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ABSTRACT The goal was to discriminate between diabetic retinopathy (DR) and healthy controls (HC)
by evaluating Optical coherence tomography angiography (OCTA) images from 3 × 3 mm scans with the
assistance of different machine learning models. The OCTA angiography dataset of superficial vascular
plexus (SVP), deep vascular plexus (DVP), and retinal vascular network (RVN) were acquired from 19 DR
(38 eyes) patients and 25 HC (44 eyes). A discrete wavelet transform was applied to extract texture features
from each image. Four machine learning models, including logistic regression (LR), logistic regression
regularized with the elastic net penalty (LR-EN), support vector machine (SVM), and the gradient boosting
tree named XGBoost, were used to classify wavelet features between groups. The area under the receiver
operating characteristics curve (AUC), sensitivity, specificity, and diagnostic accuracy of the classifiers were
obtained. The OCTA image dataset included 114 and 132 images from DR and HC subjects, respectively.
LR-EN and LR using all three images, SVP, DVP, and RVN, provided the highest sensitivity of 0.84 and
specificity of 0.80, the best diagnostic accuracy of 0.82, and an AUC of 0.83 and 0.84, respectively, which
were slightly lower than that of LR using one image SVP (0.85) or two images DVP and SVP (0.85). The
LR-EN and LR classification algorithms had the high sensitivity, specificity, and diagnostic accuracy in
identifying DR, which may be promising in facilitating the early diagnosis of DR.

INDEX TERMS Diabetic retinopathy, machine learning, logistic regression, logistic regression regularized
with the elastic net penalty, support vector machine.

I. INTRODUCTION
Diabetic retinopathy (DR) is one of the main causes of blind-
ness among the working-age population [1]. Since it becomes
incurable in its late stages, early diagnosis of DR is important.
However, it is difficult to achieve early diagnosis because of
the paucity of experienced retinal doctors and the increased
number of DR patients [2]. Recently, several automated diag-
nosis systems have been developed to assist in the early
diagnosis of DR, which are objective and reliable tools used
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to support clinical decision-making process without inter and
intra-expert variability.

Artificial intelligence (AI) can analyze a large amount
of data simultaneously and can correct automatically and
learn continuously to improve upon its sensitivity and speci-
ficity as a diagnostic tool and predict disease progression
in medicine [3]–[5]. An AI system is designed to mimic
human brain perception for data processing and decisions
making. Recently, there has been an increasing interest in
using machine learning models for medical applications,
which are branches of AI that can learn from data, identify
patterns, and make decisions automatically [6].
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In ophthalmic research, the application of AI systems has
led to robust diagnostic accuracy for several ocular conditions
such as DR [7], age-related macular degeneration (AMD) [8],
cataract [9], glaucoma [10], and keratoconus [11].

Machine learning models using fundus images have been
developed by researchers for retinopathy staging as well as
identifying multiple ocular diseases. However, it is difficult
to detect micro-vasculature alterations in different retinal
layers and the area around the foveal avascular zone using
fundus images. Additionally, a large and well-documented
database of fundus images is needed to train and optimize
convolutional neural networks. It is also extremely difficult
to provide strong accuracy metrics because of the database
variances from different imaging centers [7], [12].

A deep learning system (DLS) is a branch of machine
learning using AI and representation learning methods
to process large data and extract meaningful patterns
that contribute to the excellent performance for discov-
ering the intricate structures of high-dimensional data.
Currently, DLS for the automatic classification and seg-
mentation of optical coherence tomography angiogra-
phy (OCTA) images in ophthalmology affords excellent
results. In DLS, convolutional neural network (CNN), and
multi-scaled encoder-decoder neural network (MEDnet) have
been utilized to classify referable DR on optical coher-
ence tomography angiography datasets with high predictive
accuracy [13]–[18].

Abramoff and associates conducted a pivotal trial in which
an autonomous AI-based diagnostic system detected DR,
and that system has now been authorized by the Food and
Drug Administration for use by health care providers to
detect mild DR and diabetic macular edema [19]. Alam et al.
presented the feasibility of a supervised machine learning
method to detect DRwith excellent diagnostic accuracy using
6× 6 mm OCTA images from small datasets [20]. Recently,
Sandhu et al. introduced a new automated system for detect-
ing DR using OCTA. The system demonstrated a high degree
of accuracy, sensitivity, and specificity in analyzing vessel
density, vessel caliber, and FAZ area [21].

In the present study, we applied different machine learn-
ing models to discriminate between healthy individuals and
DR by evaluating OCTA images from the 3 × 3 mm scans
of superficial vascular plexus (SVP), deep vascular plexus
(DVP), and retinal vascular network (RVN). We use sensi-
tivity, specificity, and accuracy as metrics to compare the
performance of different methods. Sensitivity is the ability
of a method to correctly identify those with the disease (true
positive), whereas specificity is the ability of the method to
identify those without the disease (true negative) correctly.
Accuracy is the proportion of true results, either true positive
or true negative, identified by a method.

II. METHODS
A. STUDY DESIGN, SETTING, AND POPULATION
This study was approved by the institutional review board for
human research of the University of Miami. All participants

were treated according to the Declaration of Helsinki.Written
informed consent was obtained.

Nineteen patients with DR were recruited from Bas-
com Palmer Eye Institute, University of Miami, from
August 2017 to June 2019. These patients underwent a com-
plete fundus examination and were diagnosed by a retinal
specialist (JT). Twenty-five age and sex-matched healthy
control (HC) subjects were recruited.

B. OCTA, IMAGE SEGMENTATION, AND DATA
ACQUISITION
The angiograph dataset of the 3× 3 mm scans was acquired
using the Optovue OCTA device (Optovue, Fremont, CA,
USA), which consists of 70,000 Hz A-scans rate, an 840 nm
central wavelength, a 5 µm resolution, and a 22 µm
beamwidth. Each scan of retinal angiography included a
raster scan with 304 (A-scan) x 304 (B-scan). The OCTA
image quality was quantified with the scan quality score
metric provided in the Angiovue’s software interface. Any
OCTA image with a scan quality score of less than 5 was
excluded. The SVP was segmented from the inner limited
membrane layer (ILM) to the inner plexus layer (IPL); the
DVP was segmented from the IPL to the outer plexus layer
(OPL), and RVN was segmented from the ILM to the OPL.

C. DATA PRE-PROCESSING AND OCTA FEATURE
EXTRACTION
The first step of applying a machine learning model to pre-
dict DR from images is to extract useful features from the
images. It has been shown that wavelet transform can capture
texture features of an image at multiple resolutions and that
such features can be used to classify images with high accu-
racy [22], [23]. Wavelet transform has also been applied to
fundus images for the diagnosis of glaucoma [24], [25].

We first applied the two-dimensional discrete wavelet
transform (DWT) [26] to images to extract features in
different frequency bands. Specifically, we employed the
wavedec2 function inMatlab to implement the 2-dimensional
DWT with the biorthogonal wavelet bior1.1. Of note, DWT
had also been employed to extract features for the classifica-
tion of fundus images of glaucoma [24], [27]. Since images
were of size 304 × 304 pixels, we performed the 8-level
(
⌊
log2 (304) = 8

⌋
) DWT. As shown in Figure 1, at the ith

level (i= 1, 3,. . . , 8), we used biorthogonal wavelet bior1.1 to
decompose the image in the LLi−1 band into four images
in four frequency bands: HHi, HLi, LHi, and LLi, where
LL0 was the original image. Therefore, each image yielded
25 images of different resolutions with a total of 25 frequency
bands. For each image, the energy in each of 25 frequency
bands was calculated and standardized using the z-score,
which generated 25 features that would be further used to
classify images. Specifically, the image of the ith individual
in the jth frequency bandwas represented as a p×qmatrixDij .
The energy of the band was Eij = 1

(pq)2
∑p

l=1
∑q

k=1D
2
ij(l, k),

where Dij(l,k) was the entry of matrix Dij on the lth row
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FIGURE 1. Block diagram of two-dimensional DWT. gi[n] and hi[n] are
impulse responses of a low-pass wavelet filter and a high-pass wavelet
filter, respectively. The output of each filter is down-sampled by a factor
of 2.

and the kth column. Suppose that there were n individ-
uals in the dataset,defined Ēj = 1

n

∑n
i=1 Eij and σ 2

j =

1
n−1

∑n
i=1 (Eij − Ēj)

2, then the z-score of Eij is zij =
Eij−Ēj
σj

.
Finally, we represented each image of the ith individual as a
25 × 1 feature vector xi = [zi,1, . . . , zi,25]T , which was then
used by a machine learning model for image classification.
In our dataset, each eye has three images, including DVP,
RVN, and SVP. We can use any one, two, or three images
of all the three images to predict DR. If we use k (k = 2
or 3) images, we concatenate the feature vectors of these
k images into a 25k × 1 vector as the input to a machine
learning model. Of note, prior studies have shown that the
energy distribution in different frequency bands provided
discriminative power for image classification [22], [23].

D. DATA ANALYSIS
We employed four machine learning models to classify
images based on wavelet features. These four models are
logistic regression (LR), support vector machine (SVM),
logistic regression regularized with the elastic net penalty
(LR-EN), and the gradient boosting tree named XGBoost.
LR and LR-ENwere implemented with software glmnet [28];
SVM and XGBoost were implemented with the SVM func-
tion in R package e1071 [29] and the software XGBoost [30],
respectively. Of note, Boosting trees are particularly pow-
erful in supervised learning and have frequently won com-
petitions [30], [31], sometimes outperforming deep neural
networks. The mathematical formulation of LR and SVM
can be found in a machine learning textbook [33], [34];
a detailed description of LR-EN and XGBoost is in [28]
and [30], respectively. Next, we will describe these four
methods briefly.

Asmentioned earlier, the feature vector in the ith individual
is denoted as xi . Let yi = −1 or 1 be the class label of the
ith individual. The logistic regression model assumes the fol-
lowing probability p(yi|xi) = 1/(1+e−yi(β0+x

T
i β)), where the

vector β and the scalar β0 contains model parameters. LR-EN
finds (β0, β) by minimizing the negative log-likelihood func-
tion of the data regularized by the elastic net penalty [24].
More specifically, the following optimization problem is

solved to find (β0, β)

min
β0,β

log (1+ e−yi(β0+x
T
i β))+ λ(α ‖β‖1 + (1− α) ‖β‖2)

(1)

where ‖β‖k , k = 1, 2, is the lk -norm of β, and λ > 0 and
0 ≤ α ≤ 1 are two hyperparameters that can be determined
with cross-validation (CV). If we set λ = 0 in (1), the solution
of (1) gives the parameters of LR. Since the number of
data samples is relatively small, and with the issue of quasi
complete separation [35] in the datasets under consideration,
the solution of (1) with λ = 0 is not stable. To overcome
this problem, we implemented LR using (1) with α = 0
and λ >0. The hyperparameter λ was determined using cross
validation [36].

SVMfinds the decision boundary β0+xTβ = 0 by solving
the following optimization problem

min
β0,β

C
n

∑n

i=1
max

{
0, 1−yi

(
β0 + xTi β

)}
+ ‖β‖22 (2)

where C > 0 is a hyperparameter. The SVM in (2) finds a
linear decision boundary in the feature space. We can also
use the kernel trick to find a nonlinear decision boundary in
the feature space. In this paper, we used the Gaussian kernel,
which is defined as K

(
x, x ′

)
= exp(−γ

∥∥x − x ′∥∥22), where
γ > 0 is another hyperparameter of the model.
We used the nested CV procedure [37] to train the four

models and estimate the classification errors. The nested CV
procedure has two loops, both of which employed a leave-
one-out (LOO) approach. The inner loop was used to tune
the hyperparameters and train the model, while the outer
loop was used to estimate the classification error. Since the
samples used in the outer loop for error estimation were never
used by the training process in the inner loop, the nested CV
provided an unbiased estimate of the generalization error.
First, one of the 82 samples was held out. The remaining
81 samples were used by a LOO procedure, which was
referred to as the inner CV loop to be described in detail later,
to train the model and select the optimal values of the hyper-
parameters. After the values of the hyperparameters were
selected, the 81 samples were used to fit the model, which
was then used to find the error on the one sample that was held
out. This process, referred to as the outer loop, was repeated
82 times until all samples were held out and used to calculate
the error. This error is the estimated classification error. Now,
let us describe the inner CV loop. One of the 81 samples was
left out, and the remaining 80 samples were used to train the
model for a set of values within the hyperparameters, and the
trained model was used to predict the label of the sample left
out. This process was repeated 81 times until every sample
was left out, and its label was predicted. The predicted labels
of the 81 samples were used to calculate the CV error, and the
value of the hyperparameter(s) that yielded the smallest CV
error was selected as the optimal value [37].

We use sensitivity, specificity, and accuracy as perfor-
mance measures. Sensitivity measures the proportion of true
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TABLE 1. Sensitivity and specificity of four machine learning methods for
predicting DR.

positives (TP) that are correctly identified with false nega-
tives (FN), and is defined as sensitivity = TP/ (TP+FN).
Specificity measures the proportion of true negatives that
are correctly identified with false positives (FP), and can
be computed as specificity=TN/ (TN+FP). Accuracy is
the degree of closeness of measurements of a quantity
to that quantity’s true value and can be calculated as
accuracy=(TP+TN)/(TP+FN+TN+FP) [38].

III. RESULTS
The OCTA image dataset included 114 images from 38 eyes
of 19 DR patients and 132 images from 44 eyes of 25 HC
subjects. Tables 1 and 2 show the performance of the four
machine learning models in predicting DR from one, two,
or three images. As shown in Table 1, LR-EN and LR using
the three images (DVP+RVN+SVP) offered the highest sen-
sitivity (0.84) and specificity (0.80). As shown in Table 2,
the AUCs of LR-EN and LR using the three images are
0.83 and 0.84, respectively, which are slightly lower than the
AUCs of LR using one image SVP (0.85) or two images DVP
and SVP (0.85), but are higher than or equal to the AUCs of
LR-EN and LR using other images, and the AUCs of SVM
and XGBoost. Table 3 shows that LR-EN and LR using the
three images provided the best diagnostic accuracy (0.82)
among all four classifiers.

Figure 2 depicted the receiver operating characteris-
tic (ROC) curves andAUCs of LR-EN using different images.
It was seen that the LR-EN using the three images offers
almost the same performance as using one image, the SVP,
and better performance than LR-EN using other images.
Figure 3 showed the ROC curves and AUCs of LR-EN, LR,
SVM, and XGBoost using the three images. It is clearly seen
from Figure 2 that LR-EN and LR have almost the same
performance but outperform SVM and XGBoost.

IV. DISCUSSION
We herein clarified the applicability of machine learn-
ing algorithms to predict diabetic retinopathy (DR) using

FIGURE 2. Receiver operating characteristic curve of LR-EN using one,
two, or three images to predict DR.

FIGURE 3. Receiver operating characteristic curve of four machine
learning methods using three images (DVP+RVN+SVP) to predict DR.
LR-EN and LR have almost the same performance, and they outperform
SVM and XGBoost.

3× 3 mm scans of optical coherence tomography angiogra-
phy (OCTA) images. Subtle retinal microvascular alterations
due to DR can be analyzed quantitatively based on OCTA
images. The LR-EN and LR classifiers demonstrated the
best diagnostic performance in all classification tasks in our
current study. The LR-EN or LR algorithm would provide
an effective strategy for clinicians to diagnose early stages
of DR.

Generally, in our current dataset, using all three images
improved the performance in terms of diagnostic accuracy
and sensitivity when compared to the cases using only one
or two images. However, using three images did not neces-
sarily improve the performance in terms of the AUC when
compared to the cases using the one image of SVP, or two
images of DVP and SVP. This implies that the SVP image
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TABLE 2. AUC of four machine learning methods for predicting DR.

TABLE 3. Diagnostic accuracy measured in four machine learning
methods.

contains the most information that can help discriminate DR
from normal tissue, and can explain why adding the other two
images did not significantly change the performance of the
classifier.

Sensitivity is an important criterion for any screening and
diagnostic prediction system [15]. Studies have shown that
the sensitivity of automatic DR screening ranges from 75% to
97.5%, and the accuracy is comparable [7], [12], [19], [20],
[39], [40]. The 84% sensitivity of our system represented
the capability to identify individual eyes with DR from a
healthy control. Similarly, specificity is also an important
factor because it will represent the capability of detecting
subjects that do not require a referral to an ophthalmologist.
Our study indicated that LR-EN and LR algorithm could
achieve the best performances for maximum diagnostic accu-
racy in all classification tasks. As supported by the results
from Table 3, we can observe that, in all performance metrics,
the LR-EN and LR algorithms demonstrated better diagnostic
proficiency than SVM and XGBoost algorithms.

Machine learning models for analyzing angiography
images did not require alignment since the wavelet features
were directly processed from the raw angiography images.
The machine learning models, particularly LR-EN and LR,
provided better performance than the traditional vessel den-
sity analysis (Dbox). The traditional vessel density analysis
provided a sensitivity of 0.70 and specificity of 0.65 and
used the vessel density of DVP (VDd), to discriminate DR
from HC [41]. The improvement of machine learning models
was mainly due to the following two factors. First, machine
learning models exploited wavelet features of the angiogra-
phy images of each eye, whereas the VDd analysis used the
average density. Wavelet features can capture patterns in an

image at multiple resolutions, which provides more informa-
tion and improves discriminative power. Second, the machine
learning models were designed based on certain optimal-
ity criteria to discriminate images in the vector space of
features, which can exploit the discriminative information
appropriately [23], [24], [42]. XGBoost is a very efficient
implementation of the gradient boosting tree [29]. Instead
of fitting a tree to the gradient of the loss function at each
iteration, as normally done by gradient boosting, XGBoost
uses the second-order approximation of the loss function to
build trees. The hyperparameters of XGBoost include the
maximum depth of each tree, the number of trees, and the
learning rate. In this work, the LR-EN and LR have almost the
same performance, and they outperform SVM and XGBoost.

Although our findings indicated the LR-EN and LR clas-
sification algorithms had high sensitivity, specificity, and
diagnostic accuracy in identifying DR, there are several limi-
tations in this study. Firstly, the sample size is relatively small
for each cohort. In future studies, we plan to include multiple
imaging centers and a much more extensive OCTA database
to test our AI screening algorithm for practical performance
in retinal clinics. Additionally, we did not use retinal
images to test the availability of our algorithm for detecting
DR. There are many important components that should be
included in the grading system for detecting DR using retinal
images, such as microaneurysms, hemorrhages, hard and soft
exudations, as well as blood vessel morphology [43]–[45].
Thirdly, we only analyzed the 3× 3mm OCTA images from
mild DR patients. Patients with moderate and severe DR
were not included. Since mild DR is hard to distinguish from
normal individuals, the sensitivity and accuracy for detecting
DRmay have been found to be relatively lower. Future studies
should enlarge the sample size and include moderate and
severe DR patients. Finally, we did not use other data such as
thickness maps of intra-retinal layers and retinal angiography,
which, if incorporated into themachine learning process, may
further improve the diagnostic accuracy and applicability.

V. CONCLUSION
In summary, in this evaluation of the 3 × 3 mm scans of
OCTA angiography images from DR patients and healthy
individuals, the LR-EN algorithm had high sensitivity and
specificity in identifying DR, which may be promising in
facilitating the early diagnosis of DR. Further large scale and
multicenter studies are necessary to assess the applicability of
LR-EN algorithm in DR and related eye diseases to improve
vision outcomes.
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