , λ0/µ)
6. d← d− p+ x
7. until convergence
8. f← (y− x)− A−1B (y− x)
9. return f, x

We have noticed that in the process of solving the
LPF/CTV problem, there are more parameters for com-
plex signal models. Such examples and more optimization
algorithms are also mentioned in [50], [51]. The algorithm
updates process of LPF/CTV is proposed in Algorithm 2.

IV. SIMULATION RESULTS
A. ECG DATABASE
The tested ECG data and BW signals come from the arrhyth-
mia database and noise stress test database of MIT-BIH,
respectively [41]. Set 20 dB, 15 dB, 10 dB, 5 dB, −5 dB and
−10 dB signal-to-noise ratio (SNR) for the system respec-
tively. First, we compare the proposed method with several
TV noise reduction methods and prove that group sparseness
has better performance in recovering signal details, and then
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compared with the method in [34], the two methods are based
on the same idea, but the recovery results are different.

B. PERFORMANCE INDEX
We have listed two indicators for evaluating the results of
the algorithm, the rooted mean square error (RMSE) and the
signal-to-noise ratio improvement (SNR_imp). Among them,
the RMSE calculation formula is as follows:

RMSE =

√∑n
i=1

(
xobs,i − xorg,i

)2
n

, (55)

xobs is the signal after processing, xorg is original input signal.
As well known, the denoising effect performs better at lower
RMSE and higher SNR_imp.

C. BASELINE ESTIMATE OF REAL ECG SIGNAL
This section explains the removal of BW from real ECG sig-
nals. Fig. 3(a) shows the clean ECG signals (MIT-BIH.103),
Fig. 3(b) adds the BW signals (BW comes from the noise
pressure database), and Fig. 3(c) superimposes Gaussian
white noises.

FIGURE 3. The example of ECG signal. (a) Original ECG signal. (b) Baseline
wander with ECG signal. (c) Baseline wander and noise ECG signal.

Fig. 4 shows the results of the real ECG baseline estimation
using the proposed method. In Fig. 4(a) the blue line is the
real ECG signal containing baseline drift and noise, and the
blue line in Fig. 4(b) is the estimation. The baseline level
shown in gray is the real ECG data, and Fig. 4(c) is the noise
ECG signal after removing the baseline. It is clear that after
removing the influence of BW, the normal curve of signal
characteristics is successfully obtained. It should be pointed
out that, in the algorithm process, in order to prevent the low-
pass filter from carrying too much useful information, we set
the parameter o = 1 and fc = 0.007.

D. DENOISING OF REAL ECG SIGNAL
In order to show the denoising effect, the conclusion is
divided into two parts. (1) To verify that the proposed GSTV
method has a better recovery effect on the ECG signal than

FIGURE 4. Baseline Wander correction. (a) The ECG signal added BW
signal and noise. (b) Baseline estimation. (c) The ECG signal after BW
correction.

TV, CTV. We set the noise with different SNRs to apply each
algorithm. (2) In addition, the experimental method proposed
by this paper is also compared with traditional algorithms.

Fig. 5 shows a schematic diagram of the denoising results
of GSTV, TV, and CTV. Fig. 5(a) is the original ECG signal
without noise (MIT-BIH no.103), Fig. 5(b) ECG signal with
5dB noise added, Fig. 5(c) TV denoising result Schematic
diagram, Fig. 5(d) Schematic diagram of CTV denoising
result and Fig. 5(e) Schematic diagram of GSTV denoising
result. The red line is the denoising result, and the blue line
is the original data.

In Fig. 5, it is difficult to find the difference among the
denoising results of GSTV, TV and CTV without careful
observation. Therefore, we made a more detailed comparison
to show the difference in denoising effects. Take the 500 sig-
nal points between 260 and 760 for alignment comparison,
and the result is shown in Fig. 6.

Fig. 6(a) is the detail component of noise, Fig. 6(b) is
TV denoising, Fig. 6(c) is GSTV denoising, and Fig. 6(d)
is CTV denoising. The black box in Fig. 6(b) shows that
TV denoising will underestimate the peak information of the
original ECG signal and generate stepped information at the
corners of the signal waveform. Fig. 6(d), the place enclosed
by the black circle shows that CTV denoising, the estimation
of the ECG signal will be slightly lower. Compared with TV
and CTV, GSTV considers the structured information of the
signal and has a better advantage in detail recovery. In order
to test the influence of the parameter λ and group size K on
the denoising effect, we calculated the relationship between
them, and the ordinate is displayed as the value of RMSE,
as shown in Fig. 7. The Red dot is the minimum RMSE
when K = 6 and λ = 2.6 obtained. It is worth mentioning
that these solutions used to illustrate TV, CTV, and GSTV
are not completely different. In addition, in order to avoid
contingency, we have taken multiple signals in the MIT-BIH
library for comparison. The experimental results are
in Figs. 8-9.
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FIGURE 5. Denoising results (red line is the denoising result and blue line is the original signal). (a) original ECG signal without noise
(MIT-BIH no.103). (b) ECG signal with 5 dB noise. (c) TV denoising result. (d) CTV denoising result. (e) GSTV denoising result.

TABLE 1. Comparison of the SNR_imp achieved by different methods with input SNR = 5 dB.

In Fig. 10, we compare the RMSE and SNR_imp of GSTV,
CTV and TV methods at different SNRs Situation. In terms
of RMSE indicators, GSTV is better than the TV and CTV
methods, which means that is has a greater advantage in the
fidelity of denoising signal. In terms of SNR_imp, the CTV
method has more good performance. But when the SNR is

−5 dB,−10 dB, the GSTV method gradually approaches the
CTV method and is better than the TV method. More infor-
mation, we use a short-time Fourier transform (STFT) with
50% overlapping segments to show the spectral changes of
the signal when the input SNR= 5 dB. The usage and formula
derivation of STFT can be obtained in Ref. [32] Appendix B.
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FIGURE 6. Detail comparison. (a) The detail component of noise. (b) The
detail component of TV denoising. (c) The detail component of GSTV
denoising. (d) The detail component of CTV denoising.

FIGURE 7. RMSE: Group size 1 through 10.

FIGURE 8. GSTV denoising detail comparison. (a) The detail component of
MIT-BIH no.102. (b) The detail component of MIT-BIH no.105. (c) The
detail component of MIT-BIH no.109. (d) The detail component of
MIT-BIH no.123.

Fig. 11 shows the results, it can be found that after adding
noise, the gray level of the signal frequency between 0.05khz
and 0.2khz increases significantly, that is, the frequency range

FIGURE 9. GSTV denoising detail comparison. (a) The detail component of
MIT-BIH no.202. (b) The detail component of MIT-BIH no.210. (c) The
detail component of MIT-BIH no.212. (d) The detail component of
MIT-BIH no.228.

FIGURE 10. Performance evaluation over RMSE and SNR_imp criteria.

of the noise. After denoising, the TV result has a certain
weakening effect, but it is not ideal. CTV denoising guaran-
tees the characteristics of 0 seconds and has a good denoising
effect when the frequency is 0.05khz and 0.15khz. Com-
pared with the existing advantages of TV and CTV, GSTV
denoising has a better effect at 0.1khz. This can also prove
that GSTV takes into account the structural characteristics of
the signal. This method can combine the components of the
signal with non-adjacent frequencies for analysis, although
the sparsity of the first-order difference function of the signal
is considered.

In order to fully illustrate the performance of the algo-
rithm, the NLM [49] and CEEMDAN [52] as a reference
for comparison. Table 1 lists the SNR_imp of these differ-
ent methods when the input SNR = 5 dB in each piece
of ECG data. Experimental results show that the SNR_imp
effect of GSTV has certain advantages, though a little worse
than the CTV method. In addition, we calculate the mean
SNR_imp and the standard deviation of the SNR_imp of
the above 48 ECG data, which is listed in Table 1. Among
them, the mean improvement of GSTV is 6.902, less than the
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FIGURE 11. Comparison time-frequency properties of the TV, CTV and GSTV methods.

FIGURE 12. BW correction and denoising. (a) BW estimate and noise
date. (b) Signal after denoising. (c) Residual.

FIGURE 13. Comparison results between LPF/GSTV and the method in
Ref. [34]. The blue line is the result of noise removal and restoration
when the 1-order difference of the signal is selected. The black line is the
recovery result of the LPF/GSTV method.

denoising method of CTV, but better than NLM and CEEM-
DAN. However, we highlight that the more advanced EMD
methods like the fast multivariate empirical mode decompo-
sition (FMEMD) [53] may bring performance improvement

FIGURE 14. Comparison results between LPF/GSTV and the method in
Ref. [34]. The blue line is the result of noise removal and restoration
when the 2-order difference of the signal is selected. The black line is the
recovery result of the LPF/GSTV method.

over the proposedmethod. For example, according to our test,
the SNR_imp index of FMEMD can exceed 7dB with input
SNR=5dB on data MIT-BIH no.101. The standard deviation
value of the SNR_imp reflects the degree of dispersion rela-
tive to the mean value. The smaller the value, the lower the
degree of dispersion. It can be seen from Table 1 that the
standard deviation of the GSTV method is the smallest.

E. COMPARISON OF HIGH-ORDER DIFFERENCE RESULTS
In this subsection, a real ECG signal with BW noises is taken
as an example to illustrate the effectiveness of the algorithm.
The simulation results are shown in Fig. 12. Fig. 12(a) is
the estimation of the BW, Fig. 12(b) is the result after the
ECG signals correction, and Fig. 12(c)is the residual. In the
process of removing BW, the parameters we choose are still
the original values (o = 1 and fc = 0.007), and the residual
is the noise component processed by the GSTV algorithm.

The thing worth discussing is that the LPF/GSTV method
proposed in this paper is similar to the LPF joint asym-
metric penalty denoising method in [34]. Inspired by the
method in [34], we optimized and enriched our work. First of
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TABLE 2. Index (SNR_imp and RMSE ) comparison between LPF/GSTV
and the method in Ref. [34] with input SNR = 5 dB.

FIGURE 15. Comparison results between LPF/GSTV and the method in
Ref. [34]. The blue line is the result of noise removal and restoration
when the 3-order difference of the signal is selected. The black line is the
recovery result of the LPF/GSTV method.

FIGURE 16. Comparison results between LPF/GSTV and the method in
Ref. [34]. The blue line is the result of noise removal and restoration
when the 4-order difference of the signal is selected. The black line is the
recovery result of the LPF/GSTV method.

all, we need to point out the similarities with Ref. [34]:
1) We also combine the method of LPF to estimate the
wandering of the baseline in ECG signals. 2) We all use
the MM optimization algorithm to solve the optimization
problem. 3) Both are based on the sparse characteristics of

FIGURE 17. MIT-BIH no.100 correction and denoising.

FIGURE 18. MIT-BIH no.105 correction and denoising.

the ECG signals. However, there are still some differences.
1) We consider the structural characteristics of the signal.
In other words, we take the K similar points in a piece of
information as a whole, and use the TV denoising method to
solve the sparse optimization. 2) When considering the third-
order difference attribute of ECG information in Ref. [34],
it has the best denoising result. In the whole calculation pro-
cess, it is obvious that the amount of calculation is far greater
than the method we proposed. For ECG signals, the best
solution and recovery is when the third-order difference is
true, but if it is applied to other fields, this still requires
additional investigation and experimentation. In the following
work, we compared the proposed LPF/GSTV method with
the method in [34], and the experimental results is shown
in Table 2. Figs. 13-16 shows the comparison between the
proposed method and the method in [34] at different differ-
ential orders. The experimental data is MIT-BIH no.103 ECG
data, and the SNR of the original noise added is 5dB. The blue
line is the contrast method, and the black line is the method
proposed in this paper.

It can be seen from Figs. 13-14 that when the signal
is selected for low-order differential, the result of signal
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recovery is completely unsatisfactory, and there is no basic
information of normal signals. At this time, the parameters of
SNR_imp and RMSE are meaningless. However, it is worth
noting that when the signal selects the 4-order difference,
the recovery effect is close to the proposed method, but not
as good as the 3-order difference. In Figs. 15-16, the basic
information of the signal is covered, and the denoising effect
also has obvious changes. At the same time, in order to
illustrate the generality of the algorithm, the denoising ability
of the algorithm in the other two ECG signals (MIT-BIH
no.100,105) are compared, and the result are shown
in Figs. 17-18.

V. CONCLUSION
Removing the BW and random noise in ECG signals is very
important for the diagnosis of arrhythmia patients. This paper
proposes an algorithm based on group sparse denoising to
improve the traditional TV denoising method. In addition,
we use LPF to estimate the components of BW. The group
sparse characteristic of the signal is manifested in that the
large value of the first-order difference function does not
appear alone, and has a certain range attribute. The purpose of
the proposed method is to remove the step artifacts caused by
the TV denoising method. In order to illustrate the feasibility
of the proposedmethod, we first did a unified conditional pro-
cessing, and compared the LPF/TV and LPF/CTV methods
as a horizontal comparison. The performance of the method
is analyzed in details. We respectively give the convex cost
functions of the three methods, and use the MM optimization
algorithm to solve them. This method has the advantages of
fast convergence and efficient calculation. In the longitudinal
aspect, we compared this method with the NLM and CEEM-
DAN methods to verify its performance.

Considering the high-order differential characteristics of
the signal, the denoising effect is more obvious. This is also
an incentive for us, considering whether the group sparsity
denoising of high-order difference characteristics will have
better processing results, this is a problem that we need to
study and explore in our future work.
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