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ABSTRACT This paper aims to present secure communication based on master and slave Lorenz chaotic
systems. To apply a form of the linear synchronization control method, the mathematical models of master
and slave systems were reformed into Takagi-Sugeno (T-S) fuzzy systems. First, the Lorenz chaotic system
was completely changed to the form of the T-S fuzzy model with two sublinear systems and two boundary
fuzzy membership functions. Second, a newly adaptive disturbance observer (ADOB) was proposed with a
high convergent speed for the synchronization system, which was based on the basic nonlinear disturbance
observer. Third, adaptive sliding-mode control (ASMC) has been constructed to synchronize the master
and slave systems of a secure communication system. The stability of the proposed control algorithms
was shown by solving the Lyapunov condition with the support of Young’s inequality. The synchronization
of two nonidentical chaotic Lorenz systems was utilized to encrypt and decrypt the data. Transmitted and
decrypted signals are used to show that the proposed algorithms are adequate for the secure communication
system. To confirm the originality and power of the proposed algorithms, secure communication between
two computers was implemented perfectly through an internet router and electronic circuit communication
scenarios.

INDEX TERMS Takagi-Sugeno fuzzy system, adaptive fuzzy disturbance observer, adaptive fuzzy
sliding-mode control, secure communication system.

I. INTRODUCTION
In recent years, the 4.0 industrial revolution has taken over
all manufacturing processes in the world. This is an oppor-
tunity for all of the new technology empires. However, this
is also a challenge to all traditional technology firms. The
key to the success of this revolution is the database, using
which people can manage and control the manufacturing
process easily and completely. Following this development,
data secure communication is a requirement. Related to the
field of data secure communication many papers proposed a
solution to fulfill these requirements such as: Chen et al. [1],
who proposed a secure communication system based on com-
puters. Their paper introduced the H-infinity combined with
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sum-of-squares to synchronize and effectively reject distur-
bances. Çiçek et al. [2] proposed a new logic element chaotic
system to provide a secure communication system back-
ground. Their sliding-mode control is an important portion of
the synchronization algorithm. Their paper ignored the distur-
bance and uncertainty effects, where the resistors, capacitors,
and wire coils are all nonlinear components. Delavari and
Mohadeszadeh [3] proposed adaptive sliding-mode control
for synchronizing the fractional-order hyperchaotic systems,
where the adaptive sliding-mode control gains were obtained
by applying the particle swarm optimization method. The
decrypted signal was obtained as a precise copy of the
transmitted signal. Vaseghi et al. [4] proposed an ASMC
for secure communication in wireless sensor networks.
Abd et al. [5] considered the delay time in data transmission
with an adaptive observer to precisely synchronize the master
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and slave systems. Chang et al. [6] revealed the secure com-
munication of audio based on the field programmable gate
array devices. The basic concept of secure communication
based on a chaotic system is synchronization between the
master and slave systems. Usually, the initial conditions of
these systems are different. This leads to the master and
slave system states being different from each other. To syn-
chronize the signals between these systems, the control syn-
chronization must be implemented correctly. Few papers in
recent years have adequately presented the synchronization
problem [7]–[10]. The application of synchronization for a
network system has been investigated by papers [11]–[14].
The synchronization of memristive neural network sys-
tems was presented in [15], [16]. The synchronization of
electronic circuits is found in [17]–[20]. The synchroniza-
tion of digital and analog chaotic systems was discussed
in [21], [22]. We recently proposed a new disturbance
observer based on D-stability for synchronizing two non-
identical T-S fuzzy chaotic systems. Two experimental cases
of the proposed approach were well performed on comput-
ers with electronic circuit synchronization [23]. In previous
papers [2], [3] and [48] there are no disturbance observers
for the synchronization, which leads the performance of
the real experiment synchronization system to go awry.
In [2] sliding-mode control was proposed for synchronizing
a chaotic logic system without the existence of disturbance.
Their proposed control algorithm is good for simulation or
only under certain ideal experimental conditions. In [3] the
synchronization of a fractional-order systemwas investigated
with the existence of disturbance, where the adaptive control
was considered to synchronize and reject the disturbance.
However, the performance described in the paper could be
improved if the disturbance can be exactly compensated.
In [48] output-feedback is considered to synchronize two
chaotic systems. The disturbance observer was also ignored.
There has been little discussion on the synchronization of
chaotic systems to solve the deficiencies of previous papers.
Motivated by the weak points of the number of adaptive dis-
turbance observers and adaptive synchronization control, this
paper proposes synthetic adaptive fuzzy disturbance observer
and sliding-mode control. The proposed control algorithms
include a new adaptive fuzzy disturbance observer and an
ASMC linked together to gain the best synchronization pre-
cision. The observer and controller were designed based
on the master and slave systems with the full advantages
of T-S fuzzy control design. The observer and controller
parameters can be obtained easily. A Takagi-Sugeno fuzzy
system for master and slave is used to construct the controller
and observer only. The systems for encryption and decryp-
tion the data still maintain in the form of Lorenz chaotic
systems.

The T-S fuzzy system was investigated first in 1985 [24].
It is briefly represented by Tanaka andWang [25]. Their study
introduced the few methods of finding the T-S fuzzy mode
by converting the original nonlinear mathematical mode into
a combination of sublinear systems and fuzzy membership

functions. The T-S fuzzy modeling method plays the role
of nonlinear modeling with the sublinear systems and if-
then rules. This role executes without loss of generality of
the characteristics of the original system. The T-S fuzzy
mode can take its advantages into the construction of
a synchronized master and slave for chaotic systems
in [26]–[32]. According to the author’ best knowledge,
investigations of the disturbance observer for synchronizing
chaotic systems by application of T-S fuzzy systems imple-
mented with actual experiments are minimal. In this work, the
T-S fuzzy mathematical model was given by solving the sec-
tor nonlinearity due to its simple and intuitive nature. In the
format of the T-S fuzzy model, the Lorenz system can be used
to represent the ideas. The Lorenz system was invented by
Lorenz in 1963 [33]. The system given by Lorenz with the
butterfly effects of his work is an underlying concept of chaos
theory, in which the states of the systems have sensitive initial
conditions. The synchronization of the Lorenz system has
been investigated in [17], [34]–[36]. This paper uses the two
nonidentical chaotic Lorenz systems to do communication
background. The states of the master and slave system are
synchronized by adaptive fuzzy sliding-mode control. The
effects of disturbance and variation in the system parameters
on both systems can be completely deleted by an adaptive
fuzzy disturbance observer. This method can be called the
sump of synchronization disturbance rejection.

The disturbance observer has an important impact in con-
trol theory. It is well known as a special case of unknown
input observer. To design a disturbance observer for a
chaotic system is a complicated and expensive task. The
disturbance observer for a chaotic system can easily be
archived when the form of the chaotic system is converted to
that of a T-S fuzzy system. Related to this problem,
Selvaraj et al. [37] proposed the equivalent input disturbance-
based repetitive for a T-S fuzzy system. Sakthivel et al. [38]
proposed the disturbance and uncertainty rejection based on
a low-pass-filter technique. Hwang and Kim [39] proposed
a very effective extended disturbance observer-based integral
sliding-mode control. However, the form of disturbance was
assumed to be a specific form. These papers proposed the
disturbance without a conjunction of control and disturbance.
This paper proposes a new adaptive fuzzy disturbance to
reject perturbation values of the synchronization systems.
Our proposed method is based on the basic nonlinear dis-
turbance observer, which was revealed by Chen [40]. The
originality of our new observer is that the disturbance con-
vergence is exponentially adaptive. However, the assump-
tion that the derivative of the disturbance is located within
a constant range is still helpful. Some applications of the
basic nonlinear disturbance observer require the assump-
tion that the first derivative of the disturbance is equal to
zero [41]–[43]. To obtain an estimation of disturbance infor-
mation, the ASMC could be introduced for synchronization
control of master and slave Lorenz systems.

Sliding-mode control includes switching and equivalent
control values. These values are used to force the system
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state to converge on a predefined surface and to stabilize the
system state on that surface, respectively [44]. This kind of
control can be considered as a nonlinear control algorithm
with the main advantage of disturbance rejection ability.
The problem of sliding-mode control is chattering, which
occurs from the switching control part. Some improvements
in freedom from chatter were introduced in [45]–[47]. Those
papers discussed the concepts freedom from chatter through
the witching control gains and boundary layer thickness of
the saturation function in the switching control part. The
adaptive law was newly constructed based on the error values
of the system states. The convergence of proposed control
method was proved by using the Lyapunov condition. Recent
work [48] proposed feedback sliding-mode control and a
norm observer connected in cascade to estimate the upper
bound of the state variable for synchronizing unification of
Lorenz and Chen systems. The achievements in those papers
are benefit transmission the saw signal and the synchroniza-
tion error values are small. However, some limitations still
exists: The overshoot of the synchronization state response
could be better, the settling time could improve faster, and
the time required for the recovered signal to reach the original
signal should be more improved. This paper aims to achieve
smaller overshoots of synchronization errors, smaller settling
times, and precise tracking between the received data and sent
data. The main contributions and originality of the proposed
methods are as follows:

1. In this paper, the Lorenz chaotic system was at a
reduced scale, which was helpful for implementation
of electronic circuit. Furthermore, to construct the dis-
turbance observer for a secure communication system
easily, the mathematical model of the Lorenz chaotic
system was completely converted to the T-S fuzzy
model. In our original study the T-S fuzzy model
was only utilized for constructing the controller and
observer. This meant that the master and slave systems
were still maintained as Lorenz chaotic systems, as sys-
tems in (1) and (2). This work aims to reduce the cost
of the experimental devices without loss of generality
of master and slave system characteristics.

2. To reduce the problems of disturbance and uncertainty
effects on the secure communication system, an adap-
tive fuzzy disturbance observer with new exponential
gain was constructed to delete perturbation values of
both sides of the master and slave systems. A main
advantage of the proposed method is that the distur-
bance function gathers both the disturbance and uncer-
tainty of the master and slave systems as one term.
The gathered perturbation values can be deleted by a
single disturbance observer, which is located on the
slave system side.

3. To synchronize the master and slave systems, an adap-
tive fuzzy sliding-mode control was designed. The
chattering of the sign function was deleted mostly by
a simply adaptive law. The adaptive law was originated
by integrating the absolute error of the synchronization

state. The main chattering caused by switching control
gain was minimized by a suitably adaptive gain.

4. To verify that the proposed control algorithms are
corrected completely, they were implemented in a
MATLAB simulation, computers communicated via
an internet router, and experiments on the electronic
circuits were performed.

The proposed control algorithms were used to solve the
synchronization problem of two chaotic systems informing
T-S fuzzy models. The first derivative of the disturbance
is somehow deleted by the adaptive fuzzy sliding-mode
control under the Lyapunov condition with the support of
Young’s inequality. Furthermore, the adaptive values are eas-
ily obtained by integrating the absolute tracking error values.
Remark 1: The MATLAB simulation and experiments are

used to show that the effects of disturbance on both master
and slave can be gathered and deleted by a single distur-
bance observer. The communications of the computers and
electronic circuits are used to verify the proposed control
algorithm.

This article is organized in the following manner: An intro-
duction to trends in research, the proposed method concept,
and its originality are given in the first section. The math-
ematical models of the system and problem description are
given in the second part of the paper. Third, the synchroniza-
tion algorithm and disturbance and uncertainty estimator are
presented clearly in the third section. Fourth, an illustrative
example of the study is given using MATLAB simulation,
experiments in communication between computers via an
internet router, and experiments on the electronic circuits.
Finally, the conclusions and suggestions for future work are
given.
Notations : A > 0 is a positively defined matrix. A < 0

is a negative defined matrix. I is the identity matrix. A−1 is
the inverse matrix of A. If s = [s1 . . . sn]T and s ∈ Rn

then sign(s) = sign[s1, . . . , sn]T , and sign(s) = |s|
s =

[ |s1|s1 . . . ,
|sn|
sn
]T .

II. MATHEMATICAL MODELLING AND PROBLEM
DISCRIPTION OF THE MASTER AND SLAVE SYSTEM
The Lorenz system presented in [33] can be rewritten with
fully described disturbance and system parameter variation
on three channels of the system as follows:

ẋ1(t) = (δ +1δ)(x2(t)− x1(t))+ dx1(t)
ẋ2(t) = x1(t)(ρ +1ρ − x3(t))− x2(t)+ dx2(t)
ẋ3(t) = x1(t)x2(t)− (β +1β)x3(t)+ dx3(t)

(1)

where x1(t), x2(t), and x3(t), are the system states: δ, ρ,
and β are defined constants: dx1(t), dx2(t), and dx3(t) are
the disturbance values on x1(t), x2(t), and x3(t), respectively.
1δ,1ρ, and 1β are the system parameter variation values.
The constant values of system (1) were selected as δ = 10,
ρ = 28, and β = 8/3. The system states of the system (1)
were chosen out of the range [−15; 15]. The electronic circuit
is not suitable illustrate chaotic characteristics. This paper
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modified the scale of the Lorenz system (1) without loss
of the general characteristics of the original system. The
modifications are x1(t) → x(t)/10, x2(t) → y(t)/10, and
x3(t)→ z(t)/20. System (1) can be written as follows:

ẋ(t) = (δ +1δ)(y(t)− x(t))+ dx(t)
ẏ(t) = x(t)(ρ +1ρ − 20z(t))− y(t)+ dy(t)
ż(t) = 5x(t)y(t)− (β +1β)z(t)+ dz(t)

(2)

The system state x is now a subset of [−5; 5]. System (2) can
be converted into a new form as follows: ẋ(t)
ẏ(t)
ż(t)

 =
 −δn +1δ δn +1δ 0
ρn +1ρ −1 −20x(t)

0 5x(t) −βn +1β


×

 x(t)
y(t)
z(t)

+
 dx(t)
dy(t)
dz(t)

 (3)

Assumption 1: System (3) is warranted to work under
outside and inside perturbations: these values of disturbance
and uncertainty must be assumed to be bounded as follows:
The disturbance values are bounded |dx(t)| < ξdx ,

∣∣dy(t)∣∣ <
ξdy, and |dz(t)| < ξdz. The system parameter variations are
bounded |1δ| ≤ ξδ, |1ρ| ≤ ξρ, and |1β| ≤ ξβ , respectively,
where ξdx , ξdy, ξdz, ξδ, ξρ, and ξβ are all positively defined.

Estimation of the disturbance term in system (1) is a
complicated task. There are no physical sensors that can
be used to measure these values directly. For this reason,
the mathematical model could be suitably changed so that the
disturbance observer/estimator can be applied to compensate
the problem values. This paper uses T-S fuzzy mathematical
modeling to build both the controller and observer. To give
the reader a better understanding of the T-S fuzzy modeling
method, the system is considered as follows:{
χ̇ (t) = f m(x(t), u(t))χ (t)+ gm(x(t), u(t))u(t)+ d(t)
y(t) = h(x(t), u(t))χ (t)

(4)

where f m, gm, and hm are the smooth functions of the nonlin-
ear system. System (4) can be converted to a T-S fuzzy model
as follows:

χ̇ (t) =
r∑
i=1

ωi(χi(t)){(Aiχ (t)+1Aiχ (t))+ (Biu(t)

+1Biu(t))+ Did(t)}
y(t) = Cχ (t)

(5)

where χ (t) ∈ Rn×m, u(t) ∈ Rp×m, and y(t) ∈ Rq×m are
the system state, the control input, and the system output
vectors, respectively. d(t) ∈ Rk×m is the disturbance. Ai ∈
Rn×n,Bi ∈ Rn×p, and C ∈ Rq×n are the state approximate
matrices.1Ai ∈ Rn×n is the uncertainty approximate ofA and
1Bi ∈ Rn×p is the uncertainty approximate ofB, respectively.
Di ∈ Rn×k is the approximate matrix of the disturbance.
χi(t) is used as the membership values of the T-S fuzzy
systems.

Assumption 2: The system (5) can work within some con-
dition of the perturbations boundary as follows: The distur-
bance value is bounded |Did(t)| < ξd , and the variation
values are bounded |1Ai| ≤ ξ1Ai, and |1Bi| ≤ ξ1Bi ,

respectively. ξd , ξ1Ai, ξ1Bi are all positively defined.
Assumption 3: To more easily obtain the disturbance and

uncertainty without loss of generality of estimate these val-
ues separately, the assumption of a group of disturbances
and uncertainty 1Aix(t) + 1Biu(t) + Did(t) = EiL(t) is
given where Ei ∈ R3×3 a defined constant matrix, and
L(t) = [L1(t), L2(t), L3(t)]T is the lumped disturbance and
uncertainty.
Remark 2: Bi and Ei should be selected as the iden-

tity matrices to more easily design the disturbance and
uncertainty.

System (5) could be simplified as follows: χ̇ (t) =
r∑
i=1

ωi(χi(t)){Aiχ (t)+ Biu(t)+ EiL(t)}

y(t) = Cχ (t)

(6)

The conversion of system (4) to (5) could be executed by
applying the variable scheduling χi(t) ∈ [−χmin(t), χmax(t)].
The weighting function of the T-S fuzzy modeling method is
represented as follows:ω

l
0(χl) =

χ lmax − χl(·)

χ lmax − χ
l
min

ωl1(χl) = 1− ωl0

(7)

where χ lmax is the maximum system state, and χ lmin is min-
imum system state; and ωl0(χl) and ωl1(χl) are the fuzzy
membership functions for each variable function. System (3)
consists of a single variable and the system then can be
converted to the T-S fuzzy form as follows: ẋ(t)
ẏ(t)
ż(t)

 =
 −δn +1δ δn +1δ 0
ρn +1ρ −1 −20x(t)

0 5x(t) −βn +1β


×

 x(t)
y(t)
z(t)

+
 dx(t)
dy(t)
dz(t)

 (8)

By applying the T-S fuzzy modeling method with an opera-
tion of the sector nonlinearity rule, system (8) can be obtained
as the mathematical model in the form of Eq. (6) with the
system parameters defined as follows:

ω1(θ (t)) =
xmax + x(t)
xmax − xmin

and ω2(θ (t)) =
xmax − x(t)
xmax − xmin

.

A1 =

−10 10 0
28 −1 −100
0 25 0

 ,A2 =
−10 10 0

28 −1 100
0 −25 0

 ,
B1 =

1 0 0
0 1 0
0 0 1

 ,B1 = B2,E1 = E2 =

1 0 0
0 1 0
0 0 1

 ,
C = [1 0 0], and xi(t) ∈ [−5, 5].
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The trajectory of the system states and its phase portraits
of the Lorenz system with these above parameters and ini-
tial conditions of χ (0) = [0.1, 0.1, 0.1]T are shown
in Figure 1 below.

FIGURE 1. The rescaled Lorenz system states trajectories: (a) x-axis state
value, (b) y-axis state value, (c) z-axis state value.

The system states show that the rescaled system does not
lose the generality characteristics of chaotic phenomenon.
The rescaled system states in Figure 1 are used to show that
the Lorenz system is chaotic and nonperiodic. It is suitable for
encryption and decryption of the data of secure communica-
tion applications. The phase portraits of the rescaled Lorenz
system are shown as following Figure 2 below.

The system states phase portraits showed the conversion of
the Lorenz system mathematical model without loss of gen-
erality. An ordinary differential equation with variable step
size was used to simulate systems (2) and (3). To implement
these Lorenz concepts in electronic circuit, time scaling is
one of the most important factor after range of the states. The
time scaling is an important factor for selecting the electronic
components, and transferring the transmission signal, due to
the device’s frequency bandwidth, etc. To rescale the time

FIGURE 2. The rescaled Lorenz system phase portraits: (a) yx-axis phase
trajectory, (b) zx-axis phase trajectory, and (c) zy-axis phase trajectory.

scales of the Lorenz chaotic system without the loss of gen-
erality characteristics, the capacitor and resistor values of the
differential parts can be changed suitably. This paper reduced
the time scale down 1000 times by changing the capacitors
and resistor values. The initial values of the master and slave
systems are can also be defined by these changes.
Remark 3: The MATLAB simulation and computer com-

munication experiment scenarios used the rescaled state value
systems. The electronic circuit communication used the sys-
tem with rescaled states and times.

The system states and phase portraits are given
in Figure 3 below.

The three system states in Figure 3 show that the electron-
ics implementation is applicable without loss of the origi-
nal characteristics of the Lorenz chaotic system in (1). For
more details of the rescaled Lorenz system characteristics,
the system phase trajectories are displayed in Figure 4 below
to illustrate the rescaled Lorenz system behaviors.

By using the Lorenz system to illustrate the ideas of data
secure communication due to its nonperiodic and chaotic
behaviors, two nonidentical Lorenz systems were designed as
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FIGURE 3. The Lorenz system states trajectories on a microsecond scale:
(a) system state on x-axis, (b) system state on y-axis, (c) system state on
z-axis.

show in Figures 19 and 21 in the Appendix section. The initial
conditions of the system can be represented by using differ-
ent capacitor and resistor values for differential operations.
To achieve precise signal transmission, the synchronization
control must have qualified requirements. This paper uses
the Lorenz system in the form of system (1) to construct
the master and slave systems. The form of this system is

FIGURE 4. The Lorenz system states phase portraits on a microsecond
scale: (a) yx-axis phase trajectory, (b) zx-axis phase trajectory, (c) zy-axis
phase trajectory.

described as follows:
ẋm(t) = (δ +1δm)(ym(t)− xm(t))+ dxm(t)
ẏm(t) = xm(t)(ρm +1ρm − 20zm(t))− ym(t)+ dym(t)
żm(t) = 5xm(t)ym(t)− (β +1βm)zm(t)+ dzm(t)

(9)

where m is used to represent the master term; 1δm,1ρm,
and 1βm represent the parameter variations of the
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master system; and dxm(t), dym(t), dzm(t) are disturbances of
x-, y-, z-axis of the master system. All the system distur-
bances and uncertainty are assumed to fulfill assumption 1.
System (9) can be converted into T-S fuzzy format in
system (6) and represented as χ̇m(t) =

r∑
i=1

ωi(xm(t)){Aiχm(t)+ EiLm(t)}

ym(t) = Cχm(t)

(10)

To obtain the precisely decrypted signal from the master
transferred to the slave system, the control input could be
introduced to the slave system. The slave system mathemati-
cal mode is then represented as follows:
ẋs(t) = (δ +1δs)(ys(t)− xs(t))+ dxs(t)+ uxs(t)
ẏs(t) = xs(t)(ρs +1ρs − 20zs(t))− ys(t)

+dys(t)+ uys(t)
żs(t) = 5xs(t)ys(t)− (β +1βs)zs(t)+ dzs(t)+ uzs(t)

(11)

where s is used to represent the slave term; 1δs,1ρs, and
1βs represent the parameter variations of the master system;
and dxs(t), dys(t), dzs(t) are disturbances of the x, y, z axis of
the slave system, respectively. Disturbance and uncertainty
values are assumed fulfill assumption 1. The conversion of
the slave system into a T-S fuzzy system is shown as follows: χ̇s(t) =

r∑
i=1

ωi(xs(t)){Aiχs(t)+ Bius(t)+ EiLs(t)}

Ys(t) = Cχs(t)

(12)

Remark 4: All the disturbances and system parameter
variations of the master and slave systems have to fulfill
assumptions 1 to 3. It is not possible to know exactly the
disturbances and uncertainty boundaries. The term of lumped
disturbance and uncertainty should accord with remark 1. The
initial conditions of these systems are chosen differently.

The states error of master and slave systems is represented
by

e = χm − χs (13)

This paper used ym and ys to encrypt and decrypt the sig-
nal, respectively. By reference, the important signal before
encryption is bm and the signal after decryption is am. The
requirement is that am = bm in all cases. The encrypted signal
is ym + am. The decrypted signal is

bm = (ym + am)− ys (14)

The precision transfer am = bm is fulfilled if the tracking
error states of master and slave e(t)→ 0 as time proceeds to
infinity. To obtain this goal, this paper proposed a synthetic
adaptive fuzzy disturbance observer and sliding-mode control
to synchronize the master and slave systems.

III. SYNTHETIC ADAPTIVE FUZZY DISTURBANCE
OBSERVER AND SLIDING-MODE CONTROL FOR
CHAOTIC SECURE COMMUNICATION SYSTEMS
This section presents the adaptive fuzzy disturbance observer
and ASMC for synchronizing the states of two nonidenti-
cal chaotic systems. The structure of this section is as fol-
lows: (a) The adaptive fuzzy disturbance observer is briefly
introduced with the previous problem and our contributions.
(b) The ASMCwith freedom from chatter is given. (c) A syn-
chronization and stability analysis is represented to illustrate
the effectiveness of the proposed method.

A. ADAPTIVE FUZZY DISTURBANCE OBSERVER
To estimate the perturbation values of a chaotic system is
a complicated or expensive task and especially for the esti-
mation of disturbance and uncertainty for a chaotic synchro-
nization system. For softening the cost of estimation of the
unwanted terms, this study proposed a fuzzy disturbance
observer with a highly convergent speed, which was con-
structed based on the disturbance observer of Chen [40]. Chen
proposed a basic nonlinear disturbance observer to estimate
the disturbance of the continuous-time system as follows:

Ẋ (t) = a1X (t)+ a2u(t)+ a3d(t) (15)

The disturbance was constructed as follows:
ρ1(t) = −Lda3ρ1(t)− Ld (a1X (t)+ a2u(t)+ a3ρ2(t))
ρ2(t) = LdX (t)
d̂(t) = ρ1(t)+ ρ2(t)

(16)

The convergence of the disturbance error was proved as

˙̃d(t) = ḋ(t)− Lda3d̃(t) (17)

The convergence speed was fixed as the term exp(−Lda3).
Furthermore, since it is requested that the first derivative of
the unknown disturbance is goes to zero, this is a problem of
the proposed nonlinear disturbance. Our paper [19] recently
proposed a new disturbance observer without the assumption
of ḋ(t) = 0. That disturbance observer perfectly archived it.
This paper proposes a new form of disturbance without loss
of originality without the assumption ḋ(t) = 0. However,
ḋ(t) is assumed to be located within a fixed range. This value
can definitely be deleted by the adaptive sliding-mode con-
trol. The form of the new disturbance observer is as follows:
ρ1(t) = −Lda3ρ1(t)− Ld (a1X (t)+ a2u(t)+ a3ρ2(t))
ρ2(t) = LdX (t)
d̂(t) = α̂(t)(ρ1(t)+ ρ2(t))

(18)

Proof 1: Disturbance observer convergence.
The derivative of observed disturbance is

˙̂d = α̂(t)(ρ̇1(t)+ ρ̇2(t))

= α̂(t)(−Lda3ρ1(t)− Ld (a1X+ a2u+ a3ρ2(t))+ Ld Ẋ (t))

= α̂(t)(−Lda3ρ1(t)− Ld (a1X (t)+ a2u(t)

+ a3ρ2(t))+ Ld (a1X (t)+ a2u(t)+ a3d(t)))
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= α̂(t) (−Lda3(ρ1(t)+ ρ2(t))+ Lda3d(t))

= α̂(t)
(
Lda3d̃(t)

)
(19)

or

˙̃d(t) = ḋ(t)− α̂(t)Lda3d̃(t) (20)

Remark 5: If the sliding mode can delete the term ḋ(t), the
disturbance error will go to zero with exponential speed.

Applying the new disturbance observer to synchronization
between the master and slave systems first requires a form
of Eq. (15). This study uses the derivative of the error state
between master and slave system to obtain the goals.

ė(t) = χ̇m(t)− χ̇s(t)

=

r∑
i=1

ωi(xm(t)){Aiχm(t)+ EiLm(t)}

−

r∑
i=1

ωi(xs(t)){Aiχs(t)+ Bius(t)+ EiLs(t)} (21)

where E = E1 = E2 leads
r∑
i=1
ωi(xm(t))EiLm(t) = ELm(t)

and
r∑
i=1
ωi(xs(t))EiLs(t) = ELs(t), then Eq. (21) can be

simplified as follows:

ė(t) =
r∑
i=1

ωi(xm(t)){Aiχm(t)}

−

r∑
i=1

ωi(xs(t)){Aiχs(t)+ Bius(t)} + EL̄(t) (22)

EL̄(t) is the total value of the perturbation values of both
master and slave system.
Assumption 4: The synchronization system can work if the

disturbance and uncertainty of each master and slave system
are bounded or the total disturbance and uncertainty values of
both master and slave system is assumed to be

∣∣∣ ˙̄L(t)∣∣∣ ≤ 4.
Remark 6: The total disturbance and uncertainty values

of both master and slave can be gathered together as one
unique term, and its sum can be deleted by the disturbance
observer. The observer should be designed on the slave side
to calculate all disturbance and uncertainty values.
Remark 7: Nonidentical chaotic systems are used to repre-

sent two different chaotic systems.
By substituting Eq. (18) to model in Eq. (22), the adaptive

fuzzy disturbance observer is represented as follows:

ṗ(t) = −LdEp(t)− Ld (
r∑
i=1
ωi(xm(t))Aixm(t)−

r∑
i=1
ωi(xs(t))Aixs(t)− Bius(t)+ Eq(t))

q(t) = Lde(t)
ˆ̄L(t) = α̂(t)

r∑
i=1
ωi(xs(t))(p(t)+ q(t))

(23)

Taking the derivative of the sum of the disturbance yields

˙̂
L̄(t) = α̂(t)

r∑
i=1

ωi(xs(t))(ṗ(t)+ q̇(t))

= α̂(t)
r∑
i=1

ωi(xs(t)){−LdEp(t)

−Ld (
r∑
i=1

ωi(xm(t))Aixm(t)

−

r∑
i=1

ωi(xs(t))Aixs(t)− Bius(t)+ Eq(t))+ Ld ė(t)}

= α̂(t)
r∑
i=1

ωi(xs(t)){−LdE(p(t)+ q(t))

−Ld (
r∑
i=1

ωi(xm(t))Aixm(t)−
r∑
i=1

ωi(xs(t))Aixs(t)

−Bius(t)+ Eq(t))+ Ld
r∑
i=1

ωi(xm(t))Aixm(t)

−

r∑
i=1

ωi(xs(t))Aixs(t)

−LdBius(t)+ LdEL̄(t)} (24)

Since
r∑
i=1
ωi(xs(t)) = 1 and

r∑
i=1
ωi(xm(t)) = 1, Eq. (24) can be

simplified as

˙̂
L̄(t) = α̂(t)

r∑
i=1

ωi(xs(t))(−LdEp(t)− LdEq(t)+ LdEL̄(t))

(25)

or

˙̂
L̄(t) = α̂(t)LdE

r∑
i=1

ωi(xs(t) ˜̄L(t) (26)

where ˜̄L(t) = L̄(t)− ˆ̄L(t) is the sum of the disturbance error
value. Subtracting both sides of Eq. (26) by ˙̄L(t) leads to the
derivative of the sum of the disturbance errors, yielding

˙̃
L̄(t)(t) = ˙̄L(t)− α̂(t)LdE

r∑
i=1

ωi(xs(t) ˜̄L(t) (27)

The derivative value of the sum of the disturbance ˙̄L(t) can be
softened mostly by using adaptive sliding-mode control. The
disturbance observer can estimate the unknown perturbation
values precisely when α̂(t)LdE is positively defined. The
exponential convergence speed of the disturbance observer
can be adaptively designed as follows:

˙̂α(t) = α0

t∫
0

|ei(τ )| dτ (28)

The stability condition is given in the final of this section.
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FIGURE 5. The synchronization output signals: (a) xm and xs signals, (b) ym and ys signals, (c) zm and zs signals, (d) yx-m and yx-s
phase portraits, (e) zx-m and zx-s phase portraits, (f) zy-m and zy-s phase portraits, and (g) synchronization state error values.

B. ADAPTIVE FUZZY SLIDING-MODE CONTROL
To design sliding-mode control for synchronizing two non-
identical chaotic systems is not complicated task. However,
to design a disturbance observer for this operation is not
so simple. This paper proposes a new adaptive fuzzy dis-
turbance observer for estimating disturbance and uncertainty
values of synchronization chaotic systems following the T-S
fuzzy model control design. At this point, the sliding-mode
control can be easily provided. Furthermore, the problem of

sliding-mode chattering will be softened by an adaptive law.
The sliding-mode surface is proposed as follows:

s(t) = e(t)+ λ

t∫
0

e(τ )dτ (29)

Taking the first derivative of Eq. (29) yields

ṡ(t) = ė(t)+ λe(t) (30)
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FIGURE 6. Transmitted and received data of secure communication
between two nonidentical Lorenz systems in the first 3.5 seconds.

FIGURE 7. Tested and estimated disturbance on both master and slave
Lorenz systems: (a) tested and estimated disturbance signals on x-axis,
(b) tested and estimated disturbance signals on y-axis, (c) tested and
estimated disturbance signals on z-axis.

Substituting Eqs. (13) and (22) into Eq. (30) with the feed-
back of the disturbance observer leads to

ṡ(t) =
r∑
i=1

ωi(xm(t)){Aiχm(t)}

−

r∑
i=1

ωi(xs(t)){Aiχs(t)+ Bius(t)} + E ˜̄L(t)+ λe(t) (31)

TABLE 1. The outcomes of our paper and paper [48].

FIGURE 8. The experimental setup of computer communication.

Solving Eq. (31) by considering ṡ(t) = 0 can produce the
equivalent control value as follows:

ueqs(t) = [BTi Bi]
−1BT

{
r∑
i=1

ωi(xm(t)){Aiχm(t)} + E ˜̄L(t)

+λe(t)−
r∑
i=1

ωi(xs(t)) {Aiχs(t)}

}
(32)

where eqs refers to the equivalent control value of the sliding-
mode control. This paper selected the switching control value
to be as simple as possible for implementation in the elec-
tronic circuit. That is, the switching control is just about a
sinusoidal function. However, to improve the precision of
tracking between master and slave system states, adaptive
switching control is designed. The switching control value
was also given as follows:

usws(t) = −[BTi Bi]
−1BT k̂(t)sign(s(t)) (33)

The word sws is used to represent the switching control for
slave system. The fuzzy sliding-mode control is constructed
by using fuzzy membership functions of the T-S fuzzy master
and slave system states.
Definition 1: sign(·) is a signum function with

sig(γ ) =


1 if γ > 0
0 if γ = 0
−1 if γ < 0

(34)
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FIGURE 9. The synchronization output signals: (a) xm and xs signals,
(b) ym and ys signals, (c) zm and zs signals.

FIGURE 10. The synchronization states’ error for x-, y-, and z-axis.

Basically, chattering comes from the switching control gains
and in the boundary layer thickness of the switching control
functions. This paper used the sign function to construct the
switching control value. Chattering will be reduced signifi-
cantly by the adaptive control as follows:

˙̂k(t) = k0

t∫
0

|ei(τ )| dτ (35)

FIGURE 11. Tested and estimated disturbance on both master and slave
systems: (a) tested and estimated disturbance on x-axis, (b) tested and
estimated disturbance on y-axis, and (c) tested and estimated
disturbance on z-axis.

FIGURE 12. Transmitted and received signals in first 3.5 second.

The effectiveness of the proposed control method is given in
the following section.
Lemma 1: Young’s inequality: if a, b, m and n are all

defined as positive real numbers and fulfill 1
a +

1
b = 1, then

m · n ≤
1
a
ma +

1
b
nb. (36)
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FIGURE 13. Secure communication system based on electronic circuit
design.

C. STABILITY OF SYNCHRONIZATION CONTROL ANALYSIS
To confirm that the control and observer are truly necessary to
the data secure communication systems, the synchronization
must be fulfilled with the slave system states precisely track-
ing the master system trajectories. The necessary condition of
convergence is given by combining the sliding-mode control
and disturbance observer feedback.

ė(t) =
r∑
i=1

ωi(xm(t)){Aiχm(t)} −
r∑
i=1

ωi(xs(t)){Aiχs(t)

+Bi[[BTi Bi]
−1BT {

r∑
i=1

ωi(xs(t)){Aiχs(t)} − E ˜̄L(t)

−λe(t)−
r∑
i=1

ωi(xm(t)){Aiχm(t)}}}]+ E ˜̄L(t) (37)

or

ė(t) = −λe(t) (38)

The sufficient condition of the stability is when the sliding-
mode gain λ is positively defined.With λ > 0, distance track-
ing error values of the master and slave system exponentially
converge to zero in infinite time. The sufficient condition of
convergence can be selected as

V (t) =
1
2
sT (t)s(t)+

1
2
α̃T (t)α̃(t)+

1
2
k̃T (t)k̃(t)

+ |s(t)|
1
2
˜̄LT (t) ˜̄L(t) (39)

Taking the derivative of Eq. (39) yields

V̇ (t) = sT (t)ṡ(t)− α̃T (t) ˙̂α(t)− k̃T (t) ˙̂k(t)

+ |s(t)| ˜̄LT (t)
˙̃
L̄(t)(t) (40)

By using the combination of Eqs. 28, 30, 32, 33, and 35 to
solve Eq. (40) leads to

V̇ (t) = sT (t)(−k̂(t)sign(s(t)))− α̃T (t) ˙̂α(t)− k̃T (t) ˙̂k(t)

+ |s(t)| ˜̄LT (t)[ ˙̄L(t)− α̂(t)LdE
r∑
i=1

ωi(xs(t) ˜̄L(t)] (41)

FIGURE 14. Chaotic Lorenz system behavior: (a) y-x phase trajectory,
(b) z-x phase trajectory, z-y phase trajectory.

or

V̇ (t) = −k̂(t) |s(t)| − α̃T (t)α0

t∫
0

|e(τ )| dτ − k̃T (t)k0

×

t∫
0

|e(τ )| dτ + |s(t)| ˜̄LT (t)[ ˙̄L(t)− α̂(t)LdE
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FIGURE 15. Synchronization of electronic circuit implementation: (a) xm and xs signals, (b) tracking error value e1, (c) ym and ys signals, (d) tracking
error value e2, (e) zm and zs signals, and (f) tracking error value e3.

×

r∑
i=1

ωi(xs(t) ˜̄L(t)] ≤ −k̂(t) |s(t)| −
∣∣∣α̃T (t)∣∣∣α0

×

t∫
0

|e(τ )| dτ −
∣∣∣k̃T (t)∣∣∣ k0 t∫

0

|e(τ )| dτ

+ |s(t)|
∣∣∣ ˜̄L(t)∣∣∣ [ ˙̄L(t)− α̂(t)LdE] (42)

Applying lemma 1 and assumption 4 to Eq. (42) yields

V̇ (t) ≤ −k̂(t) |s(t)| −
∣∣∣α̃T (t)∣∣∣α0 t∫

0

|e(τ )| dτ −
∣∣∣k̃T (t)∣∣∣ k0

×

t∫
0

|e(τ )| dτ + |s(t)| [
1
2

∣∣∣ ˜̄L(t)∣∣∣2 + 1
2
42]

− |s(t)| α̂(t)LdE
∣∣∣ ˜̄L(t)∣∣∣ (43)

Eq. (43) can be simplified as follows:

V̇ (t) ≤ |s(t)| [−k̂(t)+
1
2

∣∣∣ ˜̄L(t)∣∣∣2 + 1
2
42]−

∣∣∣α̃T (t)∣∣∣α0
×

t∫
0

|e(τ )| dτ −
∣∣∣k̃T (t)∣∣∣ k0 t∫

0

|e(τ )| dτ

− |s(t)| α̂(t)LdE
∣∣∣ ˜̄L(t)∣∣∣ (44)

Inequality (44) satisfies V̇ (t) < 0 if α0 > 0, k0 > 0, and

k̂(t) ≥ 1
2

∣∣∣ ˜̄L(t)∣∣∣2 + 1
24

2.

The proposed controller and observer for synchroniz-
ing two nonidentical chaotic Lorenz systems has been
implemented through simulation and experiments. First,
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FIGURE 16. Disturbance and uncertainty values. (a) estimated
disturbance on x-axis, (b) estimated disturbance on y-axis,
and estimated disturbance on z-axis.

FIGURE 17. Data transmission structure.

the proposedmethod is simulated inMATLAB software. Sec-
ond, these concepts were experimentally implemented using
computer communication via an internet router and electronic
circuits. The details are given in the following section.

FIGURE 18. The original secret signal and its decrypted signal.

IV. ILLUSTRATIVE EXAMPLES
Basically, data secure communication can be successfully
archived based on the precision of the synchronization
between master and slave systems. The precision of synchro-
nization is based on the control synchronization and distur-
bance rejection. This section presents the synchronization
and data secure communication of two nonidentical chaotic
Lorenz systems by using MATLAB simulation, computer
communication, and implementation of electronic circuit.
There are three cases in this studywith the same systems, con-
troller, and observer. The parameters of controller/observer
for the MATLAB simulation and experiment were identical.
These parameters differ from those used in the implemen-
tation of the electronic circuit. The MATLAB simulation
and experiment are given with the aim that the tested dis-
turbance to both master and slave systems can be deleted
together by the adaptive fuzzy disturbance observer. Third,
the synchronization of two nonidentical chaotic Lorenz sys-
tems was implemented on the electronic circuit as shown
in Figures 19 to 25 in the Appendix. Otherwise, a distant
square wave signal can be transmitted securely to the slave
system.

A. SYNCHRONIZATION AND ITS APPLICATION OF TWO
LORENZ CHAOTIC SYSTEMS BASED ON MATLAB
SIMULATION
The initial state of the master system is χm(0) =

[0.1, 0.1, 0.1]T . The initial conditions of the slave system
are χs(0) = [−0.05, −0.15, 0.1]T . The control gains were
selected as

λ =

 200 0 0
0 200 0
0 0 200

 , k0 =
 0.01 0 0

0 0.01 0
0 0 0.01

 ,
Ld =

 4 0 0
0 3 0
0 0 4

 , and α0 =
 100 0 0

0 100 0
0 0 100

 .
due to the total disturbances on both systems being con-
sidered as a unique term of disturbance. The disturbance
observer effectiveness will affect the system state behav-
ior. However, there is a very small effect on the outcome
of the control synchronization system. The characteristic of
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FIGURE 19. Master system circuit.

FIGURE 20. T-S fuzzy system calculation of master system.

two nonidentical systems are still completelymaintained. The
synchronization results are given in Figure 5 below.

To show the effectiveness of the proposed controller and
observer, the synchronizationwas used to encrypt and decrypt
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FIGURE 21. Slave system in form of chaos system with support of controller and observer.

the sawwave data. The data transmission is fulfilled as shown
in Eq. (14), achieved as in Figure. 6 below.

The received data tracked the sent data very precisely. The
observer responses to the tested disturbance in both master
and slave systems are shown in Figure 7 below.

The tested disturbance on both master and slave systems
were mostly estimated. The master and slave systems states

precisely tracked each other with tracking error values of e1 ∈
[−4.14 · 10−3; 3.34 · 10−3], e2 ∈ [−3.82 · 10−3; 4.24 · 10−3]
and e3 ∈ [−7.14 ·10−3; 6.00 ·10−3] for master and slave syn-
chronization error on the x-, y-, and z-axis, respectively. The
maximum reaching time approximately 0.03 second with no
overshoot values. The estimated disturbance signals tracked
the tested disturbance precisely, and the precision is increased
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FIGURE 22. T-S fuzzy system calculation of slave system.

as time goes to infinity. The outcomes in this paper could
be used to compare with those in a previous paper [48] to
emphasize the effectiveness of the proposed algorithms. The
comparison is shown in following Table 1 below.

The simulation of the proposed algorithms performed
well when synchronizing the master and slave systems. The
Lorenz chaotic system is retained for constructing master
and slave mathematical models. In these systems the T-S
fuzzy mode was used only for design of the controller
and observer. The proposed algorithms are introduced to
computer and electronic circuit communication in the next
section.

The transmitted and received signals shown in Figure 6 are
used to compare with similar signals in [48]. Our achieved
result is better than the achievement of secure communication
in [48].

B. EXEPERIMENTAL BASIC FOR SYNCHRONIZATION AND
ITS APPLICATION TO TWO LORENZ SYSTEMS: THE
COMPUTER COMMUNICATION APPROACH
The experimental setup is shown in Figure 8 below. The
computer configurations are an Intel(R) Core(TM) i7-2600
CPU @ 3.40 GHz, 4.00 GB RAM for the master and an
Intel(R) Core(TM) i7-2600 CPU@3.40 GHz, 10.0 GBRAM
for the slave system. Both of these computers use the 64-bit of

FIGURE 23. Data secure scheme.

Windows 10. The output signals of the computers communi-
cation experiment are shown in Figure 9 below. The parame-
ters of controller and observer for computer communication
were selected to be the same as the communication parame-
ters in the simulation section.
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FIGURE 24. Adaptive fuzzy sliding mode control for secure communication system.

The master and slave system state error is calculated as fol-
lowing Figure 10 below. The master and slave system states
precisely track each other. The tracking error values are e1 ∈
[−4.13 · 10−3; 3.29 · 10−3], e2 ∈ [−3.74 · 10−3; 4.34 · 10−3]

and e3 ∈ [−7.20 · 10−3; 5.96 · 10−3] for the synchronization
error on the x-, y-, and z-axis, respectively. The maximum
reaching times is approximately 0.03 second, and there are no
overshoot values. The disturbance observer response signals
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FIGURE 25. Adaptive fuzzy disturbance observer for secure communication system.
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are shown as The compensation values of disturbance and
uncertainty can be calculated precisely with highly adaptive
gains. The y-axis states of master and slave are used to
encrypt and decrypt the signal. The sent and received signals
are shown in Figure 12 below.

The sent and received signals on the master and slave
systems are mostly equal. For more detail about our proposed
control algorithm effectiveness, the proposed control meth-
ods can be applied to electronic circuits in the next section.

C. SYNCHRONIZATION AND ITS APPLICATION OF TWO
LORENZ CHAOTIC SYSTEMS BASED ON EXPERIMENTS:
AN ELECTRONIC CIRCUIT’ COMMUNICATION APPROACH
This section presents the secure communication of chaotic
Lorenz systems based on the electronic circuit. The exper-
imental setup is shown in Figure 13. where the initial
conditions of master and slave systems are determined by
the capacitor and resistor values. Details are given in the
Figures in the Appendix section. The general chaotic Lorenz
system is shown as Figure 19 in the Appendix. The exper-
imental electrical voltage was supplied by a GWINSTEK
GPC-6030-D Dual tracking with a machine fixed at 5 V.
The measurement device is a Tektronix DPO 2014B digital
phosphor oscilloscope. The Lorenz system characteristics are
shown in Figure 14 below.

The system phase trajectories of the actual experiment are
quite similar to the simulation in MATLAB software.

The control gains were selected as follows:

λ =

 150 0 0
0 150 0
0 0 150

 , k0 =
 0.01 0 0

0 0.01 0
0 0 0.01

 ,
Ld =

 1 0 0
0 0.1 0
0 0 0.1

 , and α0 =
 100 0 0

0 100 0
0 0 100

 .
The Lorenz system characteristics are shown. The synchro-
nized given output of two Lorenz chaotic systems in the
electronic circuit experiment is obtained as follows:

The synchronization between two nonidentical Lorenz sys-
tems was successfully achieved. The system states error val-
ues are very small, that is e1 ∈ [−200 mV; 180 mV], e2 ∈
[−200 mV; 220 mV], and e3 ∈ [−220 mV; 220 mV] for
master and slave synchronization error on the x-, y-, and
z-axis, respectively. The synchronization maximum track-
ing error is about 2%. To obtain the above desired goals,
the adaptive fuzzy sliding mode and disturbance observer
were constructed together in the synchronization system. The
actual circuit implementation always contains disturbance
and uncertainty due to the changing of the main capacitors,
resistors, and of the parasite capacitor, resistor values on the
main circuit boards. There is a need to improve disturbance
and uncertainty estimation to improve the performance of
the synchronization method. The system’ perturbations are
shown in Figure 16 below.

The synchronization result is the backbone of the data
secure communication system. The secure communication

given in Eq. (14) can be used to transfer data from the master
to slave system areas by following Figure 17.

The secret data transmission from master system to slave
with 40 (m) distance can be obtained very precisely after
encryption and decryption. The secure communication is exe-
cuted by the adaptive fuzzy disturbance observer and adaptive
fuzzy sliding-mode control. The sent data and received data
are shown in Figure 18 below.

The sent and received signals are mostly identical.

V. CONCLUSION
This paper presented synthetic adaptive fuzzy sliding-mode
control and a disturbance observer to synchronize two non-
identical Lorenz systems, which was taken advantage of to
communicate securely across a distance of 40 m between
master and slave system in electronic circuits experiments.
The adaptive fuzzy sliding-mode control and adaptive dis-
turbance observer were completely constructed based on
T-S fuzzy systems. The adaptive law was simply defined
by integrating the system state tracking error value. The
synchronization tracking error values of the master and
slave systems are quite small, with an imprecision of
approximately 2% for implementation of the electronic cir-
cuits, in which the display devices may be main cause of
imprecision. Furthermore, the disturbance and uncertainty
of the master and slave systems were perfectly deleted by
a new adaptive fuzzy disturbance observer. The simulation
of MATLAB and communication of computers were used to
show the effectiveness of the disturbance observer. The com-
puter and electronic circuit implementations were utilized to
verify that the proposed synchronization control algorithms
are necessary for secure data transmission. This suggests our
future work on actual data transmission, where the electronic
components are key points and the adaptive symmetry phe-
nomenon can be considered.

APPENDIX
See Figures 19–25.
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