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ABSTRACT The unmanned aerial vehicle (UAV) is inexpensive and offers a fast response speed and robust
flexibility; thus, it is a promising tool in themaritime buoyage inspection scenario, which involvesmonitoring
and accessing a lateral mark system far away from the coast. However, two main problems can occur during
inspection. The first is extreme weather conditions, resulting in a deviation between the inspection route and
the design route. The second is that the buoyage beacons are visited only once. Therefore, this article proposes
a buoyage inspection system consisting of a single UAV and random coastal buoys. The UAV automatically
takes off from the depot, performs a self-check on the buoy beacons, and then returns to the depot. A cascade
active disturbance rejection controller (ADRC) is designed to adjust the real-time trajectory of the UAV
system. A feasible trajectory planning method is also designed based on the continuous Hopfield neural
network (CHNN) and genetic algorithm (GA) to minimize the inspection distance. Extensive simulations
are conducted to demonstrate the effectiveness of the proposed method.

INDEX TERMS Unmanned aerial vehicle, buoy inspection, active disturbance rejection control, continuous
hopfield neural network, genetic algorithm.

I. INTRODUCTION
The coastal buoyage system provides accurate locations
and safe navigation information for vessels [1], [2]. Due
to the swaying of buoys and extreme weather conditions
such as ocean breeze, strong waves, and thick mist, use of
an autonomous underwater vehicle to inspect ocean buoys
is impossible [3]. Buoyage inspection is one of the civil
aviation scenarios [4]. With the maturing of UAVs, several
advantages have been achieved, i.e., quick response [5], sim-
ple movement and operation [6], and high flexibility [7];
UAVs play a crucial role in monitoring buoys in the har-
bour and its adjoining water and coastal islands. As shown
in Figure 1, a buoyage system consists on one UAV and sev-
eral buoys. Supported by the advanced research in the control
of autonomous UAVs, a UAV can inspect buoyage beacons
by the following routine: launching from the depot, flying
to buoys, inspecting beacons, and flying back to the depot.
In addition, all buoys need to be visited only once, which
can be regarded as a travelling salesman problem (TSP).
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FIGURE 1. Buoy inspection system by using a UAV.

Compared to the traditional labour-intensive approach, UAVs
require less time and cost and can enlarge the inspection area.
The collision problem also exists in the inspection environ-
ment, especially the trajectory collision between a UAV and
a buoyage target [8]. Moreover, there are two main problems
in the UAV system: the trajectory tracking problem due to
sudden wind in an uncertain environment and the problem of
obtaining the shortest-distance trajectory.

The remainder of this article is organized as follows.
Section II focuses on the analysis and a comparison with
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different articles in trajectory tracking and path selection. The
mathematical model of UAVs is established in Section III.
The dual cascade ADRC used to track trajectories is designed
in Section IV. A feasible trajectory planning strategy based
on the continuous Hopfield neural network (CHNN) and
genetic algorithm (GA) is designed in Section V. Section VI
verifies the performances of the proposed method through
MATLAB simulations. Finally, conclusions are given in
Section VII.

A. CONTRIBUTION
This article’s major contributions are twofold: (1) When
a UAV meets an unknown disturbance in the ocean, the
trajectory tracking performance is not accurate. Therefore,
we propose the cascade dual ADRC closed-loop controller
for monitoring and adjusting real-time flight routes. (2) A
feasible path planning method based on the CHNN and
genetic algorithm is designed to obtain the shortest-distance
trajectory in which the buoy can be visited once.

II. RELATED WORK
Some effective control techniques have been reported for
the trajectory tracking and path selection problems. How-
ever, some unknown influences can affect a UAV’s stability,
such as complex disturbances, model parameter perturba-
tions, and unknown external disturbances (heavy wind gusts).
Therefore, at least three methods have been proposed to
tackle the above challenge. One method is robust PID con-
trol. For these circumstances, reference [9] developed the
robust adaptive PID controller based on UAV fuzzy logic.
In reference [10], the UAV’s robust response in the presence
of uncertainties and disturbances was guaranteed to satisfy
the path tracking performance. Moreover, the UAV needed
to carry a robust controller that could respond quickly to
reduce the risk of terrific descent and drift from its original
position [11]. In reference [12], the robust controller yielded
an excellent dynamic response, a smaller tracking error, and
an excellent robustness against unknown certainties, such
as the actual ground effect and atmospheric disturbances.
The second method, i.e., sliding mode control (SMC), has
been employed in the UAV system. Compared with the robust
PID control theory, SMC effectively eliminates the external
disturbances and uncertainties, and it has strong robustness.
However, it faces difficulty in reducing the effect of chat-
tering, such as in reference [13], [14]. The current article
corresponds to the thirdmethod, named the active disturbance
rejection controller (ADRC). It estimates and compensates
for the external disturbances and is independent of the model
of the controlled object and insensitive to variations in the
system parameters. As one of the robust control methods
used to address uncertainty, the ADRC was first proposed
by J.Q. Han in 1998 [15], [16]. The main idea of the ADRC
theory is to treat the total disturbance as a new state variable
and estimate it through an ESO [17]. As described in refer-
ence [18], the ADRCwas used to adjust the angle and angular
velocity in the UAV system automatically. Reference [19]

then applied the ADRC to reject perturbations generated by
wind gusts, actuator faults, and measurement noises. The
improved ESO in the ADRC can estimate these perturba-
tions and compensate by the non-linear feedback control law.
Additionally, reference [20] designed a feedback controller in
the ADRC to eliminate the unmeasurable and external pertur-
bations; this improved state feedback controller also ensures
accurate trajectory tracking in the UAV system. Therefore,
it is better to apply the ADRC to enhance the path tracking in
buoy inspection.

Optimizing the flight trajectory via buoys is a traditional
TSP in the UAV system, with variants such as the TSP with
a UAV (TSP-D) [21], minimum cost TSP [22], TSP with
a UAV station (TSP-DS) [23], and vehicle routing problem
(VRP) [24]. J.J. Hopfield and Tank [25] first proposed solv-
ing the TSP by a feedback neural network in 1982, and
they introduced the energy function to select the optimal
path. However, the HNN easily converges to a valid solu-
tion or local minimum solution [26]. At least three methods
were proposed to tackle this problem. One was the CHNN
proposed in reference [27], but it could solve only part of
the local minimum solution. An improved CHNN based on
the dynamic step was proposed in reference [28] to calcu-
late the feasible path. In addition, references [29] and [30]
offered different optimization approaches. In reference [29],
the authors considered a non-convex optimization problem
with constraints on the joint UAV flight path planning and
transmit power control, and they developed a successive-
convex-approximation-based time minimization algorithm
that simultaneously updates the UAV path and transmits
power. In reference [30], the main problem is to carry out
trajectory optimization by tailoring the successive convex
approximation and alternating descent method to develop a
joint trajectory and transmit power algorithm. Additionally,
combining with path search algorithms such as the ant colony
algorithm [31], genetic algorithm [32], Dijkstra [33], and
A-star algorithm [34] was suggested to select the optimal
trajectory without a local minimum solution. Thus, a novel
method based on the CHNN can yield a better solution to
the TSP.

III. UAV DYNAMIC MODEL ESTABLISHMENT
Normally, a UAV is actuated by quadrotors. There are two
reference frames for analysing the UAV dynamic model: the
earth-fixed frame B = {OxB,OyB,OzB} and the body-fixed
frame E = {OxE ,OyE ,OzE }. Moreover, the earth coor-
dinate system is regarded as an inertial coordinate system.
It assumes that the body-fixed frame and the centre of gravity
of the UAV coincide and that its motion can be regarded as
that of a rigid body with six degrees of freedom, including
rotation around the yaw, pitch, and roll axes and three linear
motions: forward and backward, left and right, and up and
down. To describe theUAVperformance, its absolute position
vector is denoted as [x, y, z]T ∈ E , and its attitudinal vector is
denoted as the Euler angles [ψ, φ, θ ]T ∈ E . The Euler angles
denote the yaw angle, the pitch angle and the roll angle, with
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the assumption ofψ ∈ [−π, π] , φ, θ ∈ [−π/2, π/2]. More-
over, m denotes the mass of the UAV, g denotes the acceler-
ation due to gravity, Ix , Iy, Iz denote the inertia moments in
the body-fixed frame, and L denotes the distance from the
rotor centre to the body centre ofmass.U1,U2,U3,U4 are the
speed inputs of the propellers, and1U1,1U2,1U3,1U4 are
the changes in these inputs, respectively. The control forces
and moments are generated by varying the speed of the rotors
�1, �2, �3, �4. U1 denotes the normalized total lift force
along the z-axis, andU2,U3, andU4 correspond to the control
inputs of the roll θ , the pitch φ and the yaw ψ moments,
respectively. U = [U1,U2,U3,U4]T is the movement vec-
tor. Dx ,Dy,Dz,Dφ,Dθ ,Dψ are the disturbances outside the
system. kl denotes the lift coefficient of the UAV rotor, and
kf denotes the aerodynamic drag force coefficient in the UAV
system. According to the Newton-Euler equation, the UAV
mathematical model can be established, in which the angular
motion is shown in (1), the transnational (vertical) motion is
shown in (2), and the speed inputs (for the four propellers)
are shown in (3). The overall structural model is shown
in Figure 2.

φ̈ = θ̇ ψ̇

(
Iy − Iz
Ix

)
+
LU2

Ix
+ Dφ,

θ̈ = ψ̇φ̇

(
Iz − Ix
Iy

)
+
LU3

Iy
+ Dθ ,

ψ̈ = φ̇θ̇

(
Ix − Iy
Iz

)
+
LU4

Iz
+ Dψ ,

(1)


ẍ = (sinψ sin θ + cosψ sinφ cos θ)

U1

m
+ Dx ,

ÿ = (− cosψ sin θ + sinψ sinφ cos θ)
U1

m
+ Dy,

z̈ = (cos θ cosφ)
U1

m
−g+ Dz,

(2)



U1 = kl
(
�1

2
+�2

2
+�3

2
+�4

2
)
,

U2 = kl
(
�1

2
+�2

2
−�3

2
−�4

2
)
,

U3 = kl
(
�1

2
−�2

2
−�3

2
+�4

2
)
,

U4 = kf
(
�1

2
−�2

2
+�3

2
−�4

2
)
.

(3)

IV. TRAJECTORY TRACKING CONTROLLER DESIGN
BASED ON ADRC SCHEME
This section mainly focuses on the trajectory tracking control
subsystem based on the cascade active disturbance rejection
controller (ADRC). Each ADRC is composed of three parts:
an extended state observer (ESO), a tracking differentia-
tor (TD) and a state error feedback control law (SEFCL).
The structure of the overall control system is shown in
Figure 3. The system inputs Ui(i = 1, 2, 3, 4) ensure the
trajectory tracking of {ϕ, θ, ψ, x, y, z} along the desired tra-
jectory {xd , yd , zd }. There are four controlled channels: z
vertical motion channel,φ channel, θ channel, andψ channel.
According to (1) and (2), the model of the transnational and
vertical motions is determined by φ, θ,U1. ẍ depends on
φ and U1, ÿ depends on θ and U1, and z̈ depends on U1.

FIGURE 2. The overall structural model of a UAV: F1-the lift of the first
motor, F2-the lift of the second motor, F3-the lift of the third motor,
F4-the lift of the fourth motor, m-the mass of the UAV, g-the gravity of the
UAV, OXYZb-the body frame, and OXYZe-the inertial frame.

Similarly, ẍ, ÿ are the input of the position loop in the angu-
lar motion model. φ, θ are controlled by U2,U3. Moreover,
the ADRC converts xd , yd , zd into φd , θd , ψd , and it converts
φd , θd , ψd into the current propeller speeds. The movement
vector U = [U1,U2,U3,U4]T can act to change the UAV
position. In addition, the yaw angle ψ control is considered
as an example in this subsection. Recall that in (1), there
is a coupling function f

(
φ̇, θ̇

)
between ψ̈ and φ̇, θ̇ ; thus,

(1) needs to be simplified to (4). The function of the ESO is to
track and estimate the yaw angle in real time. The disturbance
f
(
φ̇, θ̇

)
is compensated for by the SEFCL.

ψ̈ = f (φ̇, θ̇ )+
LU4

Iz
+ Dψ . (4)

Take the ψ channel as an example. Let τD denote the filter
time constant, and let kD be a constant. Ge is the first-order
transfer function of the UAV quadrotors in (5). We also
need a decoupling transfer function Gm that represents the
transfer function of the UAV dynamics (see (6)). Therefore,
the transfer function of the ψ channel can be calculated as in
(7), and the overall structure of the ADRCwith the yaw angle
is as shown in Figure 4.

Ge =
kDs

τDs+ 1
, (5)

Gm =
LU4

Izs2
, (6)

Gψ = Gm · Ge =
LU4

Izs2
·

kDs
τDs+ 1

, (7)

where τD = 0.0023, kD = 0.09, Iz = 0.151, and L = 0.5.
We use the above parameters to obtain the transfer function
of the ψ channel in (8).

Gψ =
0.5

0.151s2
·

0.09s
0.0023s+ 1

=
130

s2 + 435s
. (8)

Based on the above analysis, the ADRC can maintain
trajectory tracking accuracy and compensate for the error of
position shifting. The principle of the other channels is the
same as for the ψ channel, and the transfer function of all
channels is as shown in Table 1.
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FIGURE 3. Block diagram of the overall control system. An altitude controller is used to convert the
trajectory error into the desired roll, pitch and yaw angles.

FIGURE 4. Block diagram of the ADRC in the yaw angle channel.

A. TRACKING DIFFERENTIATOR (TD)
A second-order TD is designed, as shown in (9). There are
two transition signals ψ1 (k) and ψ2 (k). The tracking dif-
ferentiator provides more stable and accurate results than
numerical differentiation in the presence of noise [35].

ψ1 (k + 1) = ψ1 (k)+ hψ2 (k) ,
ψ2 (k + 1) = ψ2 (k)+ f han(ψ1 (k)
−ψd (k), ψ2 (k) , r0, h0),

(9)

where ψd (k) is the input, ψ1 (k) and ψ2 (k) are the dis-
crete outputs, k is the sampling step, and h0 and r0
are filter coefficients. The fhan function is defined in
(10) [15], [16], [35].

d = γ η2,
a0 = ηx2,
y = x1 + a0,
a1 =

√
d (d + 8 |y|),

a2 = a0 +
1
2
sign (y) (a1 − d) ,

a = (a0 + y) fsg (y, d)+ a2 (1− fsg (y, d)) ,

fsg (a3, a4) =
1
2
(sign (a3 + a4)− sign (a3 − a4)) ,

fhan (x1, x2, γ, η) = −γ (a/d) fsg (a, d)
−γ sign (a) (1− fsg (a, d)) .

(10)

Remark 1: The main purpose of the tracking differentia-
tor (TD) is to address a discontinuous input signal or random

TABLE 1. The transfer function for each channel in the UAV system.

disturbance in a measurement. Furthermore, the differential
output of the TD and fhan function can generate the error
signal and error differential signal of the transition process
and realize fast position tracking without overshoot.

B. EXTENDED STATE OBSERVER (ESO) WITH THE fal
FUNCTION
External disturbances and unknown noise comprise the total
noise in the UAV system. An extended state observer (ESO)
with the fal filter can be designed to suppress these noises,
as in (11) [36], [37].

ε1 (k) = z1 (k)− ψ (k) ,
z1 (k + 1) = z1 (k)+ h1 (z2 (k)− β1ε1 (k)) ,
z2 (k + 1)=z2 (k)+ h1 (z3 (k)− β2 fal (ε1 (k) , α1, δ))+

b0u (k) ,
z3 (k + 1)=z3 (k)− h1β3 fal (ε1 (k) , α2, δ) ,

(11)
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where z1 (k + 1) and z2 (k + 1) are the estimated values, with
z2 (k + 1) being the derivative of z1 (k + 1). Additionally,
z3 (k + 1) denotes the overall estimated uncertainties in the
UAV system and serves as a compensating term for ψd .
Likewise in (11), ε1 (k) is the control internal variable with
the errors of estimation. We choose α1 = 0.5 and α2 = 0.25
for simulation, and β1, β2, β3 are the positive observer gains.
δ is the positive linear bandwidth of the non-linear function.
b0 denotes the controller gain. The non-linear fal function is
given in (12).

The ESO does not depend on the disturbance model and
does not require the disturbance to bemeasured. The ESO can
compensate for the non-linear dynamics, model uncertainty
and external disturbances. A non-linear uncertain object
(new state variable) with a disturbance link is realized using
non-linear state feedback.
Remark 2: The ESO can estimate and compensate for the

error of the yaw angle ψd . Once the yaw angle is determined,
xd , yd , zd are also obtained, making it possible to realize
real-time trajectory tracking. In addition, the controller gain
by0 can be decreased to accelerate the control response, which
is proved in [38].

C. STATE ERROR FEEDBACK CONTROL LAW (SEFCL)
e1 (k) = ψ1 (k)− z1 (k) ,
e2 (k) = ψ2 (k)− z2 (k) ,
u4 (k) = −f han(e1 (k) , kce2 (k) , r1, h1),
U4 (k) = (u4 (k)− z3 (k)) /b0,

(12)

with  s =
1
2
[sign (e+ δ)− sign (e− δ)],

fal (e, α, δ) =
es
δ1−α

+ |e|αsign (e) (1− s) ,
(13)

where e1 (k) and e2 (k) are the estimation errors, u4 (k) is the
intermediate control input, and U4 (k) is the final output of
the system [15], [16], [35].

The system needs to adopt an appropriate compensation
method to eliminate the error. In the state error feedback con-
trol law, the functions fal and fhan are used to construct the
non-linear controller, which is similar to the PID controller.
Remark 3: Note that decreasing b0 accelerates the control

response and that the system overshoot can be restrained
by increasing the differential coefficient kc, which is proved
in [38].

Based on the analysis in Section III, it should be noted
that the trajectory trackingADRC can effectively compensate
for the unknown model and external disturbance. The design
of the trajectory tracking controller reduces the external
destabilization and uncertainties in the UAV system. These
disturbances, regarded as the total disturbance, are compen-
sated for dynamically by the extended state observer (ESO).
When the system encounters a large error, the small gain is
used to reduce the overshoot; when there is a small error

in the system, a large gain is used to increase the rapid-
ity. This adjustment is realized by the fal and fhan func-
tions. Therefore, the trajectory tracking ADRC has higher
robustness and a stronger tracking ability, and its biggest
advantage is that it can decouple and eliminate disturbances
more effectively. The ADRC offers robustness to reduce all
disturbances. Because of space limitations, the stability of the
ADRC is proven in [39].

V. NAVIGATION ALGORITHM FOR SINGLE UAV BUOY
INSPECTION
A. SHORTEST-DISTANCE TRAJECTORY PROBLEM
A buoyage inspection system is considered in Figure 1, con-
sisting of a single UAV and some coastal buoyage beacons.
LetP(P ∈ N ) denote the buoy position in the coastal area, and
let dxy(t) denote the Euclidean distance between two buoys
(x, y ∈ P). The objective is to find a closed shortest path
such that buoys can be visited one time to obtain the shortest
trajectory in terms of time from the depot, inspect all buoys,
and then return to the depot in the graph ϑ(P, υ) such that
the UAV does not violate the energy constraint. Therefore,
the shortest distance trajectory (SDT) problem is proposed,
which can also be formulated as a TSP.

B. CONTINUOUS HOPFIELD NEURAL NETWORK (CHNN)
ALGORITHM
The continuous Hopfield neural network (CHNN) algorithm
is an effective approach to solve the shortest trajectory dis-
tance problem, and its basic idea is to map the TSP to the
CHNN and search for the optimal path solution automatically
by dynamic evolution of the network state. A transposition
matrix with N × N neurons is proposed, in which numerous
neurons i or j (i 6= j, i, j ∈ N ) exist. Each neuron can transmit
its output to all other neurons and receive feedback from all
other neurons at the same time [27]. Let ωxi,yj denote the
weight value from (x, i) to (y, j), as shown in (14).
ωxi,yj = −Aδx,y

(
1− δi,j

)
− Bδi,j

(
1− δx,y

)
−C − Ddxy

(
δj,i+1 + δj,i−1

)
, (14)

where A,B,C and D represent the weighted values, which are
all positive. δi,j and δx,y are both binary values, with δi,j ={
1 (i = j)
0 (i 6= j)

and δx,y =

{
1 (x = y)
0 (x 6= y)

. [40]

The energy function of the TSP needs to be considered. The
key is to construct a suitable energy functionE, as in (15). The
energy function E can be composed of four parts. E1 repre-
sents the first energy sub-function at the visiting order, E2 is
the second sub-function, E3 is the global constraint function,
and E4 is the objective optimization target. The constraints
E1 and E2 ensure that only one node can be visited at a time
and that each node can be only accessed once. In addition,
E1 inhibits neurons after being visited many times, and E2
inhibits neurons when accessing navigation marks simultane-
ously. E4 is used to optimize the path length of the incentive
network. Additionally, in the CHNN, the Sigmoid function is
used as the activation function (16). Therefore, Algorithm 1 is

VOLUME 9, 2021 22887



B. Li et al.: Maritime Buoyage Inspection System Based on an UAV and Active Disturbance Rejection Control

Algorithm 1 Constructing the Path via the CHNN
Require:

The coordinates of the buoys;
The distance dxy(t) between two buoys;

Ensure:
One shortest path with minimum energy E ;

1: Initialize the weighted value A,B,C,D and u0;
2: Calculate dxy (x 6= y, x, y ∈ N );
3: for CHNN do
4: Calculate dux,i

dt by Equation (9);
5: Calculate ux,i (t + 1) at time t+1;
6: Calculate vx,i (t);
7: Calculate the energy function E;
8: end for

proposed to address the TSP with the CHNN.

E = E1 + E2 + E3 + E4,

E1 =
A
2

n∑
x=1

n∑
i=1

n∑
j=1,j6=i

vx,ivx,j,

E2 =
B
2

n∑
i=1

n∑
x=1

n∑
y=1,y6=j

vx,ivx,j,

E3 =
C
2

(
n∑

x=1

n∑
i=1

vx,i − n

)2

,

E4 =
D
2

n∑
x=1

n∑
y=1,y6=x,

n∑
i=1

dxyvx,i
(
vy,i+1 + vy,i−1

)
,

(15)

where vx,i indicates that buoy x is accessed in the i-th order.
For example, if vx,i = 1, buoy x will be visited in the i-
th order; if vx,i = 0, the opposite is true. Similarly, let vx,j
indicate that buoy x is accessed in the j-th order, and let vy,i+1
and vy,i−1 indicate that buoy y is accessed in the (i+1)-th and
(i-1)-th orders, respectively [41].

vx,i (t) = f
(
ux,i (t)

)
=

1
2

(
1+ tanh

(
ux,i (t)
u0

))
,

ux,i (t) =
1
2
u0 ln (n− 1)+δx,i (x, i ∈ N ) ,

ux,i (t + 1) = ux,i (t)+
dux,i
dt

1t,

(16)

where u0 is the initial input, and ux,i (t) and ux,i (t + 1)
indicate the inputs when the navigation mark x is visited in
the i-th order at time t and t+1, respectively. δx,i has a random
value within (−1, 1) [42].

C. FEASIBLE ALGORITHM BASED ON THE CHNN AND
GENETIC ALGORITHM
Although one feasible algorithm can be obtained through the
CHNN, it is not reliable because the CHNN escapes from the
local minimum solution with energy E to some extent. The
general solution is to select a random order and adjust the
weights of neurons ωxi,yj, but this can reduce the occurrence
probability of the minimum value and cannot fundamentally

Algorithm 2 Constructing a Reliable and Feasible Path
Require:

A random path transposition matrix;
Ensure:

A feasible transposition matrix (feasible trajectory);
1: Initialize the weighted value A,B,C,D and u0;
2: while kga(kga ∈ N ) do
3: Calculate dxy (x 6= y, x, y ∈ N );
4: while kchnn(kchnn ∈ N ) do
5: Calculate the energy function E by Algorithm 1;
6: end while
7: Calculate the current transposition matrix;
8: Calculate the fitness

∑
dxy of the current path;

9: if The length of the current path is less than that of the
parent path and the current path is an efficient solution
then

10: Instead of the previous generation solution;
11: Calculate the input of the next CHNN;
12: else
13: Keep the previous generation solution;
14: The input of the CHNN remains unchanged;
15: end if
16: end while
17: Obtain the optimal generation;
18: Obtain the feasible and reliable inspection trajectory;

solve the global minimum problem. The relationship between
the total UAV visiting sequence and the number of buoys
can be restricted in the energy E, and it cannot restrict the
situation where a UAV visits the same buoy many times or a
UAV inspects multiple buoys at once, resulting in a minimum
value in the sub-function E3. If the total visiting order is

equal to the number of buoys, then
n∑

x=1

n∑
j=1

vxy−n = 0 in E3;

if not, ωxi,yj can be modified. Therefore, the feasible and
reliable algorithm can be modified by the CHNN and genetic
algorithm (GA) to solve the minimum value problem in E.
Let kga(kga ∈ N ) and kchnn(kchnn ∈ N ) denote the iterations in
the feasible and reliable algorithm. Algorithm 2 is presented
to address the TSP, which is extended from Algorithm 1 by
adding a genetic algorithm to the CHNN. This procedure
ensures that the stored paths with minimum energy E are
feasible and reduces the number of iterations needed to run
the algorithm.

Algorithm 2 can be regarded as a feasible and reliable path
planning algorithm, eliminating the local minimum solution
in energy function E by an adaptive function and a selection
function. It takes a random path transposition matrix and the
random inspection trajectory as the CHNN input in Line 7.
The individual adaptability function is formulated to judge
the fitness of the current path matrix (or the current trajectory
length), and this obtained path matrix can be taken as the
parent sample. The new generation solution is generated at
the same time in Line 8. In the genetic algorithm, from Line
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FIGURE 5. The overall structure of the feasible algorithm.

2 to 16, the current solution’s path length can be calculated
by a selection function to obtain the sample with the highest
fitness. For the variation factor, the CHNN randomly selects
the weighted adjustment order. Even if the same input is used
in the CHNN, some different training results are displayed.
The variation factor is added to the generation solution.
Finally, the feasible path can be counted, and the best one is
selected as the final pathmatrix, that is, the optimal inspection
trajectory for the UAV. The overall structure of the feasible
algorithm for path planning is shown in Figure 5.

Now, the complexity of Algorithm 2 is analysed. It can
be assumed that the maximum number of executions in the
genetic algorithm is

∣∣kga∣∣ (Line 2), and let |kchnn| denote
the maximum number of executions in the CHNN (Line 4),
where kchnn 6= kga 6= n. Obviously, the most impor-
tant time loss is caused by the CHNN. After calculating
the energy function E (Line 5), it is necessary to judge
whether the conditions meet the requirement. Therefore,
the maximum execution time of the entire algorithm is∣∣kga∣∣ (|kchnn| + 1). Overall, the total time complexity of Algo-
rithm 2 is O

(∣∣kgakchnn∣∣+ |kchnn|).
VI. NUMERICAL AND EXPERIMENTAL RESULTS
In this section, numerical and experimental results are given
to verify the effectiveness of the proposed method under the
superposition of external disturbances and model uncertainty,
and a case study carried out in MATLAB is presented. The
UAV used in the experiment is a laboratory product assem-
bled by our group. Its parameters are shown in Table 2.
All initial states of the considered UAV are set to zero, and
the external disturbances and unknown certainties can be
regarded as randomwhite noise. A PC with an AMDRyzen 7
3700x 8-Core Processor CPU @ 3.60 GHz and 32.00 GB of
RAM is responsible for simulating the real-time angles and
positions in the UAV system.

A. TRAJECTORY TRACKING CONTROL RESULTS
In this subsection, we mainly focus on the trajectory tracking
control. The simulated parameters of the ADRC (ESO, TD,
and SEFCL) and PID controller are given in Table 3. Addi-
tionally, in a UAV system, the total noise (i.e., the external
disturbance and unknownmodel uncertainty) can be regarded
as white Gaussian noise with zero mean, the sampling time is
0.5 s, and a variance of 15 is applied to describe the simulated
noise. The UAV takes off and cruises during the process of

TABLE 2. Nominal parameters of the UAV.

TABLE 3. Control parameters of the ADRC (TD, ESO, SEFCL) and PID
controller.

buoy inspection. A comparison between the ADRC and PID
controller is performed in the same environment to verify
the proposed controller’s superiority. Therefore, we analyse
the signal tracking performance between the ADRC and PID
controller, including the altitude, yaw angle, pitch angle,
and roll angle; moreover, for the ADRC, the ESO output is
analysed.

First, under the PID and ADRC control strategies,
the tracking curves are plotted in Figure 6. We choose a ran-
dom period for analysing the tracking performance, and the
UAV meets a sudden change in wind force at T = [0.5, 0.6].
Regarding the rise time, the performance of the PID controller
is worse than that of the ADRC in each channel, but the PID
controller response is quicker than that of the ADRC. When
the systemmeets an outside disturbance, the steady-state time
of the PID controller is longer than that of the ADRC, and
the overshoot of the PID controller is larger than that of the
ADRC. For the pitch channel, the flight is smoother and more
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FIGURE 6. Outputs of the tracking signal for each channel: the input
reference signal (blue dotted line), the tracking signal with the PID
controller (red dotted line), and the tracking signal with the ADRC (green
solid line).

FIGURE 7. Outputs of the ESO for each channel: z1-the estimated
disturbance of the input signal (blue solid line), z2-the estimated
differential disturbance of the input signal (green dotted line), and z3-the
estimated total disturbance (red dotted line).

steady with the ADRC than under PID control. Moreover,
when there is an external disturbance, the ADRC can quickly
adjust and track the UAV system’s real-time position. The
case of the roll channel is similar to that of the pitch channel.
For the yaw channel, the UAV maintains stable flight under
the action of the ADRC. When the heading angle changes,
theUAV can quickly and stably reach the specified yaw angle,
while the PID controller results in overshoot. Therefore,
under the influence of a gust disturbance, the ADRC has an
outstanding tracking control ability compared with that of the
PID controller.

We compare the output of the ESO in Figure 7. When an
overshoot signal exists in the UAV system, the ESO estimates
this as an error and compensates by using the ADRC to
reduce it. Figure 7 shows that the ESO accurately estimates
the disturbance value at T = [0.5, 0.6] and utilizes the ADRC
in time. We can observe that the UAV is under the control of
complex disturbance factors when it performs the simulated
inspection. The performance in terms of the attitude angles
and altitude position fluctuates less under the ADRC, and the
disturbance suppression ability is stronger than that of the

PID controller. Based on the analysis above, the ADRC is
better than the PID controller in analysing the attitude angles
and ESO performance.

B. NAVIGATION PATH SELECTION RESULTS
The effectiveness of the proposed algorithm and path tracking
is verified in this subsection. Assume that the UAV can pass
all buoys and ignore the influence of battery energy loss and
that the UAV model parameters and the transfer functions
of each channel remain unchanged. We choose a simulated
coastal area with 12 km ∗ 7 km ∗ 0.005 km and randomly set
13 targets in this area. The depot is placed at (269, 293, 1).
The flight trajectory needs to minimize the path of the UAV
as it takes off from the depot, visits all buoys, and returns to
the depot. The initial yaw angle ψ is set to 0 rad.

One path with the minimum solution as the reference is
designed by Algorithm 2, and the ADRC tracks this trajec-
tory. The simulation conditions of Algorithm 2 are set with
kga and kchnn. The fitness can be seen as the length of the
trajectory. The UAV system sorts the different fitness values
to select the highest fitness, i.e., the shortest path length.

In addition, Figure 8 shows the trajectory results simu-
lated by using the CHNN-GA. An entirely random path is
created initially, the length of which is 4171 m, as shown in
Figure 8a. After 300 iterations in the CHNN, the path solution
has the local minimum value, and the length of the current
trajectory in the local minimum solution is 1915 m, as shown
in Figure 8b. On this basis, the GA is combined with the
CHNN to solve the local minimum solution in the CHNN.
The path solution via the 3rd CHNN-GA can be observed
in Figure 8c, with a length of 1944 m. Although the local
minimum problem can be solved by selecting the stochastic
direction of genetic variation, the minimum solution, not
the local minimum solution, still exists, and the number of
this kind of minimum solution can increase the number of
nodes visited along the inspection trajectory. Repeating the
CHNN and GA makes it possible to obtain the optimal path
after the 9th CHNN-GA iteration, the length of which is
1825 m, as shown in Figure 8d. It can be seen that using only
the CHNN to solve the TSP results in the local minimum
solution; therefore, the CHNN is combined with the GA,
with which the optimal path can be obtained. However, it is
impossible to confirm whether the result obtained after the
9th genetic iteration is the optimal solution; it is necessary to
look for the optimal path by using a genetic algorithm. The
solution after the 13th GA iteration is shown in Figure 8e,
and its length is 2088 m; the solution after the 67th GA
iteration is also demonstrated in Figure 8f, the length of which
is 1920 m. Because of the stochastic direction of genetic
variation, the optimal solution can be selected by a sufficient
number of mutation individuals, that is, the optimal solution
is the shortest trajectory. Moreover, the energy corresponding
to the optimal solution solved by the neural network is shown
in Figure 8g, and the simulated trajectory’s path in each
genetic iteration is shown in Figure 9b, in which the effective
points are shown as stars (blue stars are the feasible solutions;
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FIGURE 8. Experiment results for the CHNN: (a)-(c)+(f) the results
obtained by using the CHNN, (d) the optimal solution, and (g) the energy
output of the CHNN.

FIGURE 9. Experiment results for the feasible path planning algorithm:
the buoy (the red circle), the desired and effective trajectory (the blue
line), and the effective trajectory solution based on the genetic algorithm
(the blue star).

FIGURE 10. Experimental results for trajectory tracking: the actual
tracking trajectory (the red line) and the actual flight trajectory for the
7,9,12-th buoyage target.

red stars are the optimal solutions). Therefore, it can be seen
from Figure 9b that many optimal solutions can be obtained
via the genetic iteration process.

Now, we analyse the ADRC performance, assuming that
the UAVmaintains a speed of 10 m/s. As shown in Figure 10,
a comparison is made between the designed trajectory (solid
blue line) and a real simulated trajectory; this solid blue
line is the same as in Figure 10a. However, there are three
specific buoys in the 7-th, 9-th and 12-th visiting sequences
at which the UAV changes its yaw angle to adjust its attitude.
Moreover, Figure 11 shows that the yaw angle changes in
three time periods. The first one is between 92 s and 95 s
(7-th); the second is between 125 s and 127 s (9-th), and the

FIGURE 11. Experimental results for the yaw angle in the 7-th, 9-th, and
12-th visiting sequence: the desired yaw angle (the blue line) and the
actual tracking yaw angle (the red dotted line).

last one is between 140 s and 142 s (12-th). Clearly, theADRC
can accurately track the x and y coordinates, and the tracking
error is much smaller.

The buoyage inspection can be effectively implemented
based on the proposed path planning algorithm and ADRC
trajectory tracking performances.

VII. CONCLUSION
In this article, a coastal buoy inspection system is designed,
including a UAV and several buoyage targets. The cas-
cade ADRC controller realizes accurate trajectory track-
ing. Moreover, a feasible path planning algorithm based
on the CHNN network and genetic algorithm is proposed.
The ADRC controller has a strong anti-interference ability
through MATLAB compared with the PID controller in the
under strong disturbance and certain unknown environment.
The proposed feasible path planning algorithm can effectively
avoid the local minimum solution and obtain the shortest
trajectory.

This article mainly proposes a method for improving the
optimal path based on the CHNN and the UAV control by
the cascade active disturbance rejection control algorithm.
This method is mainly based on the actual engineering
background of coastal navigation system inspection. Two
real-world problems are solved: the need to overcome the
complex disturbance environment along the coast and the
need to find the optimal inspection route. In this article,
through a MATLAB simulation, the robustness and control
response of the improved cascade active disturbance rejection
controller and the traditional PID controller are compared.
From the experimental results, although the response of the
active disturbance rejection controller is slower than that of
the PID controller, its ability to compensate for disturbances
is very prominent. On the other hand, due to the limitations
of the CHNN-based method, the improved method solves
the local minimum problem by integrating the GA method.
The hybrid CHNN-GA can effectively avoid the minimum
value problem and find the optimal inspection route from the
experimental results.
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