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ABSTRACT Image representations in the form of neural activations derived from intermediate layers of
deep neural networks are the state-of-the-art descriptors for instance based retrieval. However, the problem
that persists consists of how to retrieve identical images as the most relevant ones from a large image
or video corpus. In this work, we introduce colour neural descriptors that are made of convolutional
neural networks (CNN) features obtained by combining different colour spaces and colour channels.
In contrast to previous works, which rely on fine-tuning pre-trained networks, we compute the proposed
descriptors based on the activations generated from a pretrained VGG-16 network without fine-tuning.
Besides, we take advantage of an object detector to optimize our proposed instance retrieval architecture
to generate features at both local and global scales. In addition, we introduce a stride based query expansion
technique to retrieve objects from multi-view datasets. Finally, we experimentally proved that the proposed
colour neural descriptors, obtain state-of-the-art results in Paris 6K, Revisiting-Paris 6k, INSTRE-M and
COIL-100 datasets, with mAPs of 81.70, 82.02, 78.8 and 97.9, respectively.

INDEX TERMS Colour neural descriptors, CNN, image retrieval, image representation.

I. INTRODUCTION
In the last decade, significant progress has been made in the
domain of computer vision and machine learning, especially
in object detection, recognition and instance retrieval. The
availability of massive amount of visual data in the form of
images and videos have attracted many researchers to con-
tribute new techniques and ideas in these domains. Specifi-
cally, we are interested in the problem of instance-level object
retrieval from image datasets. Instance retrieval is a visual
search task, that aims at retrieving all the images from a
corpus of a large dataset that contain the same object instance
as the query, see Fig. 1.

Instance-based retrieval systems have a large scope of
potential applications for data-driven methods, such as
secure retrieval in cloud environments [1], retrieving images
with specific content [2], natural language description of
images [3] and textile retrieval [4]. One important practical
application where an instance retrieval system can play a
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major role is for crime scene evidence analysis [5]. To deci-
pher a crime scene, the pieces of evidence in the form of
images can be of great help for a forensic department. Most
of the crime scenes are related to a specific location or place,
and usually, there are several objects present or involved.
For instance, when a crime has taken place in a specific
location, looking for images related to that place and objects
that can be found in those images may help in finding the
location of the place and, ultimately, in solving the case.
Also, a retrieval system similar to the one we are proposing
can serve for GPS photo tagging, which associates an image
with a specific location. Similarly, it could be possible to tag
objects in images after identifying a queried object in them,
which can be used for automatic database labelling and scene
annotation. Looking in contributing to the solution of those
problems, we propose a solution for instance retrieval using
novel colour descriptors.

Nowadays, deep learning is being widely used in many
computer vision applications and it obtains state of the
art performance in various domains. Particularly, since
Krizhevsky et al. [6] achieved the first place on the ImageNet
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FIGURE 1. Three examples of image retrieval. For each row, the first
image on the left represents the query image to look for in a dataset,
in this case Paris 6k dataset. The rest of the images represent the hit list
of retrieved images sorted according to a similarity metric to the query
image. Images framed with a green rectangle correspond to correct
retrievals whereas a red rectangle depicts the incorrect retrievals. These
examples show the actual results of the proposed method.

classification and localization challenges in 2012, deep learn-
ing has been significantly applied to various problems, such
as object detection [7], [8], image captioning [9], microscopic
image analysis [10], analysis of skin marks [11], [12] and
remote-sensing [13]. Moreover, the pre-trained CNNs can be
used to generate high-level feature descriptors to represent
visual objects in images. These activations generated at the
intermediate layers of pre-trained CNNs could be used for
instance search [14]–[16], in which given a query image,
similar objects can be searched and retrieved from different
images or videos. Region-based proposal methods [17], [18]
based on CNNs, play a crucial role for object retrieval by
easing up object localization process [19]. However, although
much progress has been made, still significant issues and
challenges persist related to query based instance retrieval.
In real-world scenarios, the objects in images may appear
partially occluded or in cluttered environments, which may
lead to significant variations concerning viewpoints, scale
and rotation. To address those challenges, most recent works
focus on generating object proposals in images using end-
to-end CNNs to learn the location of objects. But, the problem
of retrieving the correct and the most similar ones persist as
one of the main challenges in the instance retrieval domain.

To use an existing pre-trained CNN for instance retrieval,
the network needs to be fine-tuned according to the type of
images that are expected to be retrieved. The fine-tuning step
is due to the fact that CNNs trained for image classification
or recognition tend to encode the general information of a
category, and they ignore the visual differences of instances
belonging to the same category. For example, cars with differ-
ent colours will be classified under the same category even if
they are not visually similar. As a result, using those CNN
features would not be viable for retrieval tasks. However,
a fine-tuned network may not be effective for diverse retrieval
tasks, in which the complexities of images are different from
the ones that were used for training. The more challenging
issue regarding the retrieval domain is to create a system
that could retrieve images from a database even without fine-
tuning. Therefore, to make a robust image retrieval system,

the discriminative power of the features extracted from the
CNNs needs to be increased by considering various factors.

For such retrieval tasks, the most crucial aspect is object
localization that strongly depends on its appearance, and
undoubtedly, the colour provides essential cues about object
resemblance. The colour is themost basic and straightforward
visual feature that represents the spectral content of images.
Besides, colour based features are invariant to pixel trans-
lation or rotation in images. For query-based image search,
to retrieve the relevant images, the query and the image
features have to be nearly or completely similar. In fact,
the same instance or object across different images may have
similar outer appearances, which is represented by the colour.
Using the colour as a feature, we can identify and discriminate
between different images and the objects present in them.
Since colour provides vital information on images, to increase
the discriminative power of the neural features without fine-
tuning, we propose to use different colour spaces and com-
binations of colour channels to transform the CNN features
into robust descriptors. Therefore, our approach exploits the
CNN features of a classification model by making the fea-
tures discriminative by using colour models [20], but without
applying fine-tuning.

Inspired by the success and recent breakthroughs of deep
learning in the computer vision domain, we propose novel
colour neural descriptors using Deep Convolutional neu-
ral networks Features (DCFs) or activations generated from
a pre-trained CNN. Unlike most of the previous works
that employ fine-tuning and require new training for image
retrieval, we create new robust descriptors using several
colour models without training and fine-tuning. We used the
VGG-16 [21] pre-trained on the ImageNet [22] dataset to
generate the neural activations from the last Fully Connected
(FC8) layer. Those activations are generated concerning the
three colour channels, Red (R), Green (G) and Blue (B),
present in an RGB image. Instead of directly generating
activations of an image, in our approach, we generate neural
features for each of the colour channels -R, G and B- sep-
arately and we further pass them through a Colour neural
Descriptor Generation (CDG) layer to construct the proposed
colour neural descriptors.

In Fig. 2, we briefly illustrate our complete approach. To
find a query instance present in an image, it is necessary to
review the complete image, part by part, to check its pres-
ence. For this purpose, we employ Region Proposal Network
(RPN) [17], which is an object detector and generates rect-
angular proposals of various sizes. To determine if the query
region is present in the image, each proposal needs to be com-
pared against the query image. Hence, we create colour neural
descriptors for each of them and decided if they are similar
using a distance metric. If the computed metric is higher than
a given threshold, we retrieve that particular instance assum-
ing that the query is present in that image. Moreover, under
this instance retrieval scenario, if we are addressing datasets
with multi-view or rotated objects, the retrieval task becomes
even more challenging. Given that asymmetrical objects may
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FIGURE 2. Overview of our proposed query-based instance retrieval framework using colour neural descriptors. The green line indicates the generation
of descriptors for each of the proposals of an image from the dataset, and the red line represents the generation of the query descriptor.

appear rotated in images of the dataset, the method presented
here would possibly fail to retrieve rotated views of the same
object in which the appearance is remarkably different from
the one of the query image. In order to mitigate this issue,
we employ a query expansion technique.

We propose several configurations to obtain colour neural
descriptors, and we compare them in terms of mAP and
computation complexity. We evaluate our method on four
benchmark datasets: COIL-100 [23], INSTRE-M [24], Paris
6K [25], and Revisiting-Paris 6K [26], and then we experi-
mentally analyse the performance and distinctiveness of these
descriptors.

To sum up, the main contributions of the paper are the
following ones:
• We introduce new colour neural descriptors, based on
the activations generated from a pre-trained Deep Con-
volutional Neural Network.

• We present a hybrid architecture composed of two dif-
ferent CNNs, and we use it successfully as the instance
retrieval pipeline without employing fine-tuning
techniques.

• We demonstrate experimentally that our proposed
colour neural descriptors outperform the state-of-
the-art in four datasets for image retrieval, COIL-100,
INSTRE-M, Paris 6K and Revisiting-Paris 6k.

The rest of the paper is structured as follows.
Section 2 briefly introduces the related works while
Section 3 describes the method used to detect objects. The
experiments and results are presented in Section 4, and
finally, Section 5 discusses and 6 summarizes the conclusions
and the future research lines derived from this work.

II. RELATED WORK
In this work, we are proposing discriminative colour neu-
ral descriptors obtained using CNNs, in order to improve
retrieval in case of images in which colour is an important
characteristic. Accordingly, in this section, we present the
works related to our proposal divided in two topics: deep
learning approaches and color descriptors.

A. DEEP LEARNING APPROACHES
Since the breakthrough of deep learning in the com-
puter vision domain, the neural activations of a pre-trained
network serves as a robust image descriptor. Several
works [14], [27] used the neural activations extracted from
the intermediate layers and achieved state-of-the-art results
in instance retrieval tasks. Radenovic et al. [28] proposed to
fine-tune CNNs for image retrieval by introducing trainable
generalized-mean pooling layer that boosts the retrieval per-
formance. Since the features obtained from CNNs demon-
strated good performance, Simeoni et al. [29] proposed a
method known as deep spatial matching for image retrieval
which uses image descriptors extracted from convolutional
neural network activations by global pooling. Similarly,
Noh et al. [30] introduced Deep Local Feature (DELF), also
based on CNNs which are trained with image-level anno-
tations on a landmark dataset. Gordo et al. [31] presented
a Siamese architecture that produces a global representa-
tion of images that is suitable for image retrieval. Recently,
Wang et al. [32] introduced a deep cascaded neural net-
work with deep representation for establishing multi-modal
relationships for image retrieval tasks. For medical image
retrieval, Y. Cai et al. [33] proposed a framework using
CNN and supervised hashing, that adopts a Siamese network.
Dubey et al. [34] proposed AlexNet descriptor for biomedical
image retrieval, that is computed by fax-fusing RELU fea-
ture maps of a pretrained AlexNet, obtained from bit-plane
decoded images. Recently, Maji et al. [16] proposed to use
features derived from a CNN trained for a large image clas-
sification problem. Moreover, deep learning also plays a key
role in remote sensing image retrieval. In [35], an autoencoder
based framework was proposed to retrieve remote sensing
aerial images using the encoded learned representation as a
feature descriptor. Weixun et al. [36] investigated extracting
deep CNN features for high-resolution remote sensing image
retrieval using pretrained and a newly trained CNN. How-
ever, the main challenge is the unavailability of a large-scale
dataset, and to address this issue, Weixun [37] introduced
a large-scale remote sensing dataset known as PatternNet
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which is suitable for training deep neural networks. Recently,
Shao et al. [13] proposed a fully convolutional neural network
for multi-label remote sensing image retrieval by extracting
region convolutional features.

In addition, deep learning based object detectors can be
leveraged for instance retrieval [19]. Salvador et al. [38] took
advantage of the object proposals learned by an RPN [17] and
their associated features to build an instance search pipeline.
Furthermore, Mohedano et al. [39] explored local convo-
lutional features for instance search task, and they built a
retrieval framework based on those CNN features. Recently,
Teichmann et al. [40] addressed query based image retrieval
by extracting object regions and local features from images.
This work introduced a regional aggregated selective match
kernel (R-AMSK) to combine information from the detected
regions to represent an image.

As the number of images has grown exponentially in the
last few years, deep hashing plays a key role in making a
retrieval system efficient in terms of computation and storage.
With the development of deep learning-based approaches,
various deep models are proposed to learn hash functions.
Erin et al. [41] proposed two hash functions known as deep
hashing and supervised deep hashing for learning binary
codes. To preserve relative similarities between images,
Lai et al. [42] presented a one-stage supervised hashing
method using a deep architecture that generates pairwise
hash codes. In most of the deep hashing methods, during
discretization, the key category-level information may get
lost. In order to address this issue, Lu et al. [43] introduced
a method known as ranking optimization discrete hashing
(RODH), that directly generates discrete hash codes. For
avoiding information loss, Ding et al. [44] proposed discrim-
inative dual-stream deep hashing (DDDH). Recently, to learn
more effective binary codes, in [45], a new hashing method
termed as DeepFuzzy Hashing Network is proposed, and
Chen et al. [46] introduced Deep learning Supervised Hash-
ing (DLSH) that learns features and binary codes together.

In our work, we employ R-FCN [18], which is a
region-based convolutional neural network and VGG-16 to
create colour neural descriptors. Furthermore, we don’t do
fine-tuning like other approaches as mentioned in the liter-
ature. Instead, we use colour models to create discrimina-
tive object descriptors for our retrieval approach. Currently,
most of the approaches require fine-tuning a network with
the specific type of data that a retrieval framework wants
to address, whereas our proposal aims to create a common
solution addressing all kinds of retrieval tasks without fine-
tuning.

B. COLOUR DESCRIPTORS
In the literature, several colour-based descriptors have been
proposed for image retrieval with a focus on increasing the
illumination invariance and discriminative power. The earlier
approaches used appearance models such as RGB colors
histogram [47], YCbCr regional histogram [48], RGB spa-
tiogram [49], and also the combination of texture with color

descriptors [50]. From a general perspective, they focused
on increasing the illumination invariance and discriminative
power of such descriptors. Van et al. [20] studied the invari-
ance properties and the distinctiveness of colour descriptors
based on SIFT and Histograms, in which, apart from object
recognition, the descriptors can be used for content-based
image retrieval (CBIR) systems to search for similar images.
Pujari et al. [51] presented a framework which uses colour
and shape features from Lab and HSV spaces to retrieve edge
features, and the experiments carried out in the Corel dataset
demonstrated the efficiency of the method. Alzu et al. [52]
introduced an optimized image descriptor that combines
colour histogram in HSV space with the rootSIFT [53]
descriptors and outperformed many state-of-the-art methods.
Cortes et al. [54] evaluated 11 image descriptors and con-
cluded that combinations of Gabor descriptors and dominant
colour neural descriptors provide better performance. Lately,
some works propose to combine colour with other texture or
shape descriptors. In this line, Ahmed et al. [55] used canny
edge histogram combined with discrete wavelets on YCbCr
colour images or, more recently, Sotoodeh et al. [56] pre-
sented two approaches to extract discriminative features for
colour image retrieval, based on Radial Mean Local Binary
Pattern.

It is well known that colour is an important component
for distinguishing objects in some specific problems. We are
aware that the neural descriptors obtained from pre-trained
models are not discriminative enough when there are similar
objects with different colours. Therefore, in this work, we par-
ticularly focus on enhancing the neural activations using the
colour information to make the descriptors more discrimi-
native in those situations. We take advantage of the object
detection architecture of R-FCN to extract region proposals
for instance search.

III. METHOD
In this section, we present our approach that enhances image
retrieval using colour neural descriptors and bounding boxes
predicted by an object detector. In particular, our method
builds on top of the object proposals and activations generated
from the detector of the R-FCN algorithm. We first explain
the backbone of the architecture and then we introduce our
proposal for instance based retrieval using colour neural
descriptors. Next, we present the overall instance retrieval
method based on a given query, and finally, we describe a
stride-based query expansion technique to retrievemulti-view
objects.

A. BACKBONE ARCHITECTURE
The objective behind using the two different pre-trained net-
works is to facilitate the local instance search and the cre-
ation of discriminative descriptors. For local instance search,
we use R-FCN to generate proposals on the dataset images in
order to compare the query instance against those proposals.
In contrast, VGG-16 serves as a feature extractor for both
the query image and the proposals. Both networks serve as
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FIGURE 3. Backbone architecture of the instance retrieval approach. It is constituted in two parts: RPN from the R-FCN and the VGG-16 network for the
feature extraction. The proposals are generated by the RPN, which are then given as an input to the VGG-16 net for region-based feature extraction.

FIGURE 4. Detailed proposal selection. Every i th proposals are selected out of the 300 proposals generated by the RPN to search the presence of query
instance in a given image. In this case, we set i = 3 which results in 100 proposals per image. We next pass the proposals through the VGG-16 to obtain
local features each of dimension 1000.

a single framework, where the candidate proposals generated
by the R-FCN network are given directly as an input to the
VGG-16 network to compute colour descriptors. In Fig. 3
we illustrate the architecture of the proposed method that
constitutes the following two major stages.
• Generation of object proposals for regional search using
R-FCN.

• Deep feature extraction using VGG-16 net.

1) OBJECT PROPOSAL GENERATION
To find a queried object or instance in an image, it is required
to first detect and localize all possible objects for matching
the query image features with each of the localized object
features. The more similar the features are, the more likely
the query and the proposals are from the same object.

In our approach, to search a query instance locally, we use
the object detector of the R-FCN network to generate object
proposals. R-FCN is faster than other region-based CNNs,
such as Fast or Faster-RCNN [17], because it derives region
proposals (ROIs) from the feature maps directly. In R-FCN,
the RPN generates the object proposals using convolutional
features maps, but unlike Fast and Faster RCNN, the fully
connected layers after the ROI pooling are removed and hence
no learnable layer is required after the ROI layer. As a result,
R-FCN is up to twenty times faster than Faster R-CNN with

a competitive mAP, and that is the reason we chose this
architecture to generate region proposals. The total number
of proposals obtained by the object detector is around 300,
with lots of overlapping boxes covering the same object, what
makes that during a query, it would be necessary to compare
the same instance multiple times. Therefore, to reduce this
cost, we define a set of candidate regions per image by
selecting every ith proposal, with i= 3 in this case, see Fig. 4.
We store the proposal descriptors independently in a database
to be used for our image retrieval system. The descriptors of
each of the regions that the object detector select as a proposal
are stored as well in the same database.

2) DEEP CNN FEATURES (DCFs) EXTRACTION
In order to create colour neural descriptors, we extract
DCFs from the VGG-16 network pre-trained on the Ima-
geNet dataset. We use the last fully connected layer (FC8)
which contains 1000 neurons, resulting in a feature vector
of 1000-D. In particular, the activations from the hidden lay-
ers represent low-level features, such as edges and contours,
and the higher layers produce abstract features that fully
represent images. Hence, we prefer to extract the DCFs at
the penultimate layer. However, to generate colour neural
descriptors, we extract the features corresponding to the three
different colour channels (R, G and B). We represent the
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DCFs obtained using R channel as R∗, G as G∗ and B as B∗,
which we will use to obtain the colour neural descriptors.

B. COLOUR NEURAL DESCRIPTORS
In this section, we first introduce the intuition behind the
feasibility of colour neural descriptors, later, we explain how
Deep Convolutional Features (DCFs) are generated using the
colour channels, and finally, we present the proposed colour
neural descriptors.

1) INTUITION BEHIND COLOUR NEURAL DESCRIPTORS
In some situations, the colour plays an essential role in
obtaining visual information about objects present in images.
Our idea is to leverage that information to create high-level
discriminative colour feature vectors. An RGB image is com-
posed of three channels, and the absence or presence of
anyone would change the neural activations generated from
an image.

For instance, in Fig. 5 we have a query representing a
red box along with two other images: Image A is identical
to the query and Image B differs only in the colour, which
is yellow. First, for each image, we extract the DCFs of
each colour channel, –R, G and B–, and then we concatenate
them to create colour neural descriptors of the image. Next,
we compute the similarity between the descriptor of the query
image and the other two descriptors extracted from images A
and B. Image A stands out in terms of similarity as compared
to B, because the red-box on image A is similar to the query
with respect to colour, and hence their respective colour
neural descriptors are similar. Therefore, the channel-based
activation of objects that have the same colours and textures
are identical. As a result, colour neural descriptors made by
deriving activation from individual channels and concate-
nating them are more robust. In this work, we present and
evaluate different ways of fusing the DCFs obtained with
respect to the colour channels to propose the colour neural
descriptors.

2) COLOUR NEURAL DESCRIPTOR GENERATION LAYER
We define a Colour neural Descriptor Generation (CDG)
layer, where we obtain colour neural descriptors from the
DCFs extracted for each specific input colour channel passed
to the network. In order to obtain a robust colour neural
descriptor, we evaluated different colour spaces and com-
binations of colour channels, inspired by the work of [20].
Next, we present the different descriptors, and based on our
preliminary tests, we chose the one that we consider more
appropriate for the retrieval problem. Consequently, the CDG
layer creates the colour models, which transforms the DCFs
into colour neural descriptors.

a: NE-Raw.
The NEural Raw (NE-Raw) descriptor is generated by pass-
ing an image through the networkwithout anymodification of
the input layer. We directly extract the activation with respect
to the FC8 layer of the VGG-16 network without letting it

FIGURE 5. This figure gives a visual illustration of a simple case of colour
neural descriptors representation and how it affects object description.
Both the query image and image A contain a red box whereas image B
contains a yellow box. The query image and Image A represent similar
objects, and hence they have similar colour neural descriptors with
respect to every colour channel. In the case of Image B, the green
descriptor differs with respect to the query image. The weak resemblance
between colour neural descriptors are represented by dashed lines
whereas high resemblance is marked with solid lines.

pass through the CDG layer (we don’t apply colour models).
This descriptor posses no invariance to colour apart from
the one conferred by the network. We use this descriptor
mainly as a baseline, for comparison purposes against the
other descriptors.

b: NE-O and NE-O3.
NE-O represents the descriptor obtained using opponent
colour space (Eq. 1), which is a combination of DCFs based
on the channels of the opponent colour space. In the Eq. 1,
the intensity information is represented by channel O3 and
the colour information by O1 and O2. Due to the subtraction,
the offsets become cancels out, and hence, the descriptor is
invariant to changes in light intensity. The NE-O descriptor is
constructed as the concatenation of O1, O2 and O3. Based on
our preliminary tests, in some cases, results obtained with just
O3 feature vector as colour neural descriptor outperformed
combination of all the three components (O1, O2 and O3).
We name this O3 feature vector as the NE-O3 descriptor.

O1
O2
O3

 =


R∗ − G∗
√
2

R∗ + G∗ − 2B∗
√
6

R∗ + G∗ + B∗
√
3


. (1)

c: NE-TCD (Transformed Colour Distribution.)
In general, NE-Raw is not invariant to changes in lighting
conditions. However, by normalizing the pixel value distri-
butions (Eq. 2), shift invariance can be achieved with respect
to changes in illumination. Since each channel is normalized
independently, the descriptor is also robust to changes in
colour intensity and arbitrary offsets. In (Eq. 2), µC is the
mean and σC is the standard deviation of the colour distribu-
tion in channelC computed over the area under consideration
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FIGURE 6. An illustration of object proposal generation for a query search. Stage-1: Generation of multiple object proposals using RPN. Stage-2:
Extraction of query features to match with each of the proposals. Stage-3: Computing similarity and ranking instances, and for multiview data we employ
query expansion technique.

(e.g. a patch or an image). This yields for every channel a
distribution where µ = 0 and σ = 1. At the CDG layer R′,
G′ and B′ are computed and concatenated to form NE-TCD
colour neural descriptor.

R′

G′

B′

 =


R∗ − µR∗

σR∗
G∗ − µG∗

σG∗
B∗ − µB∗

σB∗


. (2)

d: NE-C.
We created this descriptor by passing the DCFs R∗, G∗ and
B∗ of the three colour channels through the CDG layer. The
resultant descriptor is a concatenation of the neural features
corresponding to those colour channels, i.e R∗ + G∗ + B∗.

C. INSTANCE SEARCH AND RETRIEVAL
In this section, we present the proposed instance retrieval
method based on colour neural descriptors. Fig. 6 illustrates
the three-stage pipeline of our approach: (1) Dataset feature
extraction, (2) Query feature extraction, and (3) Retrieving
and ranking the top-K instances based on a similarity score.

1) DATASET FEATURE EXTRACTION
First, we process all the images in the dataset to calcu-
late the descriptors, which are necessary for retrieving the
images with objects similar to the queried one. Let H =
[H1,H2, . . . ..,Hn] be the set of images, we process each
image Hj and generate M region proposals for each of them.
The number of proposals depends on the proposal selection
criteria as mentioned in section III-A1, where we select
every ith proposal to reduce the computation complexity.
Then, we resize the proposals to 224 × 224 pixels and we
extract DCFs with respect to those regions as mentioned in
section III-A2. Next, we pass them to the CDG layer to create
the colour neural descriptors as explained in section III-B2.
In Fig. 6, stage-1 illustrates how the image proposals are
extracted from the dataset.

2) QUERY FEATURE EXTRACTION
Given a query instance Hq, the DCFs for each colour channel
are extracted, and the colour neural descriptors are obtained
as explained in section III-A2. In Fig. 6, stage-2 shows the
query feature extraction process.

3) RETRIEVING AND RANKING USING COSINE SIMILARITY
We aim at retrieving the images in the dataset that are the
most similar to the query instance, sorting the retrieved list in
descending order. First, we compute the similarity between
the query instance Hq and the proposals of all images H of
the dataset. Then, we create a hit list by sorting the images of
the dataset in descending order, considering the similarity of
every image as the highest similarity of any of its proposals
and discarding images whose similarity is lower than an
established threshold (Eq. 3).

S(Hq,mi) =

{
> 0.75, retrieve Hi.
else, discard.

(3)

In order to retrieve only images with a high probability of
being similar to the query, we determined experimentally the
selected threshold, t . We used a sample set of images from the
Outex dataset [57], which is an image retrieval dataset con-
taining texture patterns. We evaluated four different values,
t = [0.60, 0.75, 0.80, 0.90], with 10 queries and selecting
t = 0.75 because it was the value that returns consistently
related images. Other values yielded a much more small or
big number of retrievals what we considered less appropriate
because a higher number of retrieved images increases the
computational time to evaluate possible matches, and a lower
value leaves out some potential candidates. We use the cosine
similarity, see Eq. 4, to evaluate the similarity between the
query image and each object proposal because it is one of
the most commonly used metric for image retrieval. If the
computed score, CosSim, is higher than the threshold t , then
we include the proposal in the hit list.

CosSim(Hq,mi) =

∑d
j=1Hqjmij√∑d

j=1H
2
qj

√∑d
j=1m

2
ij

, (4)
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TABLE 1. Dimensions of each of the descriptors.

FIGURE 7. Query Expansion applied to COIL dataset. The red cars are
rotated from 0 to 360 degrees with an interval of 5 degrees, and the car at
degree 0 is the initial selected query.

where Hq is the query image, mi is the ith proposal, and d is
the dimension of the colour neural descriptors, see Table 1.

D. STRIDE-BASED QUERY EXPANSION (SBQE) FOR
MULTI-VIEW DATA
Multi-view datasets contain objects captured from various
points of view, and hence it is difficult to retrieve all of them
using a single query. We implement a query expansion tech-
nique to retrieve such multi-view objects in a cascading way.
The pseudo-code is shown in Algorithm 1. As an example, let
us take a query representing an object with 0-degree rotation,
and a dataset of images containing the same object, but with
different viewpoints produced by several degrees of rotation.
Therefore, using the non rotated object as a query, probably
we will only be capable of retrieving images with close
rotations, around ±45 degrees with respect to the original
one, which correspond with rotations in the range [45, 315]
degrees. The rest of the images related to the query object
presumably will be discarded due to high variations in their
appearance caused by the rotation.

Hence, if we expand the query by considering, for example,
the sth image retrieved in the hit list, let us say the one rotated
with 5 degrees as the next query image, then we could retrieve
images with the object rotated from 310 to 50 degrees. The
maximum number of images retrieved with respect to each
query is based on the size of the stride s, and we will select
the sth image as the next query to retrieve the next subsequent
images. We realised that the sth image could be of any degree

Algorithm 1 Stride-Based Query Expansion (SBQE) to
Retrieve Objects From Multi-View Datasets
Input: query image Hq, stride size s and K number of

retrievals
Output: top-K instances
1: while length of list (L) < K do
2: Extract colour neural descriptor of the query image

Hq
3: Compute CosSim (CS) score between colour neural

descriptors of the query and dataset images
4: Select images with CosSim score> 0.75 and sort them

in terms of highest similarity with the query
5: Append s number of images to a list L by removing the

duplicates if present
6: if lenght-of-list(L) ==K then
7: return top-K instances;
8: else
9: Hq = last image in the list;

10: end if
11: end while
12: return top-K instances

or evenmight not belong to the same class as the query image.
When selecting the sth image to be the next query, a false
retrieval may have a negative cascading effect and we may
end up retrieving undesirable images. In order to avoid that,
we decided to use a small window with stride s = 3.

In Fig. 7, we present the algorithm with a visual expla-
nation. Since we are going to work in COIL-100 with
multi-view images, we illustrate how it works using an exam-
ple taken from this dataset. In COIL, the images have a view-
point ranging from 0 to 360 degrees, which makes difficult to
retrieve all the related images with a single query. In Fig. 7,
we can see several cars belonging to the same class. Let
the car at 0 degrees be the initial query, and let us consider
that we want to retrieve the top-K similar images. In this
case, we could select the last instance from the retrieved list,
the image rotated by 10 degrees in the window, to be the next
query, and we will continue doing the same until the list of
retrieved instances contains K images.

IV. EXPERIMENTS AND RESULTS
In this section, we present the experiments and the results
obtained by evaluating our approach in four standard datasets.

A. DATASETS
We assessed our methodology using the following datasets:

COIL-100: Columbia Object Image Library (COIL-100)
consists of 7,200 colour images of 100 objects class with
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72 images per class. The dataset was created by placing
objects in a motorized turn against a black background and
were rotated from 0-360 degrees in intervals of five degrees
to vary the object pose with respect to a fixed camera.

Paris 6K: This dataset consists of 6,412 still images of
Paris landmarks or buildings collected from Flickr, which
includes 55 query images of 11 buildings. Furthermore,
it contains a diverse collection of class-specific images, where
they differ in terms of illumination, viewpoint, size and reso-
lution.

Revisiting Paris 6K: This dataset is an updated version of
the Paris 6k dataset, which is published after correcting some
of the annotations mistakes that were present in the original
one. There are a total of 6332 database images and 70 query
images. The database images contain the same images as
present in the original Paris 6k dataset, but the query images
are removed.

INSTRE-M: is an instance level object detection and
retrieval dataset consisting of 5000 images of 50 classes with
101 images per class. It presents multiple appearances of
the same object in each of the 101 images with respect to
the class category, and hence it is very suitable for instance
level retrieval. A sample of images from the three of them is
presented in Fig. 12, where three different queries from each
dataset and the top-10 related images retrieved are shown.

B. EVALUATION CRITERIA
We used standard evaluation protocols to evaluate our
approach. We calculated the mean Average Precision (mAP)
to measure the performance in all the experiments. First,
we computed the average precision (AP), and then the APs
for all the queries are averaged together to obtain the mAP.
Eq. 5 defines AP, where P(i) is the precision at the cut-off
value i, N is the total number of retrieved images which are
ranked according to their similarity scores, in this equation
represented by K , and IsRelevant(i) is an indicator function
which equals 1 if the retrieved image at rank i is relevant, and
0 otherwise.N can refer to all retrieved images by themethod,
and thus it will take a different value for each query image,
or it can be set to an established amount of retrieved images
of a hit list of size K or top-K retrievals.

AP =

∑K
i=1(P(i)× IsRelevant(i))

K
(5)

Then, we calculated the mAP given by Eq. 6 where QN is
the total number of queries.

mAP =

∑QN
q=1(AP(q))

QN
(6)

C. EXPERIMENTAL SETUP
1) EXPERIMENTAL SETUP FOR PARIS 6k AND INSTRE
DATASETS
For our experiments, we extracted 1000-D feature from the
FC8 layer of the VGG-16 Network and we used the RPN
to generate object proposals. All the experiments were done

FIGURE 8. Comparison of various state of the art methods with our
architecture in the Paris 6k dataset in terms of precision@10. The highest
precision of 96 is obtained when we use our proposed architecture.

using TensorFlow (version-1.14.0) framework in an Nvidia
Geforce GTX 1060 GPU machine with 16GB RAM and
IntelCore processor (i7-7700HQ-2.80GHz). The program-
ming language used for carrying out all the experiments
is Python3.6 with CUDA support. For efficient storage of
descriptors and faster retrieval, we used the HDF5 binary file
format.

For determining the effectiveness of our proposed base-
line architecture, we compared the performance consider-
ing a different number of proposals with the state-of-the-art
Region-based CNNs: Fully Convolutional One-Stage object
detection (FCOS) [58], Faster R-CNN with VGG-16 and
R-FCN with ResNet. In FCOS, the proposal number varies,
whereas, in FasterRCNN and RFCN, we extract features cor-
responding to the 300 proposals generated by them. We mea-
sured the performances in terms of precision@10 given by
Eq. 7, where R represents relevance, and is set to 1 if the
ith retrieved image contains the query image or 0 in another
case. During the evaluation, we found out that the highest
precision of 96 was obtained with NE-C with 100 proposals
as can be seen in (Fig. 8) compared with other approaches.
This demonstrates that the proposed architecture can achieve
state-of-the-art results even with a lower number of proposals
per image.

Precision@10 =

∑10
i=1 R(i)
10

(7)

After validating our architecture, we measured how
precision@10 changes depending on the different number
of proposals used, to know performance versus relative time
trade-off. We define relative time in a range from 0 to 100,
which comprises all the steps required, from the extraction of
the descriptor up-to retrieval. The value 100 represents the
maximum time taken by the descriptor. When the relative
time of a descriptor is 50, it means that the descriptor is
2× faster. Whenever the number of proposals increases,
the precision obtained is higher but it comes with a cost
concerning the computation time. As illustrated in Fig. 9,
while we consider 100 proposals per image we obtain an
mAP of 96. If we reduce the proposals to 20, we obtain a
precision of 90 but 5× faster. This experiment was done to
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FIGURE 9. Precision@10 vs computational complexity with regard to the
number of proposals considered per image in Paris 6k dataset with NE-C
colour neural descriptor. Computational cost is shown in terms of relative
time from 100 to 1 proposal.

illustrate that with a lower number of proposals we can have
a faster retrieval framework when speed is the main concern.
In order to carry out the rest of the experiments, we selected
100 proposals per image to ensure good performance at a
reasonable computational cost.

2) EXPERIMENTAL SETUP FOR COIL-100
COIL-100 dataset contains multi-view images with single
objects on a black background. Thus, in order to address
instance retrieval in such dataset, we do not generate
object proposals as we do for the Paris 6k and INSTRE
dataset. We directly use the VGG-16 FC8 features to cre-
ate colour neural descriptors, and we employ the presented
query expansion technique to retrieve instances. We used all
the 7200 images as queries. Since the dataset consists of
multi-view objects on a 360-degree turntable, we employed
the query expansion technique to retrieve rotated views.
Every image of the dataset contains a single object under
a homogeneous background. For this reason, we directly
extract the FC8 activation without generating proposals using
RPN.

D. EXPERIMENTS AND RESULTS IN PARIS 6k DATASET
In the Paris 6k dataset, the queries are already provided with
bounding boxes annotations in the dataset. Following the
standard evaluation protocol for the Paris 6k dataset [25],
we first cropped the 55 query images using the bounding
boxes. We then extracted the query and the dataset features
with respect to different colour neural descriptors, where the
dataset features are stored in a database. To measure the
effectiveness of the proposed descriptors, We first obtained
their mAPs considering top-10 retrievals and then compared
them. In Table. 2, we present the mAPs for top 10 (K = 10 in
Eq. 6) retrievals achieved with the different proposed colour
neural descriptors. The best performance is yielded using the
NE-C descriptor with a mAP of 97.4 followed by NE-
TCD and NE-O3 with mAP of 96.9 and 95.02, respectively.
In order to compare with the other approaches, we have
selected our best performing descriptor NE-C. In Table 3,
we present the mAPs reported by various state-of-the-art
approaches and comparewith them.Among the earlier works,

TABLE 2. mAP for top-10 retrievals obtained with the baseline (NE-Raw)
–shown in italics– and the proposed colour neural descriptors in Paris 6k
dataset. The best result is shown in bold.

TABLE 3. Performance comparison with state-of-the-art methods for
instance retrieval based on mAPs in the original Paris 6k dataset.
We present the dimension of descriptors (dim) and mAP for all methods.

the highest mAP reported was 79.67 by Gem [28]. Using our
approach, we obtained an mAP of 81.70 using the NE-C
descriptor and thus outperforming state-of-the-art results.

With these experiments, we demonstrate that the proposed
colour neural descriptors are very efficient for content-based
instance retrieval. Furthermore, due to the low performance
of theNE-O descriptor, we discard it for the next sets of exper-
iments. In Fig. 12, we show the top-10 retrieved instances for
some query image examples using NE-C.

E. EXPERIMENTS AND RESULTS IN REVISITING PARIS 6k
DATASET
To evaluate our proposal using the revisiting Paris 6k dataset,
we followed the Medium-setup and the new evaluation pro-
tocol as explained in [26]. In Table 4, we compared the
colour neural descriptorNE-C –which outperformed the rest–
against some recent and relevant state-of-the-art approaches.
Among the state-of-the-art methods, the highest mAP of 80.7
was obtained with DELF-GLD [40] method, in comparison
to a mAP of 82.02 using NE-C. We also present the mean
precision at 10 (mp@10), which is the mean of the precision
for the top 10 retrievals as reported in the work [40]. While
comparing, NE-C yielded 97.2, being a bit lower than some
other recent methods. We can notice that for a small number
of retrievals –such as 10– the mean precision is saturated
since most of the approaches are able to get a high result,
however, achieving a high mAP is more challenging as the
number of retrievals increases.
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TABLE 4. Performance comparison with state-of-the-art methods for
instance retrieval based on mAPs and mean precision at 10 (mp@10) in
the revisiting-Paris 6K dataset. These methods were presented by [40].
In bold, the results of the proposed method and the best results of the
state-of-the-art methods.

TABLE 5. Performance comparison with state-of-the-art methods for
instance retrieval based on mAPs in INSTRE dataset. We present the mAP
for all methods.

TABLE 6. mAP and per query search time (in seconds) for
top-20 retrievals with respect to proposed colour neural descriptors and
the Stride-Based Query Expansion (SBQE) in COIL dataset.

F. EXPERIMENTS AND RESULTS IN INSTRE DATASET
Next, we evaluated the retrieval performance in INSTRE-M,
which constitutes a similar scenario to the Paris 6k dataset.
To evaluate the performance, we computed mAP follow-
ing the protocol described by [66], which uses 1250 query
images. In Table 5 we present the achieved results, and it can
observed that concatenation of channel-specificDCFs,NE-C,
yielded the best performance with a mAP of 78.8 followed
by NE-TCD with mAP 77.5. In Fig. 12, we show the top-
10 retrieved instances for some query examples using NE-C.

G. EXPERIMENTS AND RESULTS IN COIL-100
In the first experiment, we employed the method described
in Section III with the proposed colour neural descriptors for
top-20 retrievals to determine the best descriptor. Sincewe are

addressing a different dataset, we compared all the descrip-
tors again for K= 20 retrievals. Table. 6 presents the achieved
results, where the highest mAP (99.8) was obtained by using
SBQE (query expansion of NE-C) followed byNE-C andNE-
TCD with mAPs 98.8 and 98.7, respectively. Also, we reg-
istered and present the time required for per-query instance
search with respect to each of the descriptors. Furthermore,
in table. 7, we even compared the descriptors with some of the
works that were reported in [70] for top-20 retrievals based
on precision. We observe that all the descriptors achieve
comparable mAPs, and we select the best one (NE-C) to
compare with the state-of-the-art approaches.

a: RETRIEVING MULTI-VIEW INSTANCES
Additionally to the previous experiments, we evaluated a top-
72 retrieval system. In this way, we are allowing the retrieval
of all the 72 objects per class in the dataset to verify if all
the rotated or multiviewed objects are retrieved correctly. We
usedNE-C descriptors with andwithout query expansion, and
compared the results with the baseline NE-Raw descriptor.
Fig. 10 shows the results obtained by plotting mAP versus K
retrievals, where K goes from 1 to 72. The best results were
obtained using NE-C with SBQE as compared to NE-C and
NE-Raw. At K = 72, the mAP obtained using NE-C with
SBQE is 98.3, whereas using NE-C and NE-Raw are 91.7 and
87.9, respectively. The performance is boosted while query
expansion is applied to NE-C, but it has high computational
cost as compared to NE-C without query expansion.

Based on the previous experiment, we compare NE-C and
SBQE against the state-of-the-art methods, presenting the
results in Table 8. The mAP obtained using NE-C and SBQE
is 97.9, which is superior to the best mAP of 95.4 as presented
in [71]. The query expansion approach is computationally
more expensive, but it is very useful when it is important
to boost the performance of the colour neural descriptors for
image retrieval in multi-view datasets.

In Fig. 11, we illustrate the retrieval of multi-view images.
The initial query image corresponds to the orange mug
rotated 315 degrees. Then, a window of stride 3 selects the
next query, which in this case is rotated by 325 degrees. The
bottom two rows show the top-11 retrieved images when the
initial queries are positioned at 315 and 145 degrees, respec-
tively. We set the size of the stride as s = 3 and we retrieved
top-s similar images. The sth retrieved instance in the hit
list is set as the next query, and the process continues until
K instances are retrieved. We chose the orange cup rotated
315 degrees as the initial query image. It can be observed that
each of the top-s retrievals are in close vicinity to 315 degrees,
and are slightly rotated (clockwise or anticlockwise) with
respect to their queries.

In Fig. 12, we show the top-10 retrieved instances for some
query examples of the COIL-dataset using NE-C descriptors.

V. DISCUSSION
In this work, we proposed colour neural descriptors for
instance retrieval, and we evaluated them in four datasets
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FIGURE 10. mAPs at top-K instance retrievals in COIL dataset using descriptors NE-Raw and NE-C (with and without query expansion), where SBQE
represents NE-C with query expansion.

FIGURE 11. In this figure, we illustrate the retrieval of an image sample in COIL dataset using the proposed query expansion approach.

TABLE 7. Precision of classical image descriptors with 20 returns in
Coil-100 dataset which were reported in [70].

to assess its performance in terms of mAP. We wanted to
provide a solution that employs colour models with deep
convolutional neural networks. In situations in which it is
needed to retrieve an object in datasets containing objects
with very similar appearances, the colour becomes a very
discriminative feature. To retrieve specific instances from a
particular dataset, most of the proposed works based on deep

TABLE 8. Performance comparison with state-of-the-art methods for
instance retrieval based on mAPs in COIL dataset. The best results are
shown in bold, and the second best value is italisized.

learning methods to date adopt fine-tuning approaches. How-
ever, the raw neural activation obtained directly by passing
an image through the CNN may not be feasible for similarity
search. This is due to the fact that, under different illumination
conditions, the appearance of most objects varies, and hence,
we may have different neural activations for the same object.
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FIGURE 12. Top-10 retrieved images of COIL-100 (rows 1-3), INSTRE-M (rows 4-6) and Paris 6K (rows 7-9) datasets. The above results were obtained
by using the colour neural descriptors that achieved best results in each dataset. The queries are framed with blue rectangles, correctly retrieved
images with green ones and incorrectly retrieved images with red rectangles.

As a result, wemay not be able to retrieve all instances related
to the query object, and as a consequence, other approaches
opt for fine-tuning. Therefore, in order to make the descrip-
tors more discriminative, we enhanced the DCFs by using
colour models, and later on, we evaluated some combinations
of the DCFs to obtain more discriminative feature vectors.
The hypothesis behind our proposal for creating colour neural
descriptors is that, if we separate the three channels of an
image and consider CNN features specific to each of them,
then the vector obtained by its combination is more discrimi-
native than the one obtained by passing through the CNN the
complete RGB image.

The main advantage of our proposed approach is the usage
of a hybrid architecture in which we combined two state-
of-the-art networks for instance search without explicitly
training or fine-tuning. Besides, we expanded our solution
looking for retrieving multi-view images by introducing a
stride based query expansion technique. In most of the cases,
to extract such instances, fine-tuning an algorithm specific
to the dataset is the cue. This is because, when an object is
rotated, for example in a turntable, the appearancemay signif-
icantly vary, and as result, the neural activations of the object

change as well. By applying the proposed stride-based query
expansion, we were able to successfully retrieve such rotated
images with high mAP, but with the drawback of increasing
the computational time. Furthermore, the descriptor obtained
proved to be competitive for instance retrieval, outperforming
state-of-the-art results in four datasets: COIL-100, INSTRE-
M, Paris 6K and Revisiting-Paris 6k. However, the feature
extraction is complex since they are required to be extracted
from three different channels. Nevertheless, the complexity
and the retrieval time can be reduced significantly by paral-
lelizing the extraction process in a GPU machine.

A. PERFORMANCE TRADE-OFFS AND TIME
CONSUMPTION
We observed that the precision and mAPs obtained by our
proposal are superior to the state-of-the-art approaches. How-
ever, apart from exhibiting high performance, it can be
noticed that, depending on the chosen colour neural descrip-
tor, there is a trade-off between mAP and computational cost.
In Table 6, we can observe thatNE-O3 is approximately 1.3×
faster than NE-C and NE-TCD, and 35× than SBQE(NE-C),
but it has the minimummAP of 96 as compared to the highest
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FIGURE 13. mAP vs relative time complexity of the stride base query
expansion approach with respect to stride size for top-72 retrievals in
COIL dataset using NE-C colour neural descriptor. Time complexity is
shown in terms of relative time for a stride of 3.

mAP of 99.8 obtained by SBQE(NE-C). In Fig. 13, we show
the relative time vs mAP trade-offs of NE-C descriptor with
query expansion. We define relative time in a range from 0
to 100, where 100 represents the maximum time taken by the
descriptor.

In Fig. 13, we show relative time with respect to a stride of
3. We compute the results in COIL dataset using NE-C and
SBQE approach for top-72 retrievals. As we had seen, for a
stride of 3, the mAP is 99.8 and we consider it as the scenario
with the maximum time, that is 100%.We can observe that as
the size of the stride increases the computational complexity
reduces significantly along with a slight decay in the mAP.
Therefore, for instance, retrieval systems where time is a
prime concern, they can increase the stride size up to 10
if an mAP close to 80 suffices, or they can use NE-O3 or
NE-Raw descriptors to speed up the approach. Whereas,
NE-C is the one to select when precision is of utmost
importance.

In general, the computational time required to process
a single image for creating the colour neural descriptor
is approximately 0.25 seconds, and for generating all the
100 proposals is around 0.20 seconds. We also observed
that, as compared to NE-Raw descriptor, the colour neural
descriptors are computationally expensive since a feature
extraction of three individual channels is required. But, due
to the availability of recently advanced parallel computing
resources with powerful GPUs, we significantly reduced the
descriptor creation time by simultaneously extracting deep
features corresponding to three colour channels. As a con-
sequence, the time required to compute NE-Raw and NE-C
descriptors are approximately equal, which is 0.08 seconds.

B. SCALABILITY OF PROPOSED APPROACH
During the last few years, as the number of images has
increased exponentially in the order of millions and billions,
optimizing the matching and sorting tasks in databases of
feature vectors in terms of time is critical for a quick instance
retrieval. Besides, the storage of billions of feature vectors
can result in the need for huge RAM memory. To deal with
these two issues, we save the descriptors in HDF5 binary

FIGURE 14. Computation time (in seconds) vs number of descriptors in
millions with respect to similarity score computation between feature
vector and database vectors.

format, which allows storing vast amounts of numerical data
in a single file.

In order to compute the retrieval time and to establish
a time complexity order for big databases, we generated
100 million random vectors of dimension 3000 representing
our colour descriptors NE-C. Since the memory of our RAM
is limited with 16 GB, we created 1000 HDF5 files each
one containing 105 vectors. To compute the similarities of a
vector with respect to all 100 million vectors, we loaded an
HDF5 file into the RAM, and once compared, we removed
it and a newer one was loaded subsequently. In Fig. 14,
we show the computational time with respect to the number
of descriptors. The average computational time taken for
loading 105 vectors and computing the similarity scores is
approximately 2.3 seconds. Then, to compare with 10 million
descriptors, the computational time was 241 seconds (about
four minutes) and required 100 HDF5 files to be loaded
and unloaded. At last, the computational time to compute
the similarity scores of 100 million descriptors took just
37 minutes, where approximately 41000 comparisons are
made per second, which is reasonably fast for many appli-
cations that do not require real-time performance. However,
in the case of computers with different specification or feature
vector dimensions, the number of HDF5 files and the vectors
stored in each file could be adapted.

In addition, we can observe in Fig. 14 that the compu-
tation time is linearly dependent on the number of descrip-
tors present in a database, and hence, we have a linear
order of complexity O(n). Once the similarity scores are
obtained, we also need to sort the hit list to find the most
relevant retrievals. We performed the sorting by means of
the quick-sort algorithm, which has an average complexity
of O(nlogn). Thus, the overall complexity of instance search
is given by O(n) + O(nlogn). In fact, due to this inherent
linearity, we can further scale up this approach for billions
of descriptors by storing them in more HDF5 binary format
files. Moreover, based on the observed experimental results
in which the time varies almost linearly with respect to
the number of descriptors analyzed, the computation time
is expected to be approximately 373 minutes (6 hours) for
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one billion descriptors comparison. Typically, in a recent
high-end machine, say with 128 GB RAM, 10 million colour
descriptors can easily fit in. For instance, if there are one
billion descriptors, then 100 HDF5 batch files can be used to
store 10 million descriptors each. Moreover, the loading and
unloading overhead can be further reduced in a machine with
high RAM, and thus, the instance retrieval can be speeded up.
In this way, the retrieval step can be scaled.

Similarly, the feature extraction step can be also scaled up
while maintaining a linear order of complexity. For n images
on the dataset, there are n forward passes of the network,
and in each pass, we obtain M (a constant) number of object
proposals at the same time (as mentioned in section III-
A1). As n grows more and more, the number of proposals
generated for each image will become trivial as compared to
n. Therefore, the order of complexity for feature extraction is
O(n), which is linear. However, since feature extraction using
any CNN is computationally expensive while dealing with
large scale datasets, it is ideal to run parallel instances of the
feature extractor (CNN) in mutually exclusive image batches.
In our case, for faster feature extraction, we selected a batch
size of 200, and it takes approximately 1.85 seconds to extract
features of 200 images and to save them as HDF5 files.

Moreover, the computation time can be further reduced if
the descriptors are converted into binary codes using deep
hashing, which has emerged as an important technique for
image retrieval in large scale datasets. However, in this work,
our prime focus was only to create colour descriptors for the
instance retrieval without fine-tuning. Sincewe have obtained
a new deep feature representation to define colour descriptor,
we aimed at proving the full efficacy of this original represen-
tation without applying any techniques on top of it. Besides,
we were able to do a fast retrieval where a query descriptor
can be compared with 40,000 descriptors in less than just
two seconds. In addition, we can efficiently store more than
one million descriptors into the RAM using HDF5 binary
format.

VI. CONCLUSION
In this work, we have presented colour neural descriptors for
instance-based retrieval using CNN feature maps and colour
models. First, we modified the input part of the network
to generate DCFs for the different colour channels. Next,
the extracted activations were passed through the colour neu-
ral descriptor Generation (CDG) layer to construct the colour
neural descriptors. For developing a query-based retrieval
system, we first created object proposals for each of the
images in a given dataset, and then we calculated the cor-
responding colour neural descriptor for each proposal. After
that, we computed the cosine similarity between the query
descriptor and each object proposal descriptor, retrieving
those images where the similarity scored higher than a spec-
ified threshold. Additionally, we introduced a stride-based-
query-expansion technique, especially appropriate to retrieve
images from a multi-view dataset. We selected an initial
query to retrieve the top-K similar instances, and then we

used a stride of size s to select the sth retrieved instance to
be used as the next subsequent query. In contrast to prior
works, which relied on fine-tuning a network, we enhance the
DCFs to increase the discriminative power concerning colour
variations.

We evaluated the proposed method using standard proto-
cols. We experimentally showed that our approach signifi-
cantly boosts the retrieval performance in terms of precision
without fine-tuning techniques applied. Besides, to address
multi-view image retrieval, we use a query expansion tech-
nique based on stride. The descriptor obtained proves to
be competitive for instance retrieval, outperforming state-of-
the-art results in four datasets: COIL-100, INSTRE-M, Paris
6K and Revisiting-Paris 6k.

In the future, we will train a network to directly gener-
ate colour descriptors along with the proposals in order to
decrease the feature extraction time, and also we would con-
sider multi-label retrieval using the proposed colour descrip-
tors. In addition, other colour models such as HSL, HSV,
CMYK can also be used for obtaining discriminative colour
descriptors by applying the same formulation. However,
since we used a model previously trained with RGB images,
the model can detect intrinsic features such as edge, shapes
and other key points as long as the provided image consists
of the RGB colour channels. Besides, if the colour space
changes, the model will not be able to detect discriminative
features since other colour spaces would have different chan-
nel values than the RGB scale. Due to this reason, we opted
for RGB colour space, and we consider experimenting with
different colour spaces in the future.
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