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ABSTRACT Relative sensor-target geometry is well known to significantly affect the performance of
target localization using a sensor network. This article analyzes the optimal sensor-target geometries for the
problem of target localization with Bayesian priors. We present a unified geometry optimization framework
for different types of sensor networks including bearing-only sensor network, range-only sensor network,
received signal strength-only sensor network and mixed network of these sensor types. For geometry
optimization of Bayesian target localization with these sensor networks, we establish the equivalence
between the A-optimality criterion (i.e., minimizing the estimation mean squared error) and the D-optimality
criterion (i.e., minimizing the area of the estimation uncertainty ellipse). Under these optimality criteria, the
geometry optimization problem is shown to be mathematically equivalent to the problem of minimizing
the modulus of a vector sum. This thus makes the optimal geometry conditions algebraically simple and
easy to be computed. We conclude the article with extensive simulation studies to verify the accuracy of the
analytical findings.

INDEX TERMS Optimal sensor placement, optimal geometry analysis, target localization, Bayesian
estimation, information matrix.

I. INTRODUCTION
Target localization has been an area of significant interest for
several decades due to its applications in many diverse areas
including wireless communication networks, radar systems,
search and rescue, and satellite positioning and navigation,
to name but a few. The objective of target localization is
to estimate the unknown position of a target from noisy
measurements collected from multiple sensors. The relative
sensor-target geometry is known in the target localization
literature as an important factor that can significantly impact
the estimation accuracy [1]–[3]. Therefore, it is crucial to
determine the locations of the sensors to minimize the target
position estimation uncertainty. Such a problem is commonly
referred to as optimal sensor placement.
The existing literature on optimal sensor placement can be

broadly categorized into (i) optimal control formulation and
(ii) parameter optimization formulation [2], [4]. The former
formulation is usually adopted for the problem of trajec-
tory optimization for moving sensor platforms (commonly
known as optimal path planning), where the objective is to
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minimize the target state estimation error under the opti-
mal control framework [5]–[7]. On the other hand, given an
initial estimate of the target position, the latter formulation
aims to determine the optimal locations of the sensors such
that the uncertainty of the target position estimation error is
minimized [1]–[3]. This formulation is commonly known as
optimal geometry analysis. Both formulations have pros and
cons. Although the optimal control formulation can take into
account various nonlinear physical and geometric constraints
(e.g., minimum sensor-to-target clearance, obstacle and threat
avoidance, and maximum communication sensor-to-sensor
distance), this approach generally can only be solved via
numerical methods. In contrast, the parameter optimization
formulation can be analytically solved in most cases. Such
closed-form analytical solutions reveal important insights
into how the target estimation performance is affected by the
relative sensor-target geometry and this knowledge is also
helpful in developing tactical strategies for optimizing the
sensor trajectory, such as to maximize fuel efficiency and
maintain other physical and geometric constraints. Detailed
discussions on the applications of the parameter optimization
formulation (i.e., optimal geometry analysis) to cooperative
target tracking can be found in [8].
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Focusing on the parameter optimization formulation, opti-
mal sensor-target geometries have been derived for vari-
ous target localization problems including angle-of-arrival
(i.e., bearing) based localization in [1], [2], [9]–[12], time-
of-arrival (i.e., range) based localization in [1], [2], [12]–[18],
time-difference-of-arrival based localization in [19], [20],
received signal strength (RSS) based localization in [2],
[12], [21], Doppler based localization in [22], [23], and
hybrid-sensor based localization in [24]. In these works, the
Cramér-Rao lower bound (CRLB) are used to characterize
the target position estimation performance. Specifically, the
D-optimality criterion (i.e., maximizing the determinant of
the Fisher information matrix which is the inversion of the
CRLB matrix) and the A-optimality criterion (i.e., minimiz-
ing the trace of the CRLB matrix) are the most commonly
used criteria for geometry optimization. The D-optimality
criterion effectively minimizes the area of the estimation
uncertainty ellipse while the A-optimality criterion mini-
mizes the estimation mean squared error (MSE).

An important underlying assumption of optimal geome-
try analysis is that an initial estimate of the target position
has already been obtained and given from other means so
that the optimal placement of the sensors can be determined
based on this initial estimate [2]. However, in order to allow
target localization to be formulated as a classical estimation
problem (as if there is no prior information about the target
position), the aforementioned works [1], [2], [9]–[24] ignored
the uncertainty of the initial target position estimate; there-
fore, limiting the applicability of their analytical geometry
results to practical tracking and localization systems.

To overcome the shortcoming of the existing works, in this
article we consider the sensor-target geometry optimization
problem under the Bayesian estimation framework to take
into account the uncertainty in the prior knowledge of the
target position. Specifically, the target position is modeled as
a random variable following a given prior probability density
function, and thus the target localization problem under con-
sideration essentially becomes a Bayesian estimation prob-
lem. A work on geometry analysis under a similar setting was
presented in [25] building upon the authors’ previous works
in [26], [27]. However, the solutions presented in [25] are
somewhat ad hoc, particularly for the case of more than two
sensors. The advantage of the current work is that we establish
the equivalence between the A- and D-optimality criteria for
geometry optimization of Bayesian localization and show that
solving these optimality criteria are mathematically equiva-
lent to minimizing the modulus of a vector sum. Intuitively,
in the context of geometry optimization, the Bayesian priors
can be viewed as an additional virtual sensor.

Given that the vector sum modulus minimization problem
can be readily solved, our optimal geometry solutions are
algebraically simpler than those presented in [25]. In addi-
tion, the optimality condition (12) in [25] is more restrictive
than our proposed optimality condition. In particular, the
optimality condition (12) in [25] is only a special case of
our optimality condition when the modulus of the vector sum

can be made zero. Using [9] as a reference, the optimality
condition (12) in [25] is analogous to the maximally optimal
condition in [9] while our proposed optimality condition is
analogous to the more general optimal condition in [9] . The
key contributions of this article are summarized as follows.

• A unified framework for optimal geometry analysis is
presented for Bayesian target localization with different
types of sensor networks: bearing-only sensor network,
range-only sensor network, RSS-only sensor network, or
mixed network of these sensor types.

• We establish an equivalence between the A-optimality
criterion (i.e., minimizing the estimation MSE) and the
D-optimality criterion (i.e., minimizing the area of the
estimation uncertainty ellipse) for geometry optimiza-
tion for Bayesian target localization using the above
sensor networks.

• We show analytically that under the D-optimality (or
equivalently A-optimality) criterion, the geometry opti-
mization under consideration mathematically becomes
the problem of minimizing the modulus of the sum of
vectors, where one vector corresponds to a virtual sensor
representing the Bayesian priors while the remaining
vectors correspond to the sensors in the network. Once
the solutions of the vector sum modulus minimization
problem are found, the optimal placement of a sensor
will be specified based on the orientation of the corre-
sponding vector within the vector sum according to a
certain rule depending on the sensor type. The vector
sum modulus minimization can be readily solved and its
solutions are also summarized in this article for the sake
of completeness.

• Extensive simulation studies are presented to verify the
accuracy of the analytical findings.

This article is organized as follows. Section II formulates
and presents a unified framework for the problem of sensor-
target geometry optimization for Bayesian target localization.
The main analytical results of the article are provided in
Section III. Comprehensive simulation studies are presented
in Section IV. The article ends in Section V with concluding
remarks.
Notations: Bold lower case letters/symbols represent vec-

tors, while bold upper case letters/symbols denote matrices.
Notations (·)T , | · | and trace{·} stand for matrix transpose,
determinant and trace, respectively. The 4-quadrant arctan-
gent is denoted by tan−1(·), and the Euclidean norm by ‖ · ‖.
A(i, j) is the entry of matrix A at row i and column j, and
diag{a1, . . . , aN } is a diagonal matrix with diagonal entries
a1, . . . , aN .

II. PROBLEM FORMULATION
A. TARGET LOCALIZATION WITH BAYESIAN PRIORS
Fig. 1 depicts the problem of localizing a stationary target
using N spatially distributed sensors inR2 with Bayesian pri-
ors. We consider a general target localization problem, where
each sensor collects one measurement that can be either
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FIGURE 1. Localization geometry with Bayesian priors.

bearing (i.e., angle-of-arrival), range (i.e., time-of-arrival), or
RSS. In other words, the sensor network can be a bearing-only
network, a range-only network, a RSS-only network, or a
mixed network of these sensor types. In Fig. 1, p = [px , py]T

is the unknown target position, and sk = [sx,k , sy,k ]T , k =
1, . . . ,N , is the position of sensor k . The target position p
is modeled as a random variable following a given prior
probability density function (PDF). The objective of Bayesian
target localization is to estimate a particular realization of p
from the available sensor measurements and the prior knowl-
edge about the PDF of p. In this article, p is assumed to be
a Gaussian random variable. We denote p ∼ N (p0,C0),
where p0 and C0 are the mean and covariance matrix of p,
respectively. Note that the grey ellipse in Fig. 1 illustrates
the confidence region corresponding to the Bayesian priors.
Using p0 = [px,0, py,0]T as a reference, the sensor position sk
can be specified using the distance dk = ‖p0 − sk‖ and the
angle ψk = tan−1

(
py,0−sy,k
px,0−sx,k

)
.

The measurement model at sensor k can be expressed as

z̃k = zk + nk = fk (p, sk )+ nk (1)

where zk = fk (p, sk ) is the noise-free measurement which is a
nonlinear function of p and sk , and nk is an independent zero-
mean Gaussian noise, i.e., nk ∼ N (0, σ 2

k ), accounting for
the measurement noise at sensor k . Depending on the sensor
types, the explicit expressions for measurement function fk
are given in Table 1. Note that we consider a general case
where the measurement error variance σ 2

k is completely arbi-
trary and can be different across the sensors.

Stacking z̃k for k = 1, . . . ,N gives a vector form of the
measurement model as

z̃ = z+ n (2)

where

z̃ = [z̃1, . . . , z̃N ]T (3a)

z = [z1, . . . , zN ]T = [f1(p, s1), . . . , fN (p, sN )]T (3b)

n = [n1, . . . , nN ]T , (3c)

and the covariance matrix of n is given by

R = E{nnT } = diag{σ 2
1 , . . . , σ

2
N }. (4)

The likelihood function of sensor measurements is a mul-
tivariate Gaussian probability density function, expressed by

L(z̃|p) =
1

|2πR|1/2
exp

{
−
1
2
(z̃− z)TR−1(z̃− z)

}
. (5)

The target localization problem under consideration can be
solved by using the maximum a posteriori (MAP) estima-
tor [28], [29]. The MAP estimator maximizes the posterior
PDF L(p|z̃), equivalently to

p̂ = argmax
p
{lnL(p|z̃)}

= argmax
p
{lnL(z̃|p)+ lnL(p)} (6)

where lnL(z̃|p) + lnL(p) is the Bayesian log-likelihood
function. Here, lnL(p) is given by

L(p) =
1

|2πC0|1/2
exp

{
−

1
2
(p− p0)TC−10 (p− p0)

}
. (7)

Substituting (5) and (7) into (6), the MAP estimator becomes

p̂ = argmin
p

{
(z̃− z(p))TR−1(z̃− z(p))

+(p− p0)TC−10 (p− p0)
}

(8)

which can be solved using iterative search algorithms such
as the Gauss-Newton algorithm [30], the steepest descent
algorithm [31] and the Nelder-Mead simplex algorithm [32].

By linearizing z, which is a function of p, about the
mean p0, an approximation for the covariance matrix of the
target estimate p̂ is given by [25]

Cp̂ = E
{
(p̂− p)(p̂− p)T

}
=

(
C−10 + JTR−1J

)−1
(9)

where J is the Jacobian matrix of z(p) in (3b) with respect
to p evaluated at p = p0:

J =
[
JT1 , . . . , J

T
N

]T
(10)

where

Jk =
[
∂fk (p, sk )
∂px

,
∂fk (p, sk )
∂py

]∣∣∣∣
p=p0

. (11)

Taking the inversion of the covariance matrix Cp̂, we obtain
the information matrix as

Mp̂ = C−1p̂ =M0 + JTR−1J (12)

whereM0 = C−10 .
After some algebraic manipulations, the information

matrix can be rewritten (see Appendix A) as

Mp̂ =M0 +

N∑
k=1

c2kuku
T
k (13)
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TABLE 1. Measurement Models

where uk is a unit vector defined by

uk = [cos θk , sin θk ]T . (14)

Note that, depending on the sensor types, the expressions for
parameters ck and θk are given in Table 1.

B. GEOMETRY OPTIMIZATION AND CRITERION
The objective of this article is to analytically character-
ize the optimal sensor placement for target localization
with Bayesian priors based on the A-optimality criterion
(i.e., minimizing the estimation MSE) and the D-optimality
criterion (i.e., minimizing the area of the estimation uncer-
tainty ellipse). We will prove later in this section that these
two criteria are in fact equivalent for the geometry optimiza-
tion under consideration. To start with, we first consider the
D-optimality criterion which is achieved by minimizing the
area of the estimation uncertainty ellipse, or equivalently
maximizing the determinant of the information matrix Mp̂
in (13):

{sopt1 , . . . , soptN } = argmax
{s1,...,sN }

{∣∣Mp̂
∣∣}

= argmax
{s1,...,sN }

{∣∣∣∣∣M0 +

N∑
k=1

c2kuku
T
k

∣∣∣∣∣
}
. (15)

We observed from (14) and Table 1 that the unit vector uk
only depends on the ‘angular’ placement of the sensors with
respect to p0 (i.e., being a function of the angle ψk ). On
the other hand, the coefficient c2k is dependent on the mea-
surement noise variance σ 2

k and the target-sensor distance dk
for the bearing and RRS sensors, while is only dependent
on σ 2

k for the case of the range sensor. As a result, to facilitate
the derivation of optimal geometry, it is commonly assumed
in the literature that the coefficient c2k is arbitrary but fixed
and the geometry optimization problem boils down to opti-
mizing the angular placement of the sensors:

{ψ
opt
1 , . . . , ψ

opt
N } = argmax

{ψ1,...,ψN }

{∣∣Mp̂
∣∣} . (16)

It is important to note that the geometry optimization
problem becomes unbounded if the coefficient c2k is uncon-
strained. Specifically, for the cases of bearing-only sensors,

RSS-only sensors, or a mixed combination of bearing, RSS
and range sensors, the optimal placement is obtained when
the target-sensor distance dk approaches zero (i.e., when c2k
tends to infinity). For the case of range-only sensors, the
target-sensor distance does not affect the information matrix
and thus has no influence on the optimality of sensor place-
ment if the measurement noise variance σ 2

k is fixed.
In what follows, we establish the equivalence between the

D-optimality criterion (minimizing the area of the uncer-
taintly ellipse, or equivalently maximizing the determinant
of the information matrix) and the A-optimality criterion
(minimizing the MSE, or equivalently minimizing the trace
of the estimation error covariance matrix).
Theorem 1: For constant c2k , the maximization of the deter-

minant of the information matrix (i.e., minimizing the area
of the uncertainty ellipse) is equivalent to the minimiza-
tion of the trace of the estimation error covariance matrix
(i.e., minimizing the MSE).

Proof: The estimation error covariance matrix can be
rewritten as

Cp̂ =M−1p̂ =
1
|Mp̂|

[
Mp̂(2, 2) −Mp̂(1, 2)
−Mp̂(2, 1) Mp̂(1, 1)

]
(17)

with Mp̂(i, j) denoting the ith-row jth-column entry of Mp̂.
Note that Mp̂(1, 2) = Mp̂(2, 1). The MSE is given by the
trace of Cp̂ as

MSE = trace{Cp̂} =
Mp̂(1, 1)+Mp̂(2, 2)

|Mp̂|
. (18)

Substituting (14) into (13) yields

Mp̂ =M0 +

N∑
k=1

c2k

[
cos2 θk sin θk cos θk

sin θk cos θk sin2 θk

]
. (19)

From (18) and (19), we have

MSE = trace{Cp̂} =
trace{M0} +

∑N
k=1 c

2
k

|Mp̂|
. (20)

Therefore, for fixed c2k , the trace of the error covariance
matrix and thus the MSE are minimized if and only if the
determinant of the information matrix is maximized. �
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Observation 1: The information matrix remains
unchanged by moving a sensor from sk to 2p0 − sk
(i.e., reflecting the sensor about the target position prior
mean p0). This is a very handy property that allows new
optimal geometries to be generated from a given optimal
geometry by reflecting one or more sensors about the target
position prior mean.

Proof: In (13), substituting 2p0 − sk for sk makes uk
become −uk , which does not change the information
matrix. �

III. OPTIMAL GEOMETRY ANALYSIS
The optimal angular sensor-target geometry for Bayesian
target localization is governed by the following theorem.
Theorem 2: Suppose that the coordinate system is rotated

without loss of generality such that the prior information
matrixM0 is diagonal

M0 =

[
A 0
0 B

]
(21)

with A > B. Then the maximization of the determinant of the
information matrix is equivalent to

min
{β1,...,βN }


∥∥∥∥∥

N∑
k=0

c2kak

∥∥∥∥∥
2
 with ak =

[
cosβk
sinβk

]
(22)

where c20 = A− B, β0 = 0 (i.e., a0 = [1, 0]T ), and βk = 2θk
for k ∈ {1, . . . ,N }.

Proof: By substituting (21) into (19) and calculating the
determinant ofMp̂, we obtain (see Appendix B for a detailed
derivation)

|Mp̂| = AB+
1
2
(A+ B)

N∑
k=1

c2k

+
1
4

(
N∑
k=1

c2k

)2

+

(
A− B
2

)2

−
1
4

(
(A− B)+

N∑
k=1

c2k cos 2θk

)2

−
1
4

(
N∑
k=1

c2k sin 2θk

)2

. (23)

Using c20, β0 and β1, . . . , βN defined above, we can reex-
press (23) as

|Mp̂| = AB+
1
2
(A+ B)

N∑
k=1

c2k

+
1
4

(
N∑
k=1

c2k

)2

+

(
A− B
2

)2

−
1
4

(
N∑
k=0

c2k cosβk

)2

−
1
4

(
N∑
k=0

c2k sinβk

)2

.(24)

Since |Mp̂| ≥ 0 while A, B and c2k are fixed, maximizing |Mp̂|

is equivalent to minimizing(
N∑
k=0

c2k cosβk

)2

+

(
N∑
k=0

c2k sinβk

)2

(25)

over βk , which is identical to (22). �
Remark 1: Once the minimization problem (22) is solved,

the angular placement of each sensor is given by

ψ
opt
k =

{
β
opt
k /2− π/2, for bearing sensor
β
opt
k /2, for range or RSS sensor

(26)

where βoptk , k = 1, . . . ,N , denotes the solution of (22).
Remark 2: The Bayesian priors influence the optimal

geometry analysis via the additional term c20 and a0 =
[1, 0]T (i.e., β0 = 0). In the context of geometry optimization,
we can intuitively view the Bayesian priors as an additional
virtual sensor which is characterized by c20 and a0. It is impor-
tant to note that this intuition only applies in the context of
geometry optimization and is not valid in the general context
of Bayesian target localization.
Remark 3: For the special case of A = B, we have c20 = 0

and the minimization problem in (22) reduces to

min
{β1,...,βN }

{∥∥∥∥∥
N∑
k=1

c2kak

∥∥∥∥∥
}
. (27)

Note that, different to (22), the starting index of the summa-
tion within the minimization operation in (27) is 1 instead
of 0. Therefore, the Bayesian priors have no influence on
the optimal geometry analysis and the geometry optimization
problem mathematically boils down to that of the classical
non-Bayesian target localization in [1]. This is intuitively
logical because the uncertainty ellipse of the priors becomes
a circle when A = B and thus gives no preference in terms of
prior information toward any angular direction. As a result,
the Bayesian priors play no role in the optimality of the
angular sensor placement in this case.
Remark 4: The optimality condition stated in (22) of The-

orem 2 is more general than the optimality condition (12)
of [25]. Note that the optimal condition (22) in Theorem 2
reduces to the condition (12) of [25] only if

min
{β1,...,βN }

{∥∥∥∥∥
N∑
k=0

c2kak

∥∥∥∥∥
}
= 0 (28)

which is not always feasible. In general, the minimum value
in (22) can be greater than zero.
Remark 5: The optimal geometry analysis presented in

this article is also applicable to the problem of 2D Doppler-
based localization where the position of a stationary tar-
get is estimated using Doppler-shift measurements collected
from moving sensor platforms as considered in [22]. This is
because the information matrix for such Doppler localization
problem can be expressed in the form (13) by defining c2k =
ω2
k/σ

2
k (ωk is the angular velocity of sensor k with respect
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to the target) and θk = ψk + π/2. In contrast, it is not
straightforward to extend the presented geometry analysis
to the 2D Doppler-based localization problem of a moving
target as considered in [23] (where the target position and
velocity are estimated using Doppler-shift measurements col-
lected from stationary sensors) since the information matrix
in this case has a unique structure and cannot be re-expressed
in the form (13).

A. SOLUTION OF OPTIMALITY CONDITIONS
The beauty of Theorem 2 is that it mathematically converts
the Bayesian localization geometry optimization problem
into the vector sum modulus minimization problem whose
solutions can be readily obtained. In what follows, the solu-
tions of vector sum modulus minimization will be summa-
rized for the sake of completeness. Interested readers are
referred to [1], [9] for detailed proofs and analyses of vector
sum modulus minimization.

1) N = 1
The solution for (22) is given by

β
opt
1 = ±π. (29)

Specifically, a1 is pointing in the opposite direction to a0, i.e.,

a1 = −a0. (30)

2) N ≥ 2
Theorem 3: If the condition of

c2j ≤
N∑

i=0,i6=j

c2i (31)

holds for all j ∈ {0, 1, . . . ,N ≥ 2}, the minimization (22) for
N ≥ 2 is achieved if and only if the following condition is
satisfied:

N∑
k=0

c2kak = 0. (32)

Otherwise, if there exists j ∈ {0, . . . ,N ≥ 2} such that

c2j >
N∑

i=0,i6=j

c2i , (33)

the condition (32) is unsolvable and the minimization (22) for
N ≥ 2 is obtained by placing aj in the opposite direction to
the other vectors, i.e.,

ai = −aj for i ∈ {0, . . . ,N ≥ 2} \ j, (34)

or

β
opt
i = β

opt
j ± π for i ∈ {0, . . . ,N ≥ 2} \ j. (35)

Proof: Please refer to the proofs of Theorems 8 and 9
in [1]. �
For N = 2, if the condition (31) holds, the solution of (32)

is given by

β
opt
1 = ± tan−1(

√
ζ , κ22 − κ

2
1 − 1) (36a)

β
opt
2 = ∓ tan−1(

√
ζ , κ21 − κ

2
2 − 1) (36b)

κ1 = (c1/c0)2, κ2 = (c2/c0)2 (36c)

ζ = −
(
(κ1 + κ2)2 − 1

) (
(κ1 − κ2)2 − 1

)
. (36d)

ForN = 3, if the condition (31) holds, the solution for (32)
is governed by the following relationship between βopt1 , βopt2
and βopt3 :

β
opt
2 = tan−1

(
%1ϑ1 ±

√
ζ%2

κ1 sinβ
opt
1

,−
(
%2ϑ1 ±

√
ζ
))

(37a)

β
opt
3 = tan−1

(
%1ϑ2 ∓

√
ζ%2

κ1 sinβ
opt
1

,−
(
%2ϑ2 ∓

√
ζ
))

(37b)

where

ζ = %1(ϑ2
3 − 4κ22κ

2
3 ), (38a)

%1 = κ
2
1 (cos

2 β
opt
1 − 1), %2 = κ1 cosβ

opt
1 + 1, (38b)

ϑ1 = κ
2
1 + κ

2
2 − κ

2
3 + 2κ1 cosβ

opt
1 + 1, (38c)

ϑ2 = κ
2
1 − κ

2
2 + κ

2
3 + 2κ1 cosβ

opt
1 + 1, (38d)

ϑ3 = κ
2
1 − κ

2
2 − κ

2
3 + 2κ1 cosβ

opt
1 + 1, (38e)

κ1 = c21/c
2
0, κ2 = c22/c

2
0, κ3 = c23/c

2
0. (38f)

Note that the value of βopt1 can be chosen arbitrarily as long
as ζ is positive, thus there exists infinitely many solutions
for (32) when N = 3.

For N ≥ 3, if the condition (31) is satisfied, the solu-
tion of (32) can be determined by splitting {ak}k=0,...,N into
smaller subset groups with two or three elements and then
solving (32) for each subset group individually. Note that
the splitting process must be carried out such that the con-
dition (31) is also satisfied for all subset groups. The angu-
lar rotation between different optimally-configured subset
groups will not affect the validity of the overall solution.
Therefore, infinitely many solutions for (32) can be generated
by rotating one or more optimally-configured subset groups.

IV. EXAMPLES AND NUMERICAL RESULTS
In this section, we present a range of examples and numerical
results for various sensor network configurations to verify the
analytical findings presented in Section III.

A. BEARING-ONLY SENSOR NETWORK
1) ONE BEARING SENSOR
Fig. 2(a) plots the determinant of the information matrix |Mp̂|

with respect to the sensor angular placement ψ1 for the
case of one bearing sensor. The simulation parameters are
p0 = [0, 0]T m, C0 = diag{12.1847, 24.3694} m2, d1 =
100 m and σ1 = 2◦. We observe that |Mp̂| is maximized
when ψopt

1 = 0 and ±π , corresponding to two optimal
geometries shown in Figs. 2(b) and 2(c). Geometrically, an
optimal geometry is formed when the line-of-sight (LOS) of
the bearing sensor with respect to the target position prior
mean is orthogonal to the major axis of the prior uncertainty
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FIGURE 2. Optimal angular sensor placement for one bearing sensor:
(a) The determinant of information matrix |Mp̂| as a function of ψ1, and
(b)–(c) Optimal geometry configurations. Parameter settings:
p0 = [0,0]T m, C0 = diag{12.1847,24.3694} m2, d1 = 100 m and σ1 = 2◦.

ellipse. This observation is consistent with the analytical
findings in (26) and (29).

The maximum value of |Mp̂| is 10.103× 10−3, yielding a
minimum root MSE (RMSE) of 4.506 m. Table 2 shows the
bias and RMSE performance of the MAP estimator and the
cubature transform (CT)-based bias-compensated Bayesian
weighted instrumental variable estimator (BC-BWIVE-CT)
[33] in the optimal geometry configurations shown in Fig. 2.
In this simulation and throughout Section IV (unless oth-
erwise stated), the bias and RMSE results are obtained
from 100,000 Monte Carlo runs. The MAP estimator is
implemented using the Gauss-Newton method [30] and is
initialized to the target position prior mean p0. The Gauss-
Newton algorithm halts after 30 iterations. We observe that
the RMSEs of the BC-BWIVE-CT and MAP algorithms are
approximately identical over the two optimal geometry con-
figurations and closely match the optimal analytical RMSE
value of 4.506 m.

2) TWO BEARING SENSORS
We now consider the case of two bearing sensors. The
Bayesian priors are p0 = [0, 0]T m and C0 =

diag{13.7266, 124.9122}m2. The target-sensor distances are
d1 = 135 m and d2 = 120 m. The bearing noise standard
deviations are set to σ1 = σ2 = 1.5◦. In this scenario, the

TABLE 2. Bias and RMSE Performance for One Bearing Sensor Under the
Optimal Geometries Shown in Fig. 2

FIGURE 3. The determinant of information matrix |Mp̂| as a function
of ψ1 and ψ2 for two bearing sensors (with maxima indicated by ‘×’).
Parameter setting: p0 = [0,0]T m, C0 = diag{13.7266,124.9122} m2,
d1 = 135 m, d2 = 120 m, and σ1 = σ2 = 1.5◦.

condition (31) is satisfied. Thus, the solution for the optimal
angular placement of the sensors can be obtained from (26)
and (36), yielding {ψopt

1 , ψ
opt
2 } = {−44.04

◦,−153.92◦}
and {−135.96◦,−26.08◦}. From these two solutions, Obser-
vation 1 can be used to generate 6 other optimal geom-
etry configurations: {ψopt

1 , ψ
opt
2 } = {−44.04◦, 26.08◦},

{−135.96◦, 153.92◦}, {135.96◦, 26.08◦}, {44.04◦, 153.92◦},
{135.96◦,−153.92◦}, and {44.04◦,−26.08◦}. These 8 ana-
lytical geometry configurations match the maxima on the plot
of the determinant of the informationmatrix |Mp̂| as shown in
Fig. 3, thus confirming the accuracy of the analytical solution
for N = 2 presented in Section III.
The optimal geometries are illustrated in Fig. 4. Note that

there are only two distinct optimal geometry configurations
in this case: configuration 1 and configuration 3. On the other
hand, configurations 2 and 4 are just mirror images of config-
urations 1 and 3 over the y-axis, respectively; while configu-
rations 1, 2, 3 and 4 will become configurations 5, 6, 7 and 8,
respectively, if the coordinate system is rotated by 180◦.
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FIGURE 4. Optimal geometry configurations for two bearing sensors under the scenario and parameter settings given in Fig. 3.

TABLE 3. Bias and RMSE Performance for Two Bearing Sensors Under the
Optimal Geometries Shown in Fig. 4

The maximum value of |Mp̂| is 0.0172, yielding a min-
imum root MSE (RMSE) of 3.906 m. Table 3 reports the
bias and RMSE performance of the BC-BWIVE-CT and
MAP estimators under the optimal geometry configurations
shown in Fig. 4. It is observed that the RMSEs of the
BC-BWIVE-CT and MAP algorithms are approximately the
same across different optimal geometry configurations and
closely match the optimal analytical RMSE value of 3.906 m.

To further demonstrate the efficiency of the
BC-BWIVE-CT and MAP estimators in the sense that they

FIGURE 5. RMSE performance of the BC-BWIVE-CT and MAP estimators
versus measurement noise for two bearing sensors.

can attain the optimal analytical RMSE, Fig. 5 plots the
empirical RMSE performance of these two estimators versus
various values of σ2 ∈ {1.5◦, 2◦, . . . , 6◦} (i.e., the noise
standard deviation of sensor 2). Other parameter settings
remain unchanged as above. Note that, for each value of
σ2, an optimal geometry configuration is first determined
according to (26) and (36), and the resulting geometry con-
dition is then used to carry out Monte Carlo simulations
with the BC-BWIVE-CT and MAP estimators. We observe
in Fig. 5 that the RMSE curves of the BC-BWIVE-CT
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FIGURE 6. Optimal geometry configurations for three bearing sensors.
Parameter setting: p0 = [0,0]T m, C0 = diag{2.9741,62.4561} m2,
d1 = 135 m, d2 = 120 m, d3 = 127.5 m, and σ1 = σ2 = σ3 = 1.5◦.

and MAP estimators both closely agree with the optimal
analytical RMSE curve, thus confirming the efficiency of
these algorithms.

3) THREE BEARING SENSORS
This example considers a sensor network with three bearing
sensors for which the conditions (31) and (32) cannot be
satisfied. The parameter settings are p0 = [0, 0]T m, C0 =

diag{2.9741, 62.4561} m2, d1 = 135 m, d2 = 120 m, d3 =
127.5 m, and σ1 = σ2 = σ3 = 1.5◦. Under this scenario,
the condition (33) holds (i.e., c20 > c21 + c

2
2 + c

2
3). According

to Theorem 3, the optimal geometry solutions are governed
by a1 = a2 = a3 = −a0. As a results, we obtain ψopt

1 ∈

{0◦, 180◦}, ψopt
2 ∈ {0◦, 180◦}, and ψopt

3 ∈ {0◦, 180◦}, thus
leading to 8 optimal configurations. Fig. 6 only shows 4 opti-
mal configurations as the remaining configurations are sim-
ply mirror images of these configurations. Fig. 7 plots |Mp̂|

FIGURE 7. The determinant of information matrix |Mp̂| as a function
of ψ2 and ψ3 for three bearing sensors with ψ1 = 0◦ under the scenario
and parameter settings given in Fig. 6 (maxima indicated by ‘×’).

TABLE 4. Bias and RMSE Performance for Three Bearing Sensors Under
the Optimal Geometries Shown in Fig. 6

as a function of ψ2 and ψ3 where ψ1 is set to 0◦. We observe
that |Mp̂| attains it maximum values when ψopt

2 ∈ {0
◦, 180◦}

and ψopt
3 ∈ {0◦, 180◦}, thus confirming the accuracy of the

above analytical solutions. Table 4 reports the bias and RMSE
performance of the BC-BWIVE-CT and MAP estimators
under the geometries given in Fig. 6. The BC-BWIVE-CT
and MAP estimators are observed to perform almost iden-
tically over these geometries and their RMSE performance
closely agrees with the optimal value of 2.541 m.

B. RANGE-ONLY SENSOR NETWORK
1) ONE RANGE SENSOR
For the case of one range sensor, using (26) and (29), the
optimal angular placement of the sensor is given by ψopt

1 =

±π/2. This analytical finding can be verified by observ-
ing in Fig. 8(a) that the determinant of the information
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FIGURE 8. Optimal angular sensor placement for one range sensor: (a)
The determinant of information matrix |Mp̂| as a function of ψ1, and
(b)–(c) Optimal geometry configurations. Parameter settings:
p0 = [0,0]T m, C0 = diag{300,900} m2, d1 = 160 m and σ1 = 30 m.

TABLE 5. Bias and RMSE Performance of the MAP Estimator for One
Range Sensor Under the Optimal Geometries Shown in Fig. 8

matrix |Mp̂| attains its maximum values when ψ
opt
1 =

±π/2. The corresponding optimal geometries are shown in
Figs. 8(b) and 8(c), in which the LOS of the range sensor with
respect to the target position prior mean is orthogonal to the
minor axis of the prior confidence ellipse. Table 5 reports the
bias and RMSE performance of the MAP estimator under the
optimal geometry configurations in Fig. 8. It is observed that
the MAP estimator closely achieves the optimal analytical
RMSE value under these two geometry conditions.

2) THREE RANGE SENSORS
We now consider a localization scenario with three range
sensors and the following parameter settings: p0 = [0, 0]T m,
C0 = diag{279.6961, 506.2500} m2, d1 = d2 =

d3 = 160 m, σ1 = 22.5 m, σ2 = 17.5 m and

FIGURE 9. The determinant of information matrix |Mp̂| as a function
of ψ2 and ψ3 for three range sensors (with maxima indicated by ‘×’).
Parameter settings: p0 = [0,0]T m, C0 = diag{279.6961,506.2500} m2,
d1 = d2 = d3 = 160 m, σ1 = 22.5 m, σ2 = 17.5 m and σ3 = 20 m.

σ3 = 20 m. Under this scenario, the condition (31) is met,
thus the optimal angular placement of the sensor is governed
by (26) and (37).

33428 VOLUME 9, 2021



N. H. Nguyen: Optimal Geometry Analysis for Target Localization With Bayesian Priors

FIGURE 10. Examples of optimal geometry configurations for three range sensors under the scenario and parameter settings given in Fig. 9.

TABLE 6. Bias and RMSE Performance of the MAP Estimator for Three
Range Sensors for the Optimal Geometries Shown in Fig. 10

By arbitrarily setting ψ1 = 66◦, we obtain two solu-
tions {ψopt

2 , ψ
opt
3 } = {−73.91◦, 3.12◦} and {−26.83◦,

76.15◦}. These analytical solutions are consistent with two
maxima of the determinant of the information matrix shown
in Fig. 9(a). Note that, consistent with Observation 1, other
maxima in Fig. 9(a) in fact can be generated from these
two maxima by reflecting either sensor 2, sensor 3 or both
of them about the target position prior mean. On the other
hand, if ψ1 = −18◦, we obtain two solutions {ψopt

2 , ψ
opt
3 } =

{58.03◦,−67.43◦} and {−77.99◦, 47.48◦}. These analytical
solutions agree with two maxima of the determinant of the
information matrix shown in Fig. 9(b) while other maxima
in Fig. 9(b) can be generated from these two maxima by
reflecting either sensor 2, sensor 3 or both of them about the
target position prior mean. These results verify the accuracy
of the analytical solutions for N = 3 presented in Section III.

Fig. 10 plots four optimal geometry configurations corre-
sponding to the above solutions, under which the determi-
nant of the information matrix attains the maximum value
of 4.4164× 10−5 and the RMSE attains the minimum value
of 17.348 m. Table 6 reports the bias and RMSE performance
of the MAP estimator under the optimal geometry configu-
rations shown in Fig. 10, where we observe that the MAP
estimator performs almost identically over these geometries
and its RMSE performance closely agrees with the optimal
value of 17.348 m.

Fig. 11 plots the empirical RMSE performance of theMAP
estimator against various values of σ3 ∈ {15, 16, . . . , 23} m.
Here, we set ψ1 = 66◦ while other parameter settings remain

FIGURE 11. RMSE performance of the MAP estimator versus
measurement noise for three range sensors.

TABLE 7. Bias and RMSE Performance of the MAP Estimator for One RSS
Sensor Under the Optimal Geometries Shown in Fig. 12

the same as above. For each value of σ3, (26) and (37) are
used to determine an optimal geometry configuration under
which Monte Carlo simulations are then carried out to obtain
the empirical RMSE performance of the MAP estimator. It
is observed from Fig. 11 that the empirical RMSE curve of
the MAP estimator closely agrees with the optimal analytical
RMSE curve.

C. RSS-ONLY SENSOR NETWORK
1) ONE RSS SENSOR
Similar to the case of one range sensor, using (26) and (29),
the optimal angular placement of one RSS sensor is ψopt

1 =

±π/2. Fig. 12 shows the determinant of the information
matrix |Mp̂| as a function of ψ1 and the geometry configura-
tions for which |Mp̂| is maximized. The numerical results in
Fig. 12 confirms the accuracy of the above analytical solution.
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FIGURE 12. Optimal angular sensor placement for one RSS sensor: (a) The
determinant of information matrix |Mp̂| as a function of ψ1, and (b)–(c)
Optimal geometry configurations. Parameter settings: p0 = [0,0]T m,
C0 = diag{634.9876,1206.4764} m2, α1 = 3, d1 = 160 m and σ1 = 4 dBm.

Under the optimal sensor placement of ψopt
1 = ±π/2, the

minimum RMSE is attained at the value of 37.938 m. It is
observed in Table 7 that the MAP estimator yields RMSEs
very close to this analytical RMSE value under the conditions
of ψopt

1 = ±π/2.

2) TWO RSS SENSORS
Fig. 13 plots the determinant of the information matrix |Mp̂|

as a function of ψ1 and ψ2 for the case of two RSS sensors
with the parameter settings of p0 = [0, 0]T m, C0 =

diag{610.7787, 1017.9644} m2, α1 = α2 = 3, d1 = 180 m,
d2 = 160 m, σ1 = 4 dBm and σ2 = 5 dBm. We observe
that |Mp̂| has four peaks located at {ψ

opt
1 , ψ

opt
2 } = {90

◦, 90◦},
{90◦,−90◦}, {−90◦, 90◦}, {−90◦,−90◦}. This observation is
consistent with the fact that the condition of c20 > c21 + c22
holds in this scenario, and thus, according to Theorem 3 and
Remark 1, an optimal geometry is obtainedwhen both sensors
are placed such that their LOSs are orthogonal to the minor
axis of the prior confidence ellipse. These optimal geom-
etry configurations are illustrated in Fig. 14. Under these
geometries, |Mp̂| attains the maximum value of 2.579×10−6,
which leads to the minimum RMSE of 35.294 m. The bias
and RMSE performance of the MAP estimator is reported in

FIGURE 13. The determinant of information matrix |Mp̂| as a function
of ψ1 and ψ2 for two RSS sensors (with maxima indicated by ‘×’).
Parameter settings: p0 = [0,0]T m, C0 = diag{610.7787,1017.9644} m2,
α1 = α2 = 3, d1 = 180 m, d2 = 160 m, σ1 = 4 dBm, and σ2 = 5 dBm.

TABLE 8. Bias and RMSE Performance of the MAP Estimator for Two RSS
Sensors Under the Optimal Geometries Shown in Fig. 14

Table 8, where we observe that the MAP estimator achieves
a RMSE closely agreeing with the analytical RMSE in all the
optimal geometry configurations.

Fig. 15 plots the empirical RMSE performance of
the MAP estimator against various values of σ2 ∈

{5, 5.5, . . . , 10} dBm (other parameter settings remain
unchanged as above). Since the condition of c20 > c21 + c22
holds for these values of σ2, the optimal geometry solutions
remain the same as those plotted in Fig. 14. Here, the empiri-
cal RMSE performance of the MAP estimator is obtained via
500,000 Monte Carlo runs under the geometry configuration
shown in Fig. 14(a). The empirical RMSE curve of the MAP
estimator is observed in Fig. 15 to closely match the optimal
analytical RMSE curve.

3) FIVE RSS SENSORS
This example considers a sensor network with five RSS
sensors. The parameter settings are p0 = [0, 0]T m,
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FIGURE 14. Optimal geometry configurations for two RSS sensors under the scenario and parameter settings given in Fig. 13.

FIGURE 15. RMSE performance of the MAP estimator versus
measurement noise for two RSS sensors.

C0 = diag{636.2278, 1017.9644} m2, α1 = · · · = α5 = 3,
d1 = 180 m, d2 = 160 m, d3 = 210 m, d4 = 160 m,
d5 = 190 m, σ1 = 4 dBm, σ2 = 5 dBm, σ3 = 3 dBm,
σ4 = 4.5 dBm and σ5 = 5 dBm. Since N > 3 and the
condition (31) holds, the optimal sensor placement is gov-
erned by (32), whose solutions can be determined by splitting
{ak}k=0,...,5 into smaller subset groups with two or three ele-
ments and then solving (32) for each subset group individu-
ally. In this example, we split {ak} into two groups {a0, a1, a2}
and {a3, a4, a5}. The first group consists of the first two
sensors and the virtual sensor corresponding to the Bayesian
prior, while the second group include the three remaining
sensors. The optimal arrangement between {a0, a1, a2} can be
determined using (36), where a particular solution is given by
β
opt
1 = 174.58◦ and βopt2 = 186.70◦. Thus, we obtain ψopt

1 =

87.29◦ and ψopt
2 = 93.35◦. Similarly, using (36) results in

an optimal arrangement between {a3, a4, a5} governed by
β
opt
4 − β

opt
3 = 155.45◦ and βopt5 − β

opt
3 = −133.66◦, thus

leading toψopt
4 −ψ

opt
3 = 77.72◦ andψopt

5 −ψ
opt
3 = −66.83

◦.
Based on these results, an infinite number of optimal geom-
etry configurations can be generated by rotating the second
group (i.e., varying the value of ψopt

3 from −180◦ to 180◦).

TABLE 9. Bias and RMSE Performance of the MAP Estimator for Five RSS
Sensors Under the Optimal Geometries Shown in Fig. 16

Fig. 16 shows 4 optimal geometry examples for ψopt
3 = 36◦,

−100◦, −21◦ and 131◦. Note that the reservation of the
geometry optimality over the variation of ψopt

3 is confirmed
in Fig. 17, where we observe that the determinant of the
information matrix remains constant regardless of ψopt

3 given
that ψopt

1 = 87.29◦, ψopt
2 = 93.35◦, ψopt

4 − ψ
opt
3 = 77.72◦

and ψopt
5 − ψ

opt
3 = −66.83◦. The maximum value of |Mp̂|

is 4.1821 × 10−6, and the corresponding minimum RMSE
is 31.273 m. The RMSE performance of the MAP estimator
under the optimal configurations in Fig. 16 is observed from
Table 9 to closely match the optimal RMSE value.
Note that the splitting process can be carried out in different

ways without affecting the optimality of the geometry solu-
tion. To demonstrate this, we now split {ak} into two groups
{a0, a1, a4} and {a2, a3, a5}. By using (36), we obtain β

opt
1 =

154.16◦ and βopt4 = 205.84◦ (thus, ψopt
1 = 77.08◦ and

ψ
opt
4 = 102.92◦) for the first group and βopt2 −β

opt
3 = 163.82◦

and βopt5 −β
opt
3 = −156.86

◦ (thus,ψopt
2 −ψ

opt
3 = 81.91◦ and

ψ
opt
5 −ψ

opt
3 = −78.43

◦) for the second group. To verify that
this solution is equivalent to the above solution, we plot the
determinant of the information matrix as a function of ψopt

3
given that ψopt

1 = 77.08◦, ψopt
4 = 102.92◦, ψopt

2 − ψ
opt
3 =

81.91◦ and ψopt
5 − ψ

opt
3 = −78.43◦ in Fig. 18. We observe

that the determinant of the information matrix in Fig. 18
remains constant at the same value of |Mp̂| = 4.1821×10−6

as that in Fig. 17, and therefore demonstrating that the opti-
mality of the network geometry is not affected by different
ways of grouping the sensors.
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FIGURE 16. Examples of optimal geometry configurations for five RSS sensors with the parameter settings of p0 = [0,0]T m,
C0 = diag{636.2278,1017.9644} m2, α1 = · · · = α5 = 3, d1 = 180 m, d2 = 160 m, d3 = 210 m, d4 = 160 m, d5 = 190 m, σ1 = 4 dBm, σ2 = 5 dBm,
σ3 = 3 dBm, σ4 = 4.5 dBm and σ5 = 5 dBm.

FIGURE 17. The determinant of information matrix |Mp̂| as a function
of ψ3 for five RSS sensors given that ψ1 = 87.29◦, ψ2 = 93.35◦,
ψ4 − ψ3 = 77.72◦ and ψ5 − ψ3 = −66.83◦. Other parameter settings are
given in Fig. 16.

FIGURE 18. The determinant of information matrix |Mp̂| as a function

of ψ3 for five RSS sensors given that ψopt
1 = 77.08◦, ψopt

4 = 102.92◦,

ψ
opt
2 − ψ

opt
3 = 81.91◦ and ψopt

5 − ψ
opt
3 = −78.43◦. Other parameter

settings are given in Fig. 16.

D. MIXED SENSOR NETWORK
1) BEARING/RANGE NETWORK
In this simulation, we consider a mixed sensor network with
two bearing sensors (sensors 1 and 2) and two range sen-
sors (sensors 3 and 4). The simulation parameters include

FIGURE 19. The determinant of information matrix |Mp̂| as a function
of ψ3 and ψ4 for the case of a mixed sensor network with two bearing
sensors (sensors 1 and 2) and two range sensors (sensors 3 and 4).
Parameter settings: p0 = [0,0]T m, C0 = diag{54.9065,499.6487} m2,
d1 = 270 m, d2 = 240 m, d3 = 200 m, d4 = 250 m, σ1 = σ2 = 1.5◦, and
σ3 = σ4 = 15 m. Here, we set ψopt

1 = −44.04◦ and ψopt
2 = −153.92◦.

p0 = [0, 0]T m, C0 = diag{54.9065, 499.6487} m2, d1 =
270 m, d2 = 240 m, d3 = 200 m, d4 = 250 m, σ1 =
σ2 = 1.5◦, and σ3 = σ4 = 15 m. To determine an optimal
sensor placement, we cluster the sensors into two groups.
Group 1 contains the two bearing sensors and the virtual
sensor corresponding to the Bayesian prior, while Group 2
contains the two remaining range sensors. According to the
analysis in Section III, an optimal angular arrangement for
sensors 1 and 2 within Group 1 is given by ψopt

1 = −44.04
◦
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FIGURE 20. Examples of optimal geometry configurations for a mixed sensor network with two bearing sensors and two range sensors with the
parameter settings given in Fig. 19.

FIGURE 21. Example of optimal geometry configurations for a mixed sensor network with two RSS sensors and three range sensors (parameter
settings are given in the text).

and ψopt
2 = −153.92◦, while the optimal arrangement for

sensors 3 and 4 is governed by |ψopt
4 − ψ

opt
3 | = 90◦. Using

these results, by rotating Group 2, infinitely many optimal
geometry configurations for the whole sensor network can
be generated. To verify this, we set ψopt

1 = −44.04◦ and
ψ

opt
2 = −153.92

◦ and plot the determinant of the information
matrix |Mp̂| as a function ofψ3 andψ4 in Fig. 19.We observe
that the values of ψ3 and ψ4 maximizing |Mp̂| forms a set
of lines defined by |ψ4 − ψ3| = 90◦. In other words, |Mp̂|

is maximized when there is a 90◦ separation between ψ3
and ψ4 regardless of their actual values. This observation is
congruent with the above analytical results.

Fig. 20 shows four examples of optimal sensor placement
and the corresponding performance of the MAP estimator
is reported in Table 10. We observe that the MAP estimator
performs similarly across these geometries and its RMSE is
quite close to the optimal RMSE value.

2) RSS/RANGE NETWORK
We now consider a mixed sensor network with two
RSS sensors (sensors 1 and 2) and three range sensors
(sensors 3, 4 and 5). We use the following parameters for
this simulation: p0 = [0, 0]T m, C0 = diag{238.5854,

TABLE 10. Bias and RMSE Performance of the MAP Estimator for a Mixed
Sensor Network With Two Bearing Sensors and Two Range Sensors Under
the Optimal Geometries Shown in Fig. 20

381.7367} m2, α1 = α2 = 3, d1 = 180 m, d2 = 160 m,
d3 = 200 m, d4 = 250 m, d5 = 280 m, σ1 = 2 dBm,
σ2 = 2.5 dBm, σ3 = 22 m, σ4 = 25 m, and σ5 = 28 m.
Fig. 21 shows four examples of optimal sensor placement for
the considered sensor network. Here, the first two geometry
configurations are obtained by splitting the network into two
groups: (i) group 1 with two RSS sensors and the virtual sen-
sor corresponding to the Bayesian prior, and (ii) group 2 with
the remaining three range sensors. Since the rotation between
these two groups does not affect the optimality of the geom-
etry for the whole network, we arbitrarily set ψopt

3 = 28◦

and 122◦ in configurations 1 and 2 respectively. On the other
hand, configurations 3 and 4 are obtained by a different way
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FIGURE 22. Optimal geometry configurations for a mixed sensor network with one bearing sensor and one RSS sensor (parameter settings are given in
the text).

FIGURE 23. The determinant of information matrix |Mp̂| as a function of ψ1 and ψ2 for a mixed sensor network with one bearing
sensor and one RSS sensor. The maxima (indicated by ‘×’) match the optimal geometry configurations in Fig. 22.

of splitting of the network: (i) group 1 with sensor 1 (RSS),
sensor 5 (range) and the virtual sensor corresponding to the
Bayesian prior, (ii) group 2 with sensor 2 (RSS), sensor 3
(range) and sensor 4 (range). Here, we arbitrarily set ψopt

3 =

52◦ in configuration 3 and ψopt
3 = 155◦ in configuration 4

without affecting the optimality of the network geometry.
Note that these four geometry configurations are equivalently
optimal and share the same optimal RMSE value of 16.829m.
Table 11 reports the bias and RMSE performance of theMAP
estimator under these geometry conditions, where a similar
performance of the MAP estimator is observed and its RMSE
agrees well with the optimal RMSE value.

3) BEARING/RSS NETWORK
This example considers a mixed sensor network with one
bearing sensor (sensor 1) and one RSS sensor (sensor 2)

TABLE 11. Bias and RMSE Performance of the MAP Estimator for a Mixed
Sensor Network With Two RSS Sensors and Three Range Sensors Under
the Optimal Geometries Shown in Fig. 21

with the following parameter settings: p0 = [0, 0]T m,
C0 = diag{110.4196, 199.8595} m2, σ1 = 3◦, d1 = 270 m,
α2 = 3, σ2 = 2 dBm, and d2 = 150 m. In this example,
the condition (31) is satisfied. Thus, the solution for the
optimal angular placement of the sensors can be obtained
from (26) and (36). This leads to 8 configurations shown in
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TABLE 12. Bias and RMSE Performance of the MAP Estimator for a Mixed
Sensor Network With One Bearing Sensor and One RSS Sensor Under the
Optimal Geometries Shown in Fig. 22

Fig. 22, whichmatch themaxima on the plot of |Mp̂| as shown
in Fig. 23; thus confirming the accuracy of the analytical
geometry solution. Under these optimal geometries, theMAP
estimator is observed in Table 12 to produce a RMSE per-
formance closely agreeing with the optimal analytical RMSE
of 13.818 m.

V. CONCLUSION
We have presented an optimal geometry analysis for the
problem of target localization with Bayesian priors. Our anal-
ysis was conducted in a unified manner and can be applied
to different types of sensor networks including bearing-
only network, range-only network, RSS-only network and
mixed network of these sensor types. The A-optimality and
D-optimality criteria for geometry optimization of Bayesian
target localization was shown to be equivalent (see The-
orem 1). Under these optimality criteria, it was estab-
lished in Theorem 2 that the geometry optimization problem
essentially becomes the vector sum modulus minimization
problem. This is an important result as it makes the computa-
tion of the optimal geometry conditions algebraically simple.
Finally, the analytical findings of the article were verified
via a range of numerical simulation studies, where a good
agreement between the analytical and numerical results was
observed.

APPENDIX A
By substituting (10) into (12), the information matrix
becomes

Mp̂ =M0 +

N∑
k=1

1

σ 2
k

JTk Jk . (39)

In what follows, we will derive the expression of 1
σ 2k
JTk Jk for

bearing, range and RSS sensors respectively.
If sensor k is a bearing sensor, Jk in (11) is given by

Jk =
1
dk

[− sinψk , cosψk ] , (40)

and thus we obtain
1

σ 2
k

JTk Jk =
1

σ 2
k d

2
k

[
− sinψk
cosψk

]
[− sinψk , cosψk ] . (41)

By defining

c2k =
1

σ 2
k d

2
k

, θk = ψk +
π

2
, (42)

and

uk = [cos θk , sin θk ]T , (43)

the expression in (41) becomes

1

σ 2
k

JTk Jk = c2k

[
cos θk
sin θk

]
[cos θk , sin θk ] = c2kuku

T
k . (44)

If sensor k is a range sensor, Jk in (11) is given by

Jk = [cosψk , sinψk ] , (45)

and thus we obtain

1

σ 2
k

JTk Jk =
1

σ 2
k

[
cosψk
sinψk

]
[cosψk , sinψk ] . (46)

By defining

c2k =
1

σ 2
k

, θk = ψk , (47)

the expression in (46) can be rewritten as

1

σ 2
k

JTk Jk = c2kuku
T
k . (48)

If sensor k is a RSS sensor, Jk in (11) is given by

Jk = −
10αk

ln(10)dk
[cosψk , sinψk ] , (49)

and thus we obtain

1

σ 2
k

JTk Jk =
100α2k

ln2(10)σ 2
k d

2
k

[
cosψk
sinψk

]
[cosψk , sinψk ] . (50)

By defining

c2k =
100α2k

ln2(10)σ 2
k d

2
k

, θk = ψk , (51)

the expression in (50) becomes

1

σ 2
k

JTk Jk = c2kuku
T
k . (52)

Using the results in (40)–(52), the information matrix
in (39) can be written in a compact form as

Mp̂ =M0 +

N∑
k=1

c2kuku
T
k (53)

where

c2k =



1

σ 2
k d

2
k

if sensor k is a bearing sensor

1

σ 2
k

if sensor k is a range sensor

100α2k
ln2(10)σ 2

k d
2
k

if sensor k is a RSS sensor,

(54)
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|Mp̂| = Mp̂(1, 1)Mp̂(2, 2)−Mp̂(1, 2)Mp̂(2, 1) (57a)

=

(
A+

1
2

N∑
k=1

c2k (1+ cos 2θk )

)(
B+

1
2

N∑
k=1

c2k (1− cos 2θk )

)
−

(
1
2

N∑
k=1

c2k sin 2θk

)2

(57b)

= AB+
A
2

N∑
k=1

c2k −
A
2

N∑
k=1

c2k cos 2θk +
B
2

N∑
k=1

c2k +
B
2

N∑
k=1

c2k cos 2θk

+
1
4

N∑
k=1

c2k (1+ cos 2θk )
N∑
k=1

c2k (1− cos 2θk )−
1
4

(
N∑
k=1

c2k sin 2θk

)2

(57c)

= AB+
(A+ B)

2

N∑
k=1

c2k +
(B− A)

2

N∑
k=1

c2k cos 2θk

+
1
4

(
N∑
k=1

c2k

)2

−
1
4

(
N∑
k=1

c2k cos 2θk

)2

−
1
4

(
N∑
k=1

c2k sin 2θk

)2

(57d)

= AB+
(A+ B)

2

N∑
k=1

c2k +
1
4

(
N∑
k=1

c2k

)2

+

(
A− B
2

)2

−
1
4

(
N∑
k=1

c2k cos 2θk

)2

−
(A− B)

2

N∑
k=1

c2k cos 2θk −
(
A− B
2

)2

−
1
4

(
N∑
k=1

c2k sin 2θk

)2

(57e)

= AB+
(A+ B)

2

N∑
k=1

c2k +
1
4

(
N∑
k=1

c2k

)2

+

(
A− B
2

)2

−
1
4

(
(A− B)+

N∑
k=1

c2k cos 2θk

)2

−
1
4

(
N∑
k=1

c2k sin 2θk

)2

. (57f)

and uk = [cos θk , sin θk ]T with

θk =


ψk +

π

2
if sensor k is a bearing sensor

ψk if sensor k is a range sensor
ψk if sensor k is a RSS sensor.

(55)

APPENDIX B
By substituting (21) into (19), the entries of the information
matrix becomes

Mp̂(1, 1) = A+
N∑
k=1

c2k cos
2 θk

= A+
1
2

N∑
k=1

c2k (1+ cos 2θk ), (56a)

Mp̂(1, 2) = Mp̂(2, 1)

=

N∑
k=1

c2k sin θk cos θk

=
1
2

N∑
k=1

c2k sin 2θk , (56b)

Mp̂(2, 2) = B+
N∑
k=1

c2k sin
2 θk

= B+
1
2

N∑
k=1

c2k (1− cos 2θk ). (56c)

Using these results, the determinant of Mp̂ is derived as
in (57), as shown at the top of the page, where the final
expression of |Mp̂| in (57f) is identical to that given in (23).
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