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ABSTRACT The assembly accuracy of the extendible support structure is of importance for the imaging
capability of synthetic aperture radar antennas. In general, due to manufacturing imperfections and instal-
lation variations, its assembly accuracy will be inevitably degraded. Therefore, controlling the assembly
deviation is highly concerned in practice. To meet the accuracy requirement and make ‘‘the control’’ more
efficient, this study proposes a novel method to quantitatively conduct dimensional adjustment of links for
extendible support structures of synthetic aperture radar antennas. Since the extendible support structure is
generally over-constrained in the deployed configuration, the relationship between the assembly deviation
and the variation sources is first derived by means of equivalent transformation. Based on the mathematical
expression of assembly deviation, an inequality constrained sparse optimization model for quantitatively
resizing links is formulated. Then, an efficient algorithm integrating the alternating direction method of
multipliers and binary search is developed to solve the above optimization model, thereby acquiring the
optimal combination of link adjustment. Finally, numerical case studies are carried out to demonstrate
the effectiveness of the proposed method in Matlab, which show that it can not only achieve satisfactory
performance in prediction but also significantly improve the assembly efficiency.

INDEX TERMS Assembly deviation, dimensional adjustment, extendible support structure, sparse opti-
mization, structural equivalent transformation, ADMM.

I. INTRODUCTION
With the development of imaging technology, synthetic aper-
ture radar (SAR) antennas have beenwidely applied in remote
sensing [1], [2]. Providing that all the electrical devices func-
tion well, the surface accuracy of antennas, to a great extent,
determines the work performance of radar [3]. Due to the
space limitation of rockets, SAR antennas are folded during
the launch and then deployed after entering the predetermined
orbit. Here, the extendible support structure (ESS) is designed
to support the deployable SAR antennas with a stable and pre-
cise configuration [4]. Because of inevitable manufacturing
imperfections and installation variations, the ESS often fails
to meet the specified accuracy requirement [5]. Therefore,
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in practical engineering, it is indispensable to conduct dimen-
sional adjustment of support links for achieving satisfactory
accuracy. This essential operation naturally gives rise to a
question for researchers, that is, how to conduct an accurate
link adjustment for the ESS to let the designer get rid of
‘‘guessing’’ the corresponding values repeatedly.

In past decades, investigations on dimensional adjustment
of the ESS are scarcely reported. To our knowledge, there are
only two references that studied this problem. Specifically,
Yang et al. [6] defined a complex adjustment amount as
the objective function to optimize link adjustment for the
multi-loop structure. This method can obtain the adjustment
length of each link. However, for the convenience of mod-
eling, they treated the ESS as a planar configuration and
removed one of the support links, which results in an obvious
discrepancy with the practical spatial structure and therefore
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limits the application of their method. Zhao et al. [7] devel-
oped an enhanced approach of combining the Taguchimethod
and grey relational analysis to determine the combination
of link adjustments. Nevertheless, this work has the same
limitation with [6]. Namely, the spatial ESS was simplified
as a planar structure. It can be seen that because of excessive
simplification, the two works mentioned above, in fact, can-
not guide the practical dimensional adjustment of links for the
spatial ESS, which just motivates us to conduct this study.

As is known, the goal of resizing links is to find the
optimal combination of adjustments to improve the assem-
bly accuracy of the ESS. Therefore, theoretically speaking,
the dimensional adjustment of the ESS is actually a con-
straint combinatorial optimization problem. Mathematically,
two questions need to be answered. The one is the rela-
tionship between the decision variables and objective func-
tion, namely the assembly accuracy analysis. The other is
the optimization algorithm that can deal with the assembly
constraints and achieve the optimum of assembly accuracy.
Answering these questions will face the following challenges.
(I) Due to the multiple closed loops in the spatial structure,
it is intractable to obtain the theoretical relationship between
the variation sources and the assembly deviation. Although
the finite element analysis (FEA) is available to calculate
shape deformations of the ESS after adjustment, the FEA
is time-consuming and only feasible for a given adjustment
parameters, which is inapplicable to run tremendous simula-
tions to get the optimal dimension in practical engineering.
(II) To avoid the potential reliability degeneration during
assembly deviation control, the adjustment length of each link
should not exceed the prescribedmaximum length.Moreover,
in view of the assembly efficiency, it is preferred to adjust
fewer links under the same magnitude of deviation reduction.
Under these assembly constraints, how to obtain the optimal
combination of link adjustment remains to be explored.

Even though studies of dimensional adjustment of the
ESS are extremely limited, it is noteworthy that there have
been some discussions on accuracy analysis of deployable
antennas. For example, Mobrem [8] presented four meth-
ods to predict the assembly accuracy of the structure with
regard to manufacturing fluctuations, namely Monte Carlo
analysis, inverse frequency squared method, direct method
and normal mode method. However, all of these methods
are based on the FEA, and this indicates that once one of
the structural parameters is changed, the model should be
performed again to compute the assembly accuracy of the
ESS. Although the updating technology [9] is developed to
speed up the process of prediction, the FEA is still compu-
tationally expensive and time-consuming. As a result, it is
more attractive to develop theoretical models rather than
simulation analysis [10], [11] for the prediction of assembly
accuracy. Yang et al. [12] constructed an accuracy analysis
model based on the principle of elastic deformation energy.
Li et al. [13] derived the variation propagation model of
the multiple-loop structure and obtained the extreme angu-
lar errors of the antenna panels. Recently, Zhao et al. [14]

provided a novel approach which combined the rotatability
laws of kinematic chains [15] with the assembly deviation
model of two-link unit. Although the coupling constraints
were addressed in [12]–[14], these approaches rely on the pla-
nar assumption so that the analysis was not enough to describe
the spatial characteristics and assembly deviations of the ESS.
In addition, the assembly accuracy analysis approaches pro-
posed for other type extendible structures [16]–[19], such as
energy method [20], force density method [21], and dynamic
relaxation method [22], are difficult to be transferred into the
ESS. On the one hand, compared with cable-net extendible
structures, the ESS is of sufficient stiffness, and the key
factor affecting the assembly accuracy is the direct geometric
deviation rather than the flexible deformation. Thus, these
form-finding methods are not suitable for the ESS [17].
On the other hand, due to the existence of installation devi-
ations of joints, the current practice shows that the assem-
bly accuracy may be poor even if the support links of the
ESS are under uniform stress. As for the assembly deviation
control, it is highlighted that to enable the high assembly
efficiency, the support links should be adjusted as few as
possible, which indicates the optimization of dimensional
adjustment of the ESS is in essence a sparse optimization
problem.However, the previous optimization algorithms used
in assembly accuracy optimization for deployable structures,
including the quadratic programming [23], the advance and
retreat algorithm [24], the trust-region method [25] and the
Nelder-Mead method [26], are not capable of dealing with
the optimization model of dimensional adjustment since they
cannot provide sparse solutions.

To remove the limitations of traditional approaches to
dimensional adjustment and overcome the deficiency of clas-
sical optimization algorithms in tackling sparse problems,
this paper aims to develop a novel method of quantitatively
resizing support links for the spatial ESS. The mapping rela-
tionship from the variation sources to the assembly deviation
is first derived by structural equivalent transformation, and
then the sparse optimization model of link adjustment con-
sidering the assembly efficiency is formulated. By solving
this optimization problem, the optimal combination of link
adjustment is eventually obtained. The contributions of this
study are concluded as follows. (I) Rather than simplifying
the ESS to a planar mechanism as adopted in previous works,
this study directly constructs the assembly deviation model
of the spatial ESS, which is consistent with the practical
scenario. (II) To pursue high assembly efficiency, the spar-
sity is inevitable in the optimization model of dimensional
adjustment. Different from previous methods that neglect the
potential sparsity, this study takes it into account in formulat-
ing the optimization model so as to satisfy the requirement of
resizing links as few as possible. (III) A novel efficient algo-
rithm is developed to obtain the adjustment vector by integrat-
ing the alternating direction method of multipliers (ADMM)
algorithm [27] and the binary search algorithm. In addition
to achieving the optimal adjustment on the condition of fixed
number of links, the proposed algorithm can also determine

VOLUME 9, 2021 24061



D. Yu et al.: Link Adjustment for Assembly Deviation Control of Extendible Support Structures via Sparse Optimization

the minimum number of links under the given requirement
of assembly deviation control. These contributions not only
extend the boundary of accuracy analysis for the ESS from
the planar configuration to the spatial configuration but also
provide an effective methodology for the deviation control
of the ESS, which are beneficial to improve the assembly
performance and shorten the assembly cycle.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the ESS and develops the assem-
bly deviation model for surface accuracy control. Afterwards,
Section 3 proposes the sparse optimizationmodel and the cor-
responding parameter estimation algorithm. Case studies are
provided to verify the performance of the proposed method
in Section 4, and the extension of the algorithm is discussed
in Section 5. Finally, conclusions are drawn in Section 6.

II. ASSEMBLY DEVIATION MODEL OF THE ESS
A. INTRODUCTION OF THE ESS
As shown in Figure 1, the ESS of the SAR antenna is
mainly composed of inner and outer panels, support links
and self-locked joints. The 90◦ self-locked joints are designed
to fix the inner panel to the load module, and the 180◦

self-locked joints are employed to connect the inner panel
and the outer panel. For the detailed structure of these self-
locked joints, interested readers can get additional informa-
tion from [4], [13]. Besides, universe rotary joints are adopted
in the points A1-A6, O and C. To improve the stiffness and
reliability of system, the truss structure, a combination of
the outer, middle, inner support links and the auxiliary link,
is utilized to support the two antenna panels. In view of the
fact, these links are descried as support links for convenience.
Remarkably, the ESS is an over-constrained structure with
multiple closed loops.

To articulate the problem addressed in this work, one def-
inition is clarified first. The assembly deviation of the ESS
refers to the pose error of panels, and it is composed of three
small translational displacements and three small rotations
expressed in terms of Euler angles. When the length of links
and installation positions of joints deviate from their normal
values, the assembly deviation of the ESS arises. Therefore,
the goal of this study is to find the optimal combination of
link adjustments (OA1, OA2, OA3, OA4, OA5, OA6 and OC)
to minimize the assembly deviation of the ESS.

B. STRUCTURAL EQUIVALENT TRANSFORMATION
As mentioned above, the ESS is a multiple-closed-loop struc-
ture, the equivalent transformation of the structure must be
carried out to eliminate the over-constraint. To this end, the
ESS is divided into two parts as shown in Figure 2. The first
part consists of the antenna panels and the outer, middle and
inner links. The second part is composed of the auxiliary link
and the virtual link, where the latter represents the first part
after assembly.

The reasons for the above transformation are as follows.
Due to the fact that the clearance of the 180◦ self-locked joint

FIGURE 1. ESS of the SAR antenna.

FIGURE 2. Structural equivalent transformation of the ESS.

is small (less than 0.01 mm) and the structural stiffness of
the joint is relatively large, the initial deviation of two panels
nearly remains constant throughout the whole assembly and
adjustment process. Thus, the inner and outer panels can be
viewed as a whole plate. Different from the 180◦ self-locked
joints, the 90◦ joints are designed with larger clearances for
reducing the difficulty of assembly, which can tolerate assem-
bly deviation of the panels to a certain extent. In addition,
the auxiliary link is not connected to the load module until
the first part is completely assembled. As described above,
separating the first part from the ESS is consistent with the
practice. Once the pose error of panels is determined in the
local coordinate system, the virtual link can be utilized to
equivalently represent the first part.

In this study, the first part is further regarded as a
6-SPS (S-spherical pair, P-prismatic pair) structure as shown
in Figure 3. On the one hand, the dimensional adjustment
of links is similar to the linear movement of the prismatic
pair because both of them are changing the active length
in essence. On the other hand, since all joints exist radial
clearances, alternating rotating pairs with spherical pairs is
acceptable. As for the second part, it can be simplified into
the double-link structure by projection as shown in Figure 4.
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FIGURE 3. Support structure without the auxiliary link.

It is worth mentioning that the rationality of above structural
transformation will also be verified by FEA in section 5.1.

C. ASSEMBLY DEVIATION MODELING OF THE STRUCTURE
WITHOUT THE AUXILIARY LINK
For quantitative description, a local coordinate system O1-
x1y1z1 is established at the intersection center O of the six
support links. The x1 axis is along the length direction of
the antenna panel and away from the load module, and the
z1 axis is perpendicular to the panel and points to the panel,
and the y1 axis is determined by the right-hand rule. Besides,
another local coordinate system O2-x2y2z2 is established at
the geometric center A of the antenna panel, which is parallel
to the coordinate system O1-x1y1z1.
For the ith closed loop O-A-Ai-O (i = 1, 2, 3, 4, 5, 6),

we have

liui = r+ Rai (1)

where li is the nominal length of the link OAi; ui is an
unit vector from O to Ai, and r is the vector from O to A
in the coordinate system O1-x1y1z1; R is the homogeneous
transformation matrix from the coordinate system O2-x2y2z2
to the O1-x1y1z1; ai is the position coordinates of Ai in the
system of O2-x2y2z2.
By taking the derivative of Eq. (1), we get

dliui + lidui = dr+ dRai + Rdai. (2)

And then both sides of Eq. (2) are multiplied by uTi ,
expressed as

uTi dliui + u
T
i lidui = uTi dr+ u

T
i dRai + u

T
i Rdai. (3)

Due to dR = 1RR [28], uTi dRai can be further derived as

uTi dRai = uTi 1RRai = uTi 1θ × (Rai) = (Rai × ui)
T 1θ.

(4)

where1θ = [δx , δy, δz]T denotes the orientation deviation of
panels in O1-x1y1z1, and 1R is defined by

1R =

 1 −δz δy
δz 1 −δx
−δy δx 1

 (5)

Note that the length deviation is much smaller than the
normal length. Hence, the length deviation can be regarded as

a small quantity, namely dli = 1li, dr = 1r and dai = 1ai.
By substituting Eq. (4) into Eq. (2), we obtain

1li = uTi 1r+ (Rai × ui)
T 1θ + uTi R1ai (6)

And Eq. (6) can be expressed in an equivalent form:

1li =
[
uTi (Rai × ui)T

] [
1r 1θ

]T
+

[
uTi R

]
[1ai]

(7)

where 1li represents the deviation of li; 1r and 1 θ denote
the position and orientation deviations of panels, respectively.

Since all of the six closed loops satisfy Eq. (2), the compact
form of Eq. (7) is expressed by

1L = Jv1V + Jb1B (8)

where 1L = [1l1, 1l2, 1l3, 1l4, 1l5, 1l6]T ; 1B = [1a1,
1a2,1a3,1a4,1a5,1a6]T with1ai = [1xi,1yi,1zi];1V
= [1r, 1 θ]T ; Jv and Jb are the coefficient matrixes, which
are defined by

Jv =



uT1 (Ra6 × u1)T

uT2 (Ra6 × u2)T

uT3 (Ra6 × u3)T

uT4 (Ra6 × u4)T

uT5 (Ra6 × u5)T

uT6 (Ra6 × u6)T



Jb =



uT1R 0 0 0 0 0

0 uT2R 0 0 0 0

0 0 uT3R 0 0 0

0 0 0 uT4R 0 0

0 0 0 0 uT5R 0

0 0 0 0 0 uT6R


(9)

Thus, utilizing Eq. (8), we can obtain the pose deviation of
the first part in O1-x1y1z1:

1V =
[
J−1v J−1v Jb

] [
1L 1B

]T
. (10)

D. ERROR MODELING WITH THE AUXILIARY LINK
After the assembly deviation model of the first part is devel-
oped, the auxiliary link is to be considered in this section.
As shown in Fig 4, the global coordinate system Og-xgygzg
is located at the geometric symmetric center of two 90◦

self-locked joints, which is parallel to the O1-x1y1z1. Note
that the pose deviation is definite with respect to the coordi-
nate system O1-x1y1z1 after the first part is assembled. Here,
a virtual link is introduced to represent the first part in Og-
xgygzg for simplicity. It can be observed that both the auxiliary
link and the virtual link are in the xg-zg plane.

In this case, the position deviation of the point O is calcu-
lated by

1O = µ11l + µ21B+ µ31C. (11)
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FIGURE 4. Double-link connection structure.

In Eq. (11), 1l = [1lv, 1l0]T , where 1lv and 1l0
represent the length deviation of the virtual link and the
auxiliary link, respectively; 1B = [1zB, 1xB]T , where 1zB
and 1xB are the position deviations with respect to zg axis
and xg axis, respectively. Similar to1B,1C= [1zC,1xC]T .
Besides, µ1, µ2 and µ3 are the corresponding coefficient
matrices, which are derived as

µ1=

 sin(β − ε)
sinα

sin(γ + ε)
− sinα

cos(β − ε)
− sinα

cos(γ + ε)
− sinα



µ2=

 sin (β − ε) cos(γ + ε)
− sinα

sin (β − ε) sin(γ + ε)
sinα

cos (β − ε) cos(γ + ε)
sinα

cos (β − ε) sin(γ + ε)
− sinα



µ3=

cos (β − ε) sin(γ + ε)
− sinα

sin (β − ε) sin(γ + ε)
− sinα

cos (β − ε) sin(γ + ε)
− sinα

sin (β − ε) cos(γ + ε)
− sinα


(12)

It is remarked that1lv is associated with the pose deviation
of the first part. In the coordinate system O1-x1y1z1, the ideal
virtual link is given by

lv = r+ lb (13)

where r = [rx , ry, rz]T and lb = [−lb, 0, 0]T are the vector
from O to A and the vector from A to B, respectively. Here,
lb is the length of AB. Considering the influence of the pose
deviation of the first part, Eq. (13) is modified as

l ′v = r+1r+1R · lb (14)

in Og − xgygzg. According to Eqs. (13) and (14), the length
deviation of the virtual link 1lv is expressed by

1lv=
√
(rx+1x−lb)2+

(
ry+1y−δzlb

)2
+
(
rz+1z+δylb

)2
−

√
(rx − lb)2 + r2y + r2z (15)

By substituting Eqs. (12) and (15) into Eq. (11), the posi-
tion deviation of the point O can be calculated. Note that
1O is in the xg-zg plane, which only affect the orientation
deviation around the y-axis. The deviation ξy is given by

ξy = ‖1O‖
/
l02 (16)

where ||1O|| represents the norm of 1O. Hence, we can
obtain the assembly deviation δ of the ESS by integrating
Eqs. (10) and (16) as follows:

δ = 1V +
[
0 0 0 0 ξy 0

]T (17)

where δ = [Tx ; Ty; Tz; Rx ; Ry; Rz]. Specifically, the first
three terms in δ denotes the position deviation, while the
last three terms describes the orientation deviation. Gener-
ally, the above assembly deviation model can be formulated
as

δ = f (xd , p) (18)

where xd ∈ R7×1 is composed of the dimensional devia-
tion of links, p ∈ R21×1 is the vector that consists of the
installation deviations of joints, and f represents the nonlinear
mapping function.

In applications, the dimensional deviations of links are
composed of the manufacturing deviations xm ∈ R7×1

and the adjustment vector x ∈ R7×1, namely xd = x
+ xm. Besides, there exists the initial shape deviation of
the panels η ∈ R6×1. Thus, Eq. (18) is further modified
as

δ = f (x+ xm, p)+ η. (19)

According to Eq. (19), the assembly deviation of the ESS can
be predicted, and the accuracy of this model will be verified
in case studies.

III. SPARSE OPTIMIZATION FOR DIMENSIONAL
ADJUSTMENT
A. PROBLEM FORMULATION OF DIMENSIONAL
ADJUSTMENT
As studied in [29], [30], the assembly performance is evalu-
ated by the weighted mean square of assembly deviation δw,
which is defined as

δw = δ
TQδ (20)

where Q ∈ R6×6 is a weighted coefficient matrix which
represents the influence of different deviation items on the
quality loss. The larger the coefficient related to the assembly
deviation is, the more attention is paid to the accuracy index
in assembly. After determining the objective function, we are
considered with the assembly constraints. It is a fact that the
assembly deviation control is conducted by manual opera-
tion, and the dimensional adjustment is of low efficiency.
Moreover, the disassembly of links will cause damage to the
reliability of key components such as springs and coating
films, and the redundant adjustment may have influence on
the deployed angles of self-locked joints. Therefore, the num-
ber of adjusted links is desired to be as few as possible under
the same magnitude of deviation reduction. In this context,
we aim to select n (n ∈ RN+, 1 ≤ n ≤ 7) links from all
feasible ones, which means that n components of the decision
vector x are nonzero. As discussed above, this optimization
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problem is expressed as

min
x
δw = [f (x+ xm, p)+ η]T Q [f (x+ xm, p)+ η]

s.t. ‖x‖0 = n, xl ≤ x ≤ xu (21)

where xl and xu are the lower and upper bounds of x, respec-
tively. ||·||0 is the l0 norm, which represents the number of
nonzero components in x.

Mathematically, the sparsity-constrained optimization can
be intuitively transformed into a regularization problem [31].
However, the objective function including l0 regularization is
discontinuous, non-smooth and globally non-differentiable,
and thus it is NP-hard to find the sparse solution of the
optimization [32]. Previous research has proved that the solu-
tion of minimizing l1 norm is also the sparsest solution for
most underdetermined systems [33]. Hence, the optimization
model as shown in Eq. (21) is transformed into a sparse
optimization with l1 norm:

min
x

L (x) = [f (x+ xm, p)+ η]T Q [f (x+ xm, p)+ η]

+ λ ‖x‖1
s.t. xl ≤ x ≤ xu (22)

where the non-negative parameter λ is introduced to balance
the assembly accuracy and the number of adjusted links.
Obviously, the larger the value of λ is, the smaller the number
of adjusted links will be. Thus, it can be inferred that there
is at least a value of λ that satisfies the requirement of
||x||0 = n [34].

B. ALGORITHM FOR SPARSE OPTIMIZATION
Due to the existence of non-smooth term ||x||1 and
inequality constraints in the optimization problem (22),
traditional convex optimization algorithms typically using
gradient or sub-gradient techniques cannot be efficiently
implemented [35]. In addition, the gradient method is very
sensitive to the selection of the initial point and the step size,
where improper parameters may lead to divergence. Recently,
the ADMM [27], [36] has received much attention because
of its broad applications in regularized estimation [37],
resource allocation [38] and distributed learning [39]. The
ADMM has several important theoretical properties as fol-
lows. First, the original constrained convex optimization
problem is decomposed into multiple sub-problems whose
solutions are coordinated to find the global optimum [27].
Second, the parameters of ADMM are updated with the
superior convergence properties [37]. Besides, the ADMM
has also been applied to solve nonconvex problems and the
corresponding convergence analysis has been provided [40].
Hence, the ADMM is employed to solve the proposed opti-
mization model in this study.

To convert (22) into a form appropriate for the ADMM,
we first define an additional decision variable z ∈ R7×1

by x = z. After this splitting of variables, the augmented
Lagrangian function of problem (22) is given by

min
x

Lρ(x, y)=δw+ω+λ ‖z‖1 + y
T (x− z)+

ρ

2
‖x− z‖22

s.t. x− z = 0 (23)

where y ∈ R7×1 is the dual variable, and ρ is the augmented
Lagrangian parameter. Besides, ω is an indicator function of
the constraint set C = {x ∈ R7×1: xl ≤ x ≤ xu }, which is
defined as:

ω =

{
0, x ∈ C
∞, x /∈ C (24)

The ADMM generates a sequence of iterations by alter-
nately minimizing the augmented Lagrangian function of the
problem with respect to primal decision variable, and then
updating the dual variable with the method of dual ascent.
Let h(x) = δw + ω, k(z) = λ||z||1, and u = y/ρ. If we have
the estimation (xi, zi, ui) after i iterations, the parameters are
updated by

xi+1 = argmin
x

(
h(xi)+ ρ

2

∥∥xi − zi + ui∥∥22)
zi+1 = argmin

z

(
k(zi)+ ρ

2

∥∥xi+1 − zi + ui∥∥22)
ui+1 = ui + xi+1 − zi+1

(25)

Given the formulas (25), the scaled form of the ADMM of
the optimization problem can be derived as

xi+1 = argmin
x

(
h(xi)+ (yi)T xi +

ρ

2

∥∥∥xi − zi∥∥∥2
2

)
, (26)

zi+1 = Shrink
(
xi+1 +

(
1
ρ

)
yi,
λ

ρ

)
, (27)

yi+1 = yi + ρ
(
xi+1 − zi+1

)
. (28)

Here, Shrink (b, c) is the shrinkage-thresholding operator,
which is given by

Shrink (b, c) = [Hc(b1) Hc(b2) · · · Hc(bn) ]T . (29)

In Eq. (29), b = [b1, b2, . . . . . . , bn]T , and

Hc(bn) = sign(bn) max {|bn| − c, 0} . (30)

According to the method of multipliers, the ADMM algo-
rithm for the link adjustment is terminated when both the
primal and dual residuals satisfy the following requirements:∥∥∥xi+1 − zi+1∥∥∥

2
< εp,

∥∥∥zi+1 − zi∥∥∥
2
< εd (31)

where εp > 0 and εd > 0 are feasibility tolerances.
In this study, an absolute criterion and a relative criterion are
employed to determine these tolerances, which are expressed
as

εp =
√
7e1 + e2max

{ ∥∥∥zi∥∥∥
2
,

∥∥∥xi∥∥∥
2

}
, (32)

εd =
√
7e1 + e2ρui, (33)

where e1 > 0 is the absolute tolerance and e2 > 0 is the
relative tolerance.

Let t be the maximum number of iterations, and the
flowchart of the developed ADMM algorithm is shown
in Figure 5. It is worth noting that the convergence of the
ADMM is guaranteed according to [27], [31], [40], which
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FIGURE 5. Flowchart of the proposed ADMM algorithm.

means that we can get the optimal combination of dimen-
sional adjustments.

As mentioned above, the tuning parameter λ is introduced
to control the sparsity of x. On the one hand, decision-makers
are allowed to freely set λ as a positive value if no strict
limitations are imposed on the number of adjusted links. The
larger λ is, the sparser the induced x will be. On the other
hand, the value of λ that yields ||x||0 = n needs to be
determined for the given number of adjusted links. In the
latter case, a binary search algorithm is proposed to find a
suitable value of λ.
To perform the binary search algorithm, the interval of λ

needs to be first determined. Specifically, λ is located at the
minimum value when all of the components in x are nonzero.
That is, λmin = 0. On the contrary, the maximum value of
λ will make all the components of x zero, which is derived
as

λmax = 2
∥∥∥KTB [f (x+ xm, p)− Kx+ η]

∥∥∥
∞

(34)

whereK is the Jacobianmatrix of themapping function f with
respect to x, and || · ||∞ denotes the infinite norm. The proof
of the maximum value is provided in appendix.

In summary, the whole binary search algorithm for estimat-
ing λ is shown in Figure 6.

IV. CASE STUDIES
A. VALIDATION OF THE ASSEMBLY DEVIATION MODEL
In above sections, we have derived the assembly deviation
of the ESS in theory, and developed the sparse optimization
model for dimensional adjustment of links as well as the

FIGURE 6. The binary search algorithm for estimating λ.

TABLE 1. Design dimensions of the ESS.

corresponding solution strategy. In what follows, numerical
case studies will be provided to demonstrate the implementa-
tion and validity of the proposed method.

As to the ESS for the space-borne SAR antenna, the design
parameters are listed in Table 1. Each antenna panel is mea-
sured as 2220.00 mm (length) × 1650.00 mm (width) ×
50.00 mm (height). The dimensional tolerance of the middle
links is ± 0.26 mm, and that of other links is ± 0.44 mm.
In addition, the installation deviations of joints are not more
than 0.20 mm in the actual assembly process. The support
links are made of the carbon fiber with the sectional area
of 706.86 mm2, and the antenna panels are composed of
aluminum honeycombs [41]. The detailedMaterial properties
of the ESS are shown in Table 2.

To validate the proposed methodology, the assembly devi-
ation model is firstly compared with the FEA, which has
been utilized to analyze the surface accuracy of other anten-
nas [8], [10], [42]. According to the tolerances of cur-
rent products, manufacturing and installation deviations are
sampled to simulate the initial structural parameters, where
50 cases are generated with the method of Maximin Latin
Hypercube Design [43]. In detail, the installation deviations
of joints along zg are modeled with sheets by Boolean oper-
ation in SOLODWORKS 2016, and other installation devia-
tions are represented by the translation of connecting points.
Considering that the extendible support structure works in
space, the gravity of the structure can be ignored, and only
the equivalent forces resulting frommanufacturing deviations
of links are applied in the endpoints of each link through the
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TABLE 2. Material properties of the ESS.

FIGURE 7. The finite element analysis of the assembly deviation.

temperature effect in ANSYS 2016. After the shape deforma-
tion shown in Figure 7 is obtained, the least square method is
employed to construct the best-fitting plane, and the assembly
deviation of the ESS is calculated by homogeneous coordi-
nate transformation.

Figure 8 shows the root mean square error (RMSE) of
predictions between the assembly deviation model and FEA,
where the RMSE is defined by

RMSE =

√
1
6

(
δ − δf

)T (
δ − δf

)
. (35)

Here, δf ∈ R6×1 denotes the assembly deviation obtained by
FEA. In these 50 testing cases, the maximum and average of
the RMSE are 0.7842×10−3 and 0.2622×10−3, respectively.
In order to further illustrate the performance of the model,
the four cases with larger RMSE are presented in Table 3,
and the corresponding results of the theoretical model and
the FEA are listed in Table 4. For the position deviations,
the absolute error between them is within 0.0013 mm; for
the orientation deviations, it is less than 0.0007◦. Therefore,
the proposed assembly deviation model has good prediction
accuracy.

B. ASSEMBLY DEVIATION CONTROL OF THE ESS
In practical engineering, it is required that Ry should be less
than 0.02 ◦. It can be seen from Table 3 that the assembly
accuracy of the ESS cannot be completely guaranteed in
cases 1 and 4, even if manufacturing fluctuations and instal-
lation deviations meet the requirement of tolerances. In this
section, n = 3 links are selected as an example from all those
7 possible links for assembly deviation control to validate
the effectiveness of the proposed method. Considering Ry is
associated with the pointing accuracy of SAR [13], the weight

FIGURE 8. The root mean square error of the assembly deviation model.

TABLE 3. The manufacturing deviations of links and installation
deviations of joints (Unit: mm).

of the assembly deviation is set to 2, and the other items
are set to 1. Namely, Q = diag (1, 1, 1, 1, 2, 1). It should
be pointed out that the weighted coefficient matrix Q is not
unique and it can also be determined with the method of
the analytic hierarchy process and expert scoring in applica-
tions. According to the current assembly process, the range
of dimensional adjustment is [−1, 1]. Besides, the initial
deviation of panels is given by η = [−0.0430, 0, 0.0754,
0.0008, 0.0035, −0.0001]T .
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TABLE 4. Comparison of the assembly deviation model (ADM) and finite
element analysis (FEA).

TABLE 5. Result of link adjustment of links.

The algorithm parameters are set as ρ = 2, e1 = 10−4

and e2 = 10−2, which are regular settings of the ADMM.
As shown in Figure 5, the algorithm is initialized with x0 = −
xm, z0 = 0 and u0 = 0. Due to the quick convergence
of ADMM, the maximum number of iterations t is set to
50. In our problem, the ADMM is performed in MATLAB
R2015b and it only takes 37.2 s to find the optimal com-
bination of link adjustments with Intel Core-i7-9750H CPU
@2.60 GHz processor. Hence, the computational efficiency
of the optimization algorithm is satisfying. Table 5 shows the
strategy of link adjustment for above four cases, where ‘‘–’’
represents that there is no adjustment for the link.

It can be seen from Table 5 that the developed algorithm
guarantees the sparsity of adjustment vector, and only three
links are selected to be resized for reducing the assembly
deviation of the ESS. Moreover, Table 5 also shows that
different adjustment strategies are provided to deal with dif-
ferent manufacturing and installation deviations. Since the
dimensional adjustment tends to select the most sensitive
links to control the assembly deviation, these optimization
results indicate that the sensitivity coefficient of each link is
not constant, which is the reason why the fixed adjustment
strategy adopted by current practice often fails to obtain the
desired assembly accuracy.

To further validate the efficiency and effectiveness of the
proposed method, Figure 9 presents the value of δw in the
process of optimization, and it can be seen that the algorithm
converges within 20 iterations. As a result, the optimized
Ry of the ESS in these four cases are 0.0073◦, 0.0061◦,
0.0065◦ and 0.0018◦, respectively. In comparison with the

FIGURE 9. The weighted mean square of assembly deviations.

TABLE 6. Result of assembly performance under different number of
adjusted links.

original orientation deviations (0.0256◦, 0.0212◦, 0.0215◦

and 0.0313◦), the approach not only restores the unsatisfac-
tory assembly accuracy to the desired assembly performance,
but also significantly improves the assembly accuracy with an
average increase of 79.56% in terms of the δw.

V. DISCUSSION
This paper develops an assembly deviation model and sparse
optimization algorithm to obtain the strategy of link adjust-
ment for the ESS, which are validated by the aforementioned
numerical studies. It should be pointed out that the proposed
method is not limited to achieve the optimal adjustment on
the condition of fixed number of links, and it can also be
used to determine the minimum number of links under the
given requirement of assembly deviation control. For the
reason that the proposed binary search algorithm is capable
of providing a suitable λ such that ||x||0 = n, we can
choose the better adjustment strategy according to the opti-
mization results of assembly deviations. Here, in addition
to the root mean square of assembly deviations (RMSD),
other two quantitative indexes are introduced to evaluate
the assembly performance of ESS, which are the maxi-
mum position deviation (MPD) and the maximum orientation
deviation (MOD).

Taking Case 1 as an example, we impose the constraint
n = 7, 6, 5, 4, 3, 2, 1 on the proposed optimization method
in sequence. After performing the binary search algorithm,
the results of assembly performance under different number
of adjusted links are listed in Table 6. Notably, the method
tends to adjust more links to meet higher requirement of these
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indexes, which is consistent with the domain experience.
Given the engineering requirements of MPD ≤ 0.05 mm,
MOD ≤ 0.02 ◦ and RMSD ≤ 0.005, n = 4 is the minimum
number of adjusted links in this sample. If only the index
MOD ≤ 0.02 ◦ is concerned, the assembly deviation control
can be achieved by adjusting only 2 links, which is beneficial
to improve the assembly efficiency and system reliability.

VI. CONCLUSION
In this study, we propose a novel method to optimize dimen-
sional adjustment of links for the assembly deviation control
of the ESS. First, the theoretical model is built to reveal the
relationship between the assembly deviation and variation
sources including manufacturing imperfections and instal-
lation deviations. Considering the characteristic of multiple
closed-loops, the structural equivalent transformation is pro-
posed to eliminate the abundant constraints, and the pre-
diction performance of the proposed model is demonstrated
with FEA. Afterward, the sparse optimization is developed to
tackle the challenges of link adjustment. Aiming to select the
optimal strategy for reducing assembly deviations, we estab-
lish the constrained optimization model of link adjustment in
view of the assembly efficiency and system reliability, where
it is preferred to adjust fewer links under the same magnitude
of deviation reduction. Finally, the ADMM algorithm and the
binary search are integrated to efficiently estimate the deci-
sion parameters, thereby acquiring the optimal combination
of link adjustment.

Case studies illustrate the effectiveness of our method-
ology. The maximum and average values of the RMSE
between the prediction results of the theoretical model
and the FEA are 0.7842 × 10−3 and 0.2622 × 10−3,
respectively. This substantially indicates that the assem-
bly deviation model is good enough to make predictions.
Furthermore, the optimal strategy of link adjustment is
obtained by minimizing the weighted mean square of assem-
bly deviations. Specifically, the proposed method is able to
not only achieve the optimal adjustment under the condition
of fixed number of links, but also determine the minimum
number of links given the requirement of assembly accuracy
control.

In conclusion, the proposed approaches effectively over-
come the limitations of current practice in the assembly of
the ESS. Instead of trial and error, the precise strategy of link
adjustment is provided to achieve the desired assembly accu-
racy, which significantly improves the product performance
at a lower assembly cost.

APPENDIX
The maximum value of λ for the binary search means that all
the components of vector x are penalized into zero. That is,
we need to prove the proposition: if λ ≥ λmax = 2||KTB [f
(x+ xm, p)− Kx+η]||∞, x= 0. According to the first-order
condition of the optimization model (22), we have

2KTB [f (x+ xm, p)+ η]+ λ∂ ‖x‖1 = 0. (A.1)

And then the equation is multiplied with xT , expressed as

2xTKTB [Kx+f (x+ xm, p)− Kx+η]+ λ 〈x, ∂ ‖x‖1〉 = 0.

(A.2)

Since the weight matrix B is a positive diagonal matrix,
KTBK is symmetric positive definite. Hence, the following
equation is satisfied:

0 ≤ 2xTKTBKx

= −2xTKTB [f (x+ xm, p)− Kx+ η]− λ 〈x, ∂ ‖x‖1〉 .

(A.3)

It is noted that

∂ ‖xi‖1 =

1, xi > 0
−1, xi < 0
[−1, 1], xi = 0.

(A.4)

If λ ≥ 2||KTB [f (xd , p) − Kx + ε]||∞, we can obtain

sign
(
2KTB [f (x+ xm, p)+ η]− Kx+ λ∂ ‖x‖1

)
i

= sign (xi) (i ∈ S = {i : xi 6= 0}) (A.5)

where sign(x) = −1 for x ≤ 0 and 1 otherwise. However, it
can be derived that

2xTKTB [f (x+ xm, p)− Kx+ η]+ λ 〈x, ∂ ‖x‖1〉

=

(
xT
)
S

(
2KTB [f (x+ xm, p)− Kx+ η]+ λ∂ ‖x‖1

)
S

+

(
xT
)
Sc

(
2KTB [f (x+ xm, p)− Kx+ η]+λ∂ ‖x‖1

)
Sc

=

(
xT
)
S

(
2KTB [f (x+ xm, p)− Kx+ η]+ λ∂ ‖x‖1

)
S

> 0 (A.6)

where SC represents the complementary set of S, and
Eq. (A.6) is obviously contradictory with Eq. (A.3). Thus,
there is no nonzero components in vector x if λ ≥ λmax =

2||KTB [f (x + xm, p) − Kx + η]||∞, and the proof is
completed.
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