
Received January 16, 2021, accepted January 25, 2021, date of publication February 2, 2021, date of current version February 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3056556

Extracting Satisfiability-Preserving Modules From
the OWL RL Ontology for Efficient Reasoning
XIAOFEI ZHAO 1,2, FANZHANG LI2, AND HONGJI YANG3, (Member, IEEE)
1School of Computer Science and Technology, Tiangong University, Tianjin 300387, China
2Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou 215006, China
3School of Informatics, University of Leicester, Leicester LE1 7RH, U.K.

Corresponding author: Xiaofei Zhao (zhaoxiaofei1978@hotmail.com)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61972456, and in part by the
Open Foundation of Jiangsu Provincial Key Laboratory for Computer Information Processing Technology under Grant KJS1737.

ABSTRACT Reasoning on large ontologies has been identified as an important challenge. Concept
satisfiability is one of the core reasoning tasks in ontology engineering. To improve the efficiency of concept
satisfiability checking for OWL RL ontologies, we propose an approach for extracting modules from the
OWL RL ontology. Our approach is based on the idea that for a given concept being checked, not all of
the ontology elements are related to the checking process. By transforming the OWL RL axioms into first-
order constraints and analyzing the dependencies among the constraints, we give a strategy for deleting the
irrelevant elements; thus, a simplified ontology that preserves the original checking result can be obtained.
The experimental results obtained for a set of real-world ontologies show that our method can effectively
reduce the reasoning time, and the efficiency is increased by 1.15 times to 9.08 times.

INDEX TERMS OWL RL, ontology reasoning, module extraction, first-order constraint.

I. INTRODUCTION
As theWeb Ontology Language (OWL) recommended by the
Worldwide Web Consortium (W3C) for the unified descrip-
tion of information resources in a Web environment, OWL
2[1] enables the description of hierarchies among concepts
and the semantics of concepts and attributes through a
series of vocabularies with explicit semantics, thus becoming
the foundation for constructing semantic Web ontologies.
Among various other improvements, OWL 2 is the first that
adequately addresses the trade-off between logical expressiv-
ity and scalability that is inherent to formal knowledge rep-
resentation by specifying additional language profiles. These
profiles are OWL EL based on EL++ [2], OWLQL based on
DL-Lite [3], [4] and OWL RL [5], [6], which was designed
with rule-based implementations in mind.

The OWL RL profile imposes restrictions on the use of
OWL2 constructs so that reasoning tasks can be implemented
as a set of rules in a forward-chaining reasoning engine. It is
realized as a partial axiomatization of the OWL 2 semantics
in the form of first-order implications inspired by description
logic programs (DLPs) and pD∗, which gives it desirable

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuihua Wang .

computational properties for implementation using a standard
rule language.

Standard reasoning tasks involved in the OWL 2 ontol-
ogy include concept satisfiability, classification, and consis-
tency. Since the last two tasks can be reduced to the first
one, concept satisfiability checking has been identified as a
core reasoning task. A class C1 is satisfiable if there is an
OWL objectification that satisfies all axioms and contains
at least one object of C1. Although standard reasoning tasks
are supported by state-of-the-art OWL 2 reasoners, such as
HermiT [7], Fact++ [8] and Pellet, reasoning on large OWL
RL ontologies is an important challenge, especially in the
case of large rule sets. Improving the efficiency of OWL RL
ontology reasoning is therefore an urgent task.

To perform reasoning on a subontology with a smaller
scale, the notion of a module, i.e., a property-preserving sub-
ontology, has been proposed. Module extraction has received
much attention in recent years [9]–[11], [25]–[27]. Originally
motivated by ontology reuse [28], [29], ontology modularity
has been widely used in different areas, such as ontology
matching [30] and debugging [31], forgetting [32], [33],
or to improve reasoning [34]. In this article, we focus on
applications in ontology reasoning. The increase in expres-
siveness can make the problem of optimal module extraction
hard. As a consequence, most existing extraction algorithms

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 30833

https://orcid.org/0000-0002-4014-6253
https://orcid.org/0000-0003-2238-6808


X. Zhao et al.: Extracting Satisfiability-Preserving Modules From the OWL RL Ontology for Efficient Reasoning

FIGURE 1. OWL RL ontology for the relations between teachers and courses.

can only deal with light-weight ontology languages. Var-
ious methods have been proposed for ontology languages
ELI [12], ALCQI [13], ELH [14] and RDFS [15], [16].
To the best of our knowledge, extracting modules from the
OWL RL ontology has not been thoroughly studied thus
far.

The OWL RL ontology is shown in Fig. 1, which describes
the relationship between a Teacher and Course in a school.
To concisely express the semantics of OWL RL axioms,
we use description logic syntax throughout this article.
Axiom 1 and axiom 3 are the restrictions DataMinCardinality
and DataMaxCardinality for the data property TeacherName,
and similar restrictions for the data property CourseId are
specified by axiom 2 and axiom 4. DataPropertyDomain for
TeacherName and CourseId are specified by axioms 5∼6.
ObjectPropertyDomain and ObjectPropertyRange for object
properties teaches and supervises are specified by axioms
7∼10. Axioms 11∼13 state that Teacher has subclasses Full-
time and Parttime, and ExperimentCourse is a subclass of
Course. Axiom 14 states that supervises is a subproperty of
teaches. The last four axioms ensure that a teacher belongs
to the set of either full-time teachers or part-time teachers
(axiom 15), the set of full-time teachers and the set of part-
time teachers are disjoint (axiom 16), a teacher must teach at
least one course (axiom 17), and a course must be taught by
at least one teacher (axiom 18).

To improve the efficiency of OWL RL ontology reason-
ing, in this article, we propose a method for extracting a
satisfiability-preserving module from the OWL RL ontology.
The main idea of our method is as follows: for a given
concept CM to be checked, not all of the ontology elements
are related to the checking process. In fact, only the axioms
that may conflict with CM and the classes, data properties, and
object properties involved in these axioms are related to the
checking process; thus, other classes, data properties, object
properties and axioms can be deleted from the ontology
while maintaining the satisfiability checking result of CM .
It is obvious that the reasoning efficiency will be improved
because the checking is carried out on a simplified ontology
that contains only the related elements. Our method is based
on a strict formalization mechanism. The precise proofs for
every reduction strategy are given on the OWL RL ontology.

FIGURE 2. Module for checking the satisfiability of
Teacher u (∃supervises.ExperimentCourse).

Take Fig. 1 as an example; if the goal is to check the satis-
fiability of the concept Teacher u (∃ supervises. Experiment
Course), 10 of the 18 axioms in the original ontology will
be deleted during the extraction process, and we will obtain
the module that is shown in Fig. 2. This module is signifi-
cantly smaller than the original ontology. To further verify
the effectiveness of our method, we conducted many tests.
The experimental results show that the checking efficiency
can be significantly improved through the extraction, and the
efficiency is up to 9.08 times greater in the best case.

II. THE LOGICAL FOUNDATION OF CONSTRAINT
DEPENDENCY ANALYSIS AND MAIN IDEA
OF OUR APPROACH
A. THE LOGICAL FOUNDATION OF CONSTRAINT
DEPENDENCY ANALYSIS
In what follows, we give a brief introduction to a logical
mechanism that is closely related to this article.

Both variables and constants are called terms, denoted as t .
The atom p(t1, . . . , tn) is a predicate that acts on n terms,
t1, . . . , tn, denoted as p(t̄). If all the terms in an atom are
constants, the atom is called a ground atom. Both an atom
p(t̄) and a negative atom ¬p(t̄) are called literals, denoted
as `. A ground atom of predicate p is called an object of p.
The finite set of objects of one or more predicates is called
an objectification. The substitution π is a set of the form
{x1/t1, . . . , xn/tn} in which each variable xi is different.
The set of all xi is called the domain of the substitution π ,
denoted as domain(π ). If all ti are constants, the substitution
π is called a ground substitution. `π denotes the new literal

30834 VOLUME 9, 2021



X. Zhao et al.: Extracting Satisfiability-Preserving Modules From the OWL RL Ontology for Efficient Reasoning

that results from synchronously replacing every xi in the
literal ` with the corresponding ti through π . Similarly, ϕπ
denotes the new conjunction that results from synchronously
applying π to every literal in the conjunction ϕ. Given the
conjunction ϕ of the literals, the predicate p and the variable
x, assignmentupper(ϕ, p, x) and assignmentlower (ϕ, p, x)
denote the maximal and minimal number of ground atoms
of p, respectively, that need to be assigned to ensure that
every literal in p containing x is true. For example, when
ϕ = p(x, u) ∧ p(x, v) ∧ p(x,w) ∧ u 6= v, we obtain that
assignmentupper(ϕ, p, x) = 3 because u 6= v, v 6= w
and u 6= w, while assignmentlower(ϕ, p, x) = 2 because
w = u or w = v.

The denial constraint is a kind of rule of the form
∀t̄.ϕ(t̄) → ⊥, where ϕ is the conjunction of the literals and
⊥ is an atom that is false. Roughly, the left side of a denial
constraint denotes the conditions that will never be satisfied
by any objectification. An embedded dependency (ED) is a
kind of rule of the form ∀t̄.ϕ(t̄ϕ)→ ∨

i=1...n
∃ȳi.φi(t̄i, ȳi), where

n is a nonnegative integer. When n = 0, the right side of the
ED is empty. Therefore, the denial constraint is essentially a
special form of ED.

Given an objectification O, if O satisfies the left side
of an ED but does not satisfy its right side, we say that
O violates the ED; i.e., there is some ground substitution
π such that O |H ϕ(t̄φ)π , but there is not any ground
substitution σ such that O |H φi(t̄i, ȳi)πσ for some φi.
If objectification O violates an ED, repairing this ED means
constructing a superset O′ of O. O′ contains the necessary
objects of the predicate on the right side of this ED, and for
any ground substitution π , if O’|H ϕ(t̄φ)π , then there must
be some ground substitution σ such that for some φi, we
have O |H φi(t̄i, ȳi)πσ .
Given the set D of EDs and an objectification O, we say

that O is consistent with regard to D (denoted as O |H D)
if O does not violate any ED in D. If there is at least one
consistent objectification O with regard to D, D is said to be
satisfiable.

B. THE MAIN IDEA OF OUR APPROACH
Given an OWLRL ontology and a concept CM to be checked,
extracting a satisfiability-preserving module for CM means
deleting axioms from the original ontology while maintain-
ing the satisfiability result of CM . To achieve this goal, we
formally describe the OWLRL ontology and CM by means of
first-order logic. The OWL RL axioms and CM are translated
into a set of first-order constraints, while the task of checking
CM satisfiability is transformed into a satisfiability check of
a first-order formula. Specifically, the classes, the data prop-
erties and the object properties are formalized as first-order
predicates, while the axioms and CM are formalized as first-
order formulas. For example, the task of checking the satis-
fiability of Course is transformed into a satisfiability check
of Course(c), while the task of checking whether there is a

Course with a teacher who is not a full-time teacher is a sat-
isfiability check of Course(c)∧teaches(t , c) ∧ ¬Fulltime(t).

Because the process of satisfiability checking for the first-
order formula corresponding to CM is the process of searching
for objectifications that satisfy all the constraints as well as
CM , the checking results will not be changed if we can iden-
tify the constraints that may make CM unsatisfiable and then
delete the other constraints from the ontology. Based on this
intuition, our goal becomes distinguishing which constraints
may make CM unsatisfiable.

Next, we will analyze the cases in which certain con-
straints may make CM unsatisfiable in order to provide the
basis for deleting these constraints. As mentioned earlier,
the process of satisfiability checking for the first-order for-
mula corresponding to CM is the process of searching the
objectifications that satisfy all the constraints as well as CM ;
in other words, to decide whether CM is satisfiable is to decide
whether we could repair an objectification that satisfies CM .
Suppose that there is an objectification O1 satisfying CM ;
we cannot decide the satisfiability of CM by only using O1
if O1 violates some constraints. However, we can repair the
constraints that are violated by inserting the necessary new
objects into O1 with the prerequisite of satisfying CM . This
process is iterative because the insertion of the new objects
may cause other constraints to be violated. We iteratively
insert the new objects to repair the constraints that are violated
until either we obtain an objectification consistent with all the
constraints or there are inconsistent constraints remaining and
we cannot continue to repair. The former implies that CM is
satisfiable, and the latter implies that it is unsatisfiable.

From the above analysis, we can see that the constraints
that may make CM unsatisfiable fall into the following two
categories: (1) the constraints that will be violated when we
try to satisfy CM (or to repair the violated constraints that fol-
low) and (2) the constraints that will violate other constraints
when they are repaired. Taking Fig. 1 as an example, suppose
that we want to decide the satisfiability of Course. An objec-
tification that contains only one object of Course satisfies
Course but violates the constraint that a Course should be
taught by at least one Teacher. To repair this constraint, we
need to insert an object of Teacher related to this Course.
However, this insertion violates the constraint that a teacher
is either full-time or part-time. Therefore, the first constraint
maymakeCourse unsatisfiable, as it will be violatedwhenwe
try to satisfy CM , and its repair will violate other constraints.
The second constraint will never make Course unsatisfiable,
as whenever it is violated, we can repair it using the object
of Fulltime to replace that of Teacher, and such a repair will
not violate any other constraints. We establish a constraint
dependency graph to record such relationships between the
constraints. It should be emphasized that the purpose of this
article is not to infer the satisfiability of CM but to extract
a satisfiability-preserving subontology for CM . The analysis
of the above iterative process is performed only to clarify the
cases to which the constraints that maymake CM unsatisfiable

VOLUME 9, 2021 30835



X. Zhao et al.: Extracting Satisfiability-Preserving Modules From the OWL RL Ontology for Efficient Reasoning

FIGURE 3. An example of repair/violation interactions between EDs.

belong. In Section 5, wewill give a reduction strategy for each
case.

Our approach is divided into three steps. The first step
is to transform the OWL RL axioms into a set of first-
order constraints expressed as EDs (Section 3). The sec-
ond step is to establish a constraint dependency graph
based on these EDs (Section 4). The third step is to put
CM into the constraint dependency graph and execute the
reduction strategy and then to construct the module for CM
(Section 5).

III. TRANSFORMING OWL RL AXIOMS INTO
FIRST-ORDER CONSTRAINTS
To accurately reflect the interactions among the OWL RL
axioms and distinguish the constraints to be deleted, we need
a well-defined formalization mechanism.We conduct the for-
malization by transforming each OWL RL axiom into an ED.
First, a single first-order predicate is used to describe

every class, data property and object property. Taking
Fig. 1 as an example, we obtain the following pred-
icates: Teacher(t), Course(c), Fulltime(ft), Parttime(pt),
ExperimentCourse(ec), TeacherName(t , n), CourseId(c, i),
teaches(t, c), supervises(pt, ec).
Then, based on the semantics of the OWL 2 RL/RDF

rules described in [17], each axiom is transformed into one
denial constraint (two in the case of EquivalentClasses and
EquivalentObjectProperties). For example, DataMaxCardi-
nality for the data property CourseId in Fig. 1 (axiom 4),
i.e., ‘‘the upper bound cardinality of CourseId is 1,’’ is trans-
formed into Course(c)∧CourseId(c, i1)∧CourseId(c, i2) ∧
i1 <> i2 → ⊥. This formula states that if Course c has
different ids i1 and i2 simultaneously, then the constraint is
violated. As further examples, axiom 15 is transformed into
Teacher(t) ∧ ¬(Fulltime(t)∨Parttime(t)) → ⊥ and axiom
16 into Fulltime(t)∧Parttime(t) → ⊥. Through the above
formalization, all the axioms can be accurately described as
denial constraints.

Next, we transform each denial constraint into an equiv-
alent ED by moving all the negative literals from the
left side of each constraint to the right side and delet-
ing the negative symbols. For example, Teacher(t) ∧
¬(Fulltime(t)∨Parttime(t)) → ⊥ is transformed equiv-
alently into Teacher(t) →Fulltime(t)∨Parttime(t). Now,
we change every variable of the atoms in every ED to a
different name so that substitutions can be applied when we

match the different EDs while establishing the constraint
dependency graph.

The correspondence between the OWL RL axioms and
EDs is given in Tab. 1.
In accordance with Tab. 1, the ED corresponding to each

axiom in Fig. 1 is listed in Tab. 2.

IV. ESTABLISHING A CONSTRAINT DEPENDENCY
GRAPH BASED ON EDS
In what follows, we will establish the interaction between a
repair applied to satisfy a constraint and the violation of other
constraints resulting from applying such a repair. As men-
tioned in Section 2.1, an ED is violated by an objectification
if the objectification satisfies its left side but does not satisfy
its right side; so, the left side of each ED is the prerequisite
for violating the ED (here, we use the word ‘‘prerequisite’’
to show that the ED is not necessarily violated), while every
conjunction on the right side of the ED is a specific method
to repair it (since the insertion of a new object of every
conjunction into the objectification can repair a violation
when it occurs). Furthermore, if the right side of an ED and
the left side of another ED contain the same atom, repairing
the former ED by inserting a new object of this atom may
cause the latter to be violated (since the left side of the latter
ED may be satisfied after the insertion); hence, there is a
repair/violation interaction between two suchEDs. We record
such interactions using a constraint dependency graph.

The nodes in a constraint dependency graph are divided
into two categories: constraint nodes and repair nodes. The
left side of each ED corresponds to a constraint node (rep-
resented by a hollow circle). Each conjunction on the right
side of each ED corresponds to a repair node (represented
by a solid circle). Repair/violation interactions between EDs
are represented by directed dotted edges. For example, the
interactions among ED 7, ED 11 and ED 15 in Tab. 2 are
shown in Fig. 3. Since the insertion of an object of Teacher
to repair ED 7 may violate ED 15, we draw a directed dotted
edge from the repair node Teacher(t) of ED 7 to the constraint
node Teacher(x) of ED 15 and mark the edge as [Teacher(t),
Teacher(x)] to record the shared atom of the right side of ED
7 and the left side of ED 15. Similarly, we draw a directed
dotted edge from the repair node of ED 11 to the constraint
node of ED 15.

Now, we give the formal definition of a constraint depen-
dency graph.

30836 VOLUME 9, 2021



X. Zhao et al.: Extracting Satisfiability-Preserving Modules From the OWL RL Ontology for Efficient Reasoning

TABLE 1. Correspondence between OWL RL axioms and EDs.

Definition 1 (Constraint Dependency Graph). A constraint
dependency graph G is a directed bipartite graph denoted as
a 6-tuple<CN, RN, ES ,EP, h, g> that satisfies the following:
(1) CN is the set of constraint nodes.
(2) RN is the set of repair nodes.
(3) ES is the set of directed edges from CN to RN; for

each cn∈CN, there may be 0∼n outgoing edges to nodes in
RN, where n is a nonnegative integer, while there can only
be 1 incoming edge for each rn∈RN. For each e ∈ ES , b(e)
denotes the beginning of e and t(e) denotes the terminus of e.
We use repair(cn) to denote {rn ∈ RN |∃e ∈ ES , b(e) =
cn ∧ t(e) = rn}.
(4) EP is the set of directed edges from RN to CN; for each

rn∈RN, there may be 0∼n outgoing edges to nodes in CN, and

for each cn∈CN, there may be 0∼n incoming edges, where
n is a nonnegative integer. For each e ∈ EP, b(e) denotes
the beginning of e and t(e) denotes the terminus of e. We use
violation(rn) to denote {cn∈ CN |∃e ∈ EP, b(e) = rn∧t(e) =
cn}.
(5) Function h marks each node in CN and RN as a

corresponding conjunction of literals.
(6) Function g marks each e ∈ EP as a pair of atoms [grn,

gcn], where grn ∈ h(b(e)) and gcn ∈ h(t(e)) are atoms that
have the same predicate.

The algorithm for establishing the constraint dependency
graph is given below.

For eachED, we set up a constraint node cn ∈ CN denoting
its left side. For each conjunction on the right side of the

VOLUME 9, 2021 30837



X. Zhao et al.: Extracting Satisfiability-Preserving Modules From the OWL RL Ontology for Efficient Reasoning

TABLE 2. EDs corresponding to the axioms in the OWL RL ontology.

ED, we set up a repair node rn ∈ RN . Function h is applied
to mark every cn and every rn, and the directed solid edges
e ∈ ES from cn to rn are established. Since each ED has
one and only one constraint node, we can identify each ED
by its constraint node. If the repair node of some ED and
the constraint node of another ED contain the same atom, we
subsequently establish a directed dotted edge e ∈ EP from the
former to the latter to record the repair/violation interaction
between these two EDs; then, e ∈ EP is marked by function
g. It is important to note that there may be more than one
atom sharing the same pair of a repair node and constraint
node, and the insertion of an object of each shared atom
may result in a violation of the ED corresponding to the con-
straint node, so there may be multiple edges between one pair
of a repair node and constraint node. Through algorithm 1,
we can obtain the constraint dependency graph correspond-
ing to the set of EDs listed in Tab. 2. In the interest of
conciseness, we only give the correspondence between each
ED and the set of EDs that have incoming edges from this
ED (Tab. 3).

V. REDUCTION OF THE CONSTRAINT
DEPENDENCY GRAPH
The next task is to delete as many EDs as possible while
preserving the satisfiability result of CM . First, we transform
the first-order formula of CM into an ED and put it into the
constraint dependency graph. Then, we iteratively execute
operations to delete nondependent edges and EDs until no
more operations can be executed; thus, we obtain the reduced
graph. Taking the constraint dependency graph corresponding
to Tab. 3 as an example, suppose that the target is the satis-
fiability of Teacher u (∃supervises. ExperimentCourse); we
will obtain the result shown in Fig. 4. For the sake of clarity,
we omit the information of functions h and g. Since there are
only nine EDs and one of them is the target, the reduced graph
is significantly smaller than the original one. This means
that we only need to reason about the module with eight
axioms.

Algorithm 1 Establishment of the Constraint Dependency
Graph
Input: the set D of EDs;
Output: the constraint dependency graph G =<

CN ,RN ,ES ,EP, h, g >;
(1) Initialize CN = ∅,RN = ∅,ES = ∅,EP = ∅;
(2) For every ED d ∈ D, do:
(3) Establish the constraint node cn of d , and let CN =

CN ∪ {cn};
(4) Apply function h to mark cn;
(5) For every conjunction ϕ on the right side of d , do:
(6) Establish the repair node rn of ϕ, and let RN =

RN ∪ {rn};
(7) Apply function h to mark rn;
(8) Establish edge e from cn to rn, and let ES = ES

∪{e};
(9) Goto (5);
(10) Goto (2);
(11) For every rn ∈ RN and every cn ∈ CN , do:
(12) For every atom ar ∈ h(rn) and every atom ac ∈

h(cn), do:
(13) If ar and ac have the same predicate, then:
(14) {Establish edge e from rn to cn, and letEP =

EP ∪ {e}
(15) Apply function g to mark e as < ar, ac >; }
(16) Goto (12);
(17) Goto (11);
(18) Return G.

A. TRANSFORMATION FROM CCCMMM TO ED
Now, we transform each CM into a denial constraint¬ϕ→⊥
by making the first-order formula ϕ of CM negative. This
denial constraint, which indicates that it will be violated if
CM is not satisfiable, is subsequently transformed into an
ED, > → ϕ, through the procedure described in Section 3.
For example, the target Course will be transformed into the

30838 VOLUME 9, 2021



X. Zhao et al.: Extracting Satisfiability-Preserving Modules From the OWL RL Ontology for Efficient Reasoning

TABLE 3. Correspondence between the EDs in the constraint dependency graph.

FIGURE 4. Reduced constraint dependency graph for the target
Teacher u (∃supervises.ExperimentCourse).

ED > →Course(c). Then, we put this new ED into the
constraint dependency graph and record the repair/violation
interaction between it and the other EDs, i.e., establish the
edges e ∈ EP from the repair node of this new ED to the
constraint nodes of the other EDs. Since the left side of CM
ED is true, the corresponding constraint node does not have
an incoming edge.

B. DELETING NONDEPENDENT EDGES
By analyzing the edges and nodes of G in depth, we find
that the insertion of the beginning rn of some edges in EP
will never lead to the violation of their terminus violation(rn);
thus, such edges can be deleted from G because they will not
affect the results of the satisfiability check of CM . We call
such removable edges nondependent edges. Taking the repair
node of ED 1 in Tab. 3 as an example, we see that this node
points to the constraint nodes of ED 3 and ED 5. ED 1 and
ED 3 state that each Teacher has at least and atmost one name.
In fact, the upper-bound cardinality constraint will never be
violated by repairing the lower-bound cardinality constraint,
because if ED 1 is violated, repairing it means that the name
of the object of Teacher referred to by ED 1 does not exist at
that time. Similarly, the repair of ED 1 will never lead to the
violation of ED 5 because repairing ED 1 means that its left

FIGURE 5. EDs for deleting nondependent edges.

side Teacher(t) is true, while Teacher(t) is just the right side
of ED 5; i.e., the right side of ED 5 is already true. Therefore,
the two edges from ED 1 are both nondependent edges.
Definition 2: (Nondependent Edge). Given a constraint

dependency graph G and an edge e ∈ EP, e is called a
nondependent edge if for an arbitrary objectification O, e
satisfies one of the following conditions:

(1) O ∪ {h(b(e))} 2 h(t(e));
(2) O ∪ {h(b(e))} |H h(t(e)), and there exists a substitution

π such that O ∪ {h(b(e))} |H h(repair(t(e)))π .
In the following passages, we provide strategies for delet-

ing the nondependent edges. We describe these strategies by
using the example shown in Fig. 5, which contains two EDs:
d1 and d2. Given a repair node rn and the constraint node
cn of rn, we use increment(rn) to represent the set of all the
incremental variables in h(rn), i.e., the set of all the variables
that exist in h(rn) but do not exist in h(cn).

Theorem 1. If there is a substitution π such that
h(rn2)π ⊆h(cn1) ∪ h(rn1), where domain(π ) ⊆ increment
(rn2), then the edge [g1, g2] is a nondependent edge.

In short, whenever h(cn1) holds and we repair d1 by
inserting the object of h(rn1), h(rn2) always holds because
it is already contained in h(cn1) ∪ h(rn1); so, d2 will not
be violated, although h(cn2) may be true as a result of the
insertion of h(rn1). The relationship between ED 1 and ED
5 in Tab. 2 belongs to this case; hence, the edge between ED
1 and ED 5 is the nondependent edge that can be deleted.
Theorem 2. If for every substitution π from the atoms

of h(rn1) to the atoms of h(cn2), there is a substitu-
tion π ′ such that h(rn1)π ′ ⊆ h(cn2)\h(rn1)π , where
domain(π ′) ⊆ increment(rn1), then edge [g1, g2] is a non-
dependent edge.

VOLUME 9, 2021 30839



X. Zhao et al.: Extracting Satisfiability-Preserving Modules From the OWL RL Ontology for Efficient Reasoning

The relationship between ED 1 and ED 3 in Tab. 2 belongs
to this case. If O′ violates ED 3, then we delete the specific
object of TeacherName that was just inserted for repairing
ED 1 from the left side of ED 3. After deleting this object,
we obtain the objectification O, which still contains one
object of TeacherName; this object specifies the name of
Teacher(t). Thus, we find that O satisfies ED 1, which is
contradictory to the assumption.

Theorem 3. If the domain of variable x ∈ increment(rn1)
is infinite, g1 contains x, and there is a predicate p
in h(cn2) such that assignmentupper(h(rn1), p, x) <

assignmentlower(h(cn2), p, x), then edge [g1, g2] is a non-
dependent edge.

In short, Theorem 3 describes such a case: since
the repair of d1 performed by inserting h(rn1) into O
assigns a new value to x, d2 will never be violated.
Considering that there is an ED N whose left side contains
TeacherName(t1, n)∧TeacherName(t2, n), the repair of ED
1 will never lead to the violation of ED N, because during
the repair of ED 1, the name assigned to Teacher is different
from any existing value.

C. DELETING EDS
Now, we provide strategies for deleting EDs. Theorems 4 and
5 correspond to the first case described in Section 2.2, while
Theorem 6 corresponds to the second case.

Theorem 4. Given a constraint dependency graph G and
a set D of the corresponding EDs of G, let cn be a constraint
node such that h(cn)6= >; for an arbitrary constraint node
cni such that h(cni) = >, if there is no path from cni to cn,
then the satisfiability of D′ is equivalent to that of D, where
D′ is the set obtained by deleting the ED of cn from D.
Theorem 5. Given a constraint dependency graph G and

the set D of the corresponding EDs of G, let p be a predicate
that appears in h(cn), where cn is a constraint node. If for
every repair node rn/∈repair(cn), p is not contained in h(rn),
then the satisfiability of D′ is equivalent to that of D, where
D′ is the set obtained by deleting the ED of cn from D.
Theorem 6. Given a constraint dependency graph G and

the set D of the corresponding EDs of G, for an arbitrary
constraint node cn, if there exists a repair node rn∈repair(cn)
such that violation(rn) is empty, then the satisfiability of D′
is equivalent to that of D, where D′ is the set obtained by
deleting the ED of cn from D.

After applying Theorems 1∼6 iteratively, we obtain the
reduced constraint dependency graph shown in Fig. 4.
Then, beginning with an empty ontology, we can obtain
the satisfiability-preserving module of the original OWL RL
ontology by adding the axiom corresponding to each ED in
the reduced constraint graph to the new ontology. For the
case of EquivalentClasses and EquivalentObjectProperties,
we add these axioms to the new ontology if either of the two
EDs exists in the reduced graph, because any individual ED
is responsible for the checking result. For the graph in Fig. 4,
the module obtained through the reconstruction process is
shown in Fig. 2.

VI. EXPERIMENTAL EVALUATION
To verify the effectiveness of our method, we developed a
prototype system and carried out many experiments. All the
experiments were carried out on a platform with an Intel
Core i5-7400, 4 GB RAM, and Windows 10. We chose
three ontology repositories in the OWL 2 RL Bench-
mark Corpus [18]—ORB-Oxford Ontology, ORB-BioPortal
and ORB-MOWLCorp—as the datasets. The OWL 2 RL
Benchmark Corpus is an OWL RL repository extracted
from general-purpose repositories, including the Oxford
Ontology [19], BioPortal [20] and the Manchester OWL
Corpus [21], by filtering out the content that does not fall
under the OWL RL profile. In our tests, two reasoning
engines, HermiT and Fact++, were used to carry out the
satisfiability checking procedure.

For each repository, we randomly chose four concepts and
checked their satisfiability. Hence, each concept and each rea-
soning engine combined to form a different target to be tested.
The results of the checking time are shown in Figs. 6 ∼ 8. The
detailed experimental results are summarized in Tabs. 4 ∼ 6.

For ORB-Oxford Ontology, we randomly chose four
concepts: ∃hasDisposition.Nervous, BusinessRelationship,
GeneticInteraction and PhysicalRegionu¬Airport. The rea-
soning time comparisons for checking the satisfiability of
these concepts are shown in Fig. 6. The legend represents
the time needed for reasoning on the original ontology
and extracted module. We can see that for both HermiT
and Fact++, the reasoning time after the extraction is
dramatically less than the original reasoning time. For
ORB-BioPortal and ORB-MOWLCorp, we obtained results
similar to those shown in Fig. 6. The experimental results
summary for ORB-Oxford Ontology is shown in Tab. 4,
which includes the number of EDs in the constraint depen-
dency graph before and after the reduction, the time spent
by the extraction process and the improvement in the check-
ing efficiency due to the extraction. It is easy to see from
Section 4 that the numbers of nodes and edges in the con-
straint dependency graph increase at a polynomial rate as
the size of the original OWL RL ontology increases, and
this is reflected in the average extraction time, which is
only 8.50 s. The experimental results also show that the
average checking time is reduced by 34.51 s (HermiT) and
67.26 s (Fact++) through the extraction. The summaries
for the other two datasets are shown in Tabs. 5 and 6.
The average checking time is reduced by 31.93 s (HermiT,
ORB-BioPortal), 63.06 s (Fact++, ORB-BioPortal), 30.69 s
(HermiT, ORB-MOWLCorp) and 42.02 s (Fact++, ORB-
MOWLCorp), and the average time spent in the extraction
process, by contrast, is only 8.14 s and 5.37 s.

VII. RELATED RESEARCH
The research related to our work concerns two tasks—module
extraction and ontology partitioning—which are discussed
below.

Module extraction has received much attention in recent
years. Because extracting modules of minimal scale is known

30840 VOLUME 9, 2021



X. Zhao et al.: Extracting Satisfiability-Preserving Modules From the OWL RL Ontology for Efficient Reasoning

FIGURE 6. Checking times for ORB-Oxford Ontology concept satisfiability.

FIGURE 7. Checking times for ORB-BioPortal concept satisfiability.

FIGURE 8. Checking times for ORB-MOWLCorp concept satisfiability.

to be computationally hard, especially for highly expressive
ontology languages, practical techniques usually guarantee
that the extracted module provably captures the relevant

properties but do not guarantee that the module is minimal.
Konev et al. [12] and Gatens et al. [13] investigate module
extraction techniques for the description logics ELI and

VOLUME 9, 2021 30841



X. Zhao et al.: Extracting Satisfiability-Preserving Modules From the OWL RL Ontology for Efficient Reasoning

TABLE 4. Experimental results for ORB-Oxford ontology.

TABLE 5. Experimental results for ORB-BioPortal.

ALCQI , respectively. These techniques ensure that the mod-
ules preserve all entailments over a given vocabulary and that
the modules are depleting and self-contained. They develop a
polynomial algorithm for ELI and implement it in the system
MEX. The algorithm for ALCQI is nontractable and is imple-
mented in the system AMEX. To select the relevant axioms
from ELH ontologies, Chen et al. [14] propose a novel
module notion called the projection module that entails the
queries that follow from a reference ontology. They develop
an algorithm for obtaining the minimal projection module
for subsumption and conjunctive queries. Georgia et al. [15]
propose a method for extracting RDFS ontologies and imple-
ment it in the RDFDigest system. Based on the schema
semantics, graphical structure and object distribution, they
propose the notions of relative cardinality and degree cen-
trality, which are used to describe the degree of association
between the schema elements; thus, the candidate elements

that constitute the module can be identified. Rakebul [16]
proposes a method for extracting RDFS ontologies. The
schema elements are divided into three categories: salient
statements, similar statements and abstract statements. For
each category, a set of filtering rules is defined so that a
subset of the original schema can be obtained. By employing
a notion of level of detail for modules in the deductive setting,
Rousset and Ulliana [11] present a parametric semantics for
bounded-level modules allowing to effectively control their
size. Then, module extraction algorithms compliant with this
novel semantics are provided and implemented on top of an
RDF engine. Differently from our approach, all of these tech-
niques focus exclusively on light-weight ontology languages,
and do not permit to modularize Semantic Web datasets
designed with rule-based implementations. The closest work
to ours, at least in spirit, is [14]. However, it does not consider
inference, which makes module extraction challenging.

30842 VOLUME 9, 2021



X. Zhao et al.: Extracting Satisfiability-Preserving Modules From the OWL RL Ontology for Efficient Reasoning

TABLE 6. Experimental results for ORB-MOWLCorp.

Konev et al. [12] and Jongebloed and Schneider [22]
investigate partition-based reasoning techniques in the con-
text of description logics, where the goal is to improve the
efficiency of reasoning over an ontology by first dividing
its axioms into related partitions. The approach proposed by
Georgia et al [23] focuses on RDFS ontologies, where the
most important schema elements are selected as the cores, and
then the remaining elements are assigned to the appropriate
cores according to the dependencies among the data; thus, dif-
ferent partitions can be obtained. Although the output parti-
tions are significantly smaller than the original ontology, their
approach achieves high data redundancy, since the same data
may be allocated to multiple partitions. A semantic-aware
RDFS ontology partitioning method is presented in [24]. The
schema elements are first sorted by using an improved page
sorting algorithm, and then the cross-edges between different
partitions are reduced according to their semantics. The key
concern in partition-based reasoning is to find a partitioning
that exhibits a suitable balance among the number of parti-
tions, their size, and the number of common symbols among
partitions to enable efficient distributed reasoning. In this set-
ting, partitions are not necessarily property-preserving sub-
sets of the input ontology and are therefore fundamentally
different from the modules considered in our work.

VIII. CONCLUSION
To improve the efficiency of ontology reasoning, in this
article, we propose a method for extracting modules from
the OWL RL ontology. Given a concept to be checked, our
method can return a subset that is significantly smaller than
the original ontology without changing the satisfiability of
the concept. We begin by formalizing the OWL RL axioms
as a set of EDs and establishing a constraint dependency
graph based on this set. Then, a series of operations are per-
formed iteratively to delete the nondependent edges and the
EDs. Finally, the module is obtained through a reconstruction

process. For each reduction strategy, we give strict proofs.
To show the effectiveness of our method, we developed a cor-
responding prototype system and carried out experiments that
combine multiple datasets, reasoning engines and checking
targets. The experimental results show that our method can
significantly improve the checking efficiency. To the best of
our knowledge, the presentedwork is the first implementation
of module extraction from the OWL RL ontology.

State-of-the-art OWL RL reasoners, such as RuQAR and
Arachne, currently do not rely on modules to split the work-
load. It would be natural to integrate our techniques into these
tools for optimizing the reasoning. We believe that using
our modules for reasoning will lead to a better use of these
reasoners.

In the future, we also plan to investigate how our tech-
niques could be exploited to improve the performance of
query processing. Furthermore, we also envision potential
applications to incremental reasoning, where data is fre-
quently changing but queries and ontologies can be seen as
fixed.

REFERENCES
[1] C. Golbreich and E. K. Wallace, ‘‘OWL2 Web ontology language

new features and rationale,’’ W3C Recommendation, vol. 11, pp. 1–8,
Dec. 2012. [Online]. Available: https://www.w3.org/TR/2012/REC-owl2-
new-features-20121211

[2] C. Roberto, S. Marco, and K. Oliver, ‘‘Conceptual blending in EL++,’’ in
Proc. Int. Workshop Description Logics, 2016, pp. 31–44.

[3] C. Federico and L. Maurizio, ‘‘A framework for explaining Query answers
in DL-lite,’’ inProc. Eur.Workshop Knowl. Acquisition (EKAW), vol. 2018,
pp. 83–97.

[4] D. Zheleznyakov, E. Kharlamov, W. Nutt, and D. Calvanese, ‘‘On
expansion and contraction of DL-lite knowledge bases,’’ SSRN Electron.
J., vol. 57, pp. 1–19, Dec. 2019.

[5] C. G. Bernardo, K. Evgeny, and V. K. Egor, ‘‘Controlled Query evaluation
over OWL 2RL ontologies,’’ in Proc. 12th Int. Semant. Web Conf. (ISWC),
2013, pp. 49–65.

[6] B. Jarosaw and B. Michal, ‘‘RuQAR: Querying OWL 2RL ontologies with
rule engines and relational databases,’’ in Proc. 9th Int. Conf. Comput.
Collective Intell. (ICCCI), 2017, pp. 93–102.

VOLUME 9, 2021 30843



X. Zhao et al.: Extracting Satisfiability-Preserving Modules From the OWL RL Ontology for Efficient Reasoning

[7] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang, ‘‘HermiT: An
OWL 2 reasoner,’’ J. Automated Reasoning, vol. 53, no. 3, pp. 245–269,
Oct. 2014.

[8] T. Dmitry, ‘‘Incremental and persistent reasoning in FaCT++,’’ in Proc.
3rd Int. Workshop OWL Reasoner Eval., 2014, pp. 69–75.

[9] A. A. Romero, M. Kaminski, C. G. Bernardo, and I. Horrocks, ‘‘Ontology
module extraction via datalog reasoning,’’ in Proc. 29th AAAI Conf. Artif.
Intell. (AAAI), 2015, pp. 1410–1416.

[10] A. Armas Romero, M. Kaminski, B. Cuenca Grau, and I. Horrocks, ‘‘Mod-
ule extraction in expressive ontology languages via datalog reasoning,’’
J. Artif. Intell. Res., vol. 55, pp. 499–564, Feb. 2016.

[11] M. C. Rousset and F. Ulliana, ‘‘Extracting bounded-level modules from
deductive RDF triplestores,’’ in Proc. 29th AAAI Conf. Artif. Intell. (AAAI),
2015, pp. 268–274.

[12] B. Konev, C. Lutz, D. Walther, and F. Wolter, ‘‘Model-theoretic insep-
arability and modularity of description logic ontologies,’’ Artif. Intell.,
vol. 203, Oct. 2013, pp. 66–103.

[13] W. Gatens, B. Konev, and F. Wolter, ‘‘Lower and upper approximations
for depleting modules of description logic ontologies,’’ in Proc. 21st Eur.
Conf. Artif. Intell. (ECAI), 2014, pp. 345–350.

[14] J. Chen, M. Ludwig, Y. Ma, and D. Walther, ‘‘Computing minimal pro-
jection modules for ELH-terminologies,’’ in Proc. 16th Eur. Conf. Logics
Artif. Intell., 2019, pp. 355–370.

[15] T. Georgia, K. Haridimos, D. Evangelia, and P. Dimitris, ‘‘RDF Digest:
Efficient summarization of RDFS KBs,’’ in Proc. 12th Eur. Semant. Web
Conf. (ESWC), vol. 2015, pp. 119–134.

[16] H. Rakebul, ‘‘Generating and summarizing explanations for linked data,’’
in Proc. 11th Eur. Semant. Web Conf. (ESWC), 2014, pp. 473–487.

[17] B. Motik, B. C. Grau, and I. Horrocks. (Nov. 2012). OWL 2 Web Ontol-
ogy Language profiles. [Online]. Available: https://www.w3.org/TR/owl2-
profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

[18] OWL 2 RL Benchmark Corpus. Accessed: Dec. 21, 2019.
[Online]. Available: http://mowlrepo.cs.manchester.ac.uk/datasets/owl-2-
rl-benchmark-corpus

[19] OxfordOntology Repository. Accessed: Apr. 11, 2020. [Online]. Available:
http://www.cs.ox.ac.uk/isg/ontologies

[20] The National Center for Biomedical Ontology. Accessed: Jan. 30, 2020.
[Online]. Available: http://bioportal.bioontology.org

[21] Manchester OWL Repository. Accessed: Mar. 28, 2020. [Online].
Available: http://mowlrepo.cs.manchester.ac.uk/datasets/mowlcorp

[22] S. Jongebloed and T. Schneider, ‘‘Ontology partitioning using
E-connections revisited,’’ in Proc. 31st Int. Workshop Description
Logics, 2018, pp. 161–174.

[23] T. Georgia, K. Haridimos, and P. Dimitris, ‘‘Semantic partitioning for RDF
datasets,’’ in Proc. 11th Int. Workshop Inform. Search, Integr., Personaliza-
tion (ISIP), vol. 2016, pp. 99–115.

[24] Q. Xu, ‘‘Semantic-aware partitioning on RDF graphs,’’ in Proc. 1st Int.
Joint Conf. Asia-Pac. Web Web-Age Inform. Manag. (APWeB-WAIM),
vol. 2017, pp. 149–157.

[25] T. Özacar, Ö. Öztérk, and M. O. Ünalèr, ‘‘ANEMONE: An environment
for modular ontology development,’’ Data Knowl. Eng., vol. 70, no. 6,
pp. 504–526, Jun. 2011.

[26] C. Shimizu, A. Krisnadhi, and P. Hitzler, ‘‘Modular ontology modeling:
A tutorial,’’ Appl. Practices Ontol. Des., Extr., Reasoning, vol. 11,
pp. 54–73, Aug. 2020.

[27] W. Terkaj and P. Pauwels, ‘‘A method to generate a modular ifcOWL
ontology,’’ in Proc. 8th Int. Workshop Form. Ontol. Meet Ind., 2017,
pp. 78–89.

[28] B. CuencaGrau, I. Horrocks, Y. Kazakov, andU. Sattler, ‘‘Modular reuse of
ontologies: Theory and practice,’’ J. Artif. Intell. Res., vol. 31, pp. 273–318,
Feb. 2008.

[29] D. Lonsdale and D. W. Embley, ‘‘Reusing ontologies and language com-
ponents for ontology generation,’’ Data Knowl. Eng., vol. 69, no. 4,
pp. 318–330, 2010.

[30] E. Jimenez-Ruiz and B. C. Grau, ‘‘Logmap: Logic-based and scalable
ontology matching,’’ in Proc. Int. Semant. Web Conf. (ISWC), 2011,
pp. 273–288.

[31] M. Ludwig, ‘‘Just: A tool for computing justifications wrt ELH ontolo-
gies,’’ in Proc. 3rd Int. Workshop OWL Reasoner Eval. (ORE), 2014,
pp. 1–7.

[32] K. Patrick and R. A. Schmidt, ‘‘Count and forget: Uniform interpolation of
SHQ-ontologies,’’ in Proc. 7th Int. Joint Conf. Autom. Reasoning (IJCAR),
vol. 2014, pp. 434–448.

[33] K. Patrick, ‘‘LETHE: Forgetting and uniform interpolation for expressive
description logics,’’ Kunstliche Intelligenz, vol. 34, no. 1, pp. 866–872,
2020.

[34] A. A. Romero, B. C. Grau, and I. Horrocks, ‘‘MORe:Modular combination
of OWL reasoners for ontology classification,’’ in Proc. Int. Semant. Web
Conf. (ISWC), vol. 2012, pp. 1–16.

XIAOFEI ZHAO received the M.S. degree in com-
puter software and theory from the Dalian Univer-
sity of Technology, Dalian, China, in 2004, and the
Ph.D. degree in computer application technology
from the Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 2008.

From 2011 to 2013, he held a postdoctoral
position at the Institute of Computing Technol-
ogy, Chinese Academy of Sciences. From 2013 to
2015, he was a Lecturer with the School of Com-

puter Science and Technology, Tiangong University, Tianjin, where he has
been an Associate Professor since 2015. His research interests include
knowledge engineering and web engineering.

FANZHANG LI received the M.S. degree in com-
puter science and technology from the University
of Science and Technology of China, Hefei, China,
in 1995.

From 1997 to 1999, he was an Associate Pro-
fessor with the School of Information Science and
Engineering, Yunnan University, Kunming, where
he has been a Professor since 1999. Since 2000,
he has been working with the School of Com-
puter Science and Technology, Soochow Univer-

sity, Suzhou. His main research interests include knowledge representation
and reasoning, and dynamic fuzzy logic.

Prof. Li’s awards and honors include the IEEE CS GRC Pioneer Award
and the Provincial Science and Technology Progress Award.

HONGJI YANG (Member, IEEE) received the
B.S. and M.S. degrees in computer science from
Jilin University, Changchun, China, in 1982 and
1985, respectively, and the Ph.D. degree in com-
puter science from Durham University, Durham,
U.K., in 1994.

From 2003 to 2013, he was a Professor with
the Department of Computer Technology, De
Montfort University. From 2013 to 2017, he was a
Professor with Bath SpaUniversity. Since 2018, he

has been working with the School of Informatics, University of Leicester. His
main research interests include knowledgemodeling and creative computing.
He became a Golden Core Member of the IEEE Computer Society in 2010.

30844 VOLUME 9, 2021


