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ABSTRACT Agrochemicals, which are very efficacious in protecting crops, also cause environmental
pollution and pose serious threats to farmers’ health upon exposure. In order to cut down the environmental
and human health risks associated with agrochemical application, there is a need to develop intelligent
application equipment that could detect and recognize crops/weeds, and spray precise doses of agrochemical
at the right place and right time. This paper presents a machine-learning based crop/weed detection system
for a tractor-mounted boom sprayer that could perform site-specific spraying on tobacco crop in fields.
An SVM classifier with a carefully chosen feature combination (texture, shape, and color) for tobacco plant
has been proposed and 96% classification accuracy has been achieved. The algorithm has been trained and
tested on a real dataset collected in local fields with diverse changes in scale, orientation, background clutter,
outdoor lighting conditions, and variation between tobacco and weeds. Performance comparison of the
proposed algorithm has beenmade with a deep learning based classifier (customized for real-time inference).
Both algorithms have been deployed on a tractor-mounted boom sprayer in tobacco fields and it has been
concluded that the SVM classifier performs well in terms of accuracy (96%) and real-time inference (6 FPS)
on an embedded device (Raspberry Pi 4). In comparison, the customized deep learning-based classifier has
an accuracy of 100% but performs much slower (0.22 FPS) on the Raspberry Pi 4.

INDEX TERMS Crop and weed detection, machine-learning, precision agriculture.

I. INTRODUCTION
Tobacco, considered as a cash crop in many countries
(e.g., China, Brazil, India, and Pakistan), is a highly agro-
chemicals dependent crop. According to Food and Agricul-
ture Organization (FAO) of the United Nations, approxi-
mately 6 million metric tons of tobacco was produced on
approximately 5 million hectares of land worldwide (in over
125 countries) in 2018. Huge amounts of agrochemicals
are applied at various times on tobacco over its three-
month growing season to get maximum yield. It has drastic
environmental impact when compared to other agricultural
cash crops and causes health and socioeconomic problems
for populations specially in low-income and middle-income
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countries. Even in the United States, approximately 27 mil-
lion pounds of different agrochemicals (which included dif-
ferent insecticides, fungicides, and suckercides) were applied
on tobacco from 1994 to 1998 [1].

Tobacco plants are mostly affected by pests and diseases,
which necessitates the application of large quantities of pes-
ticides on it. The tobacco industry considers pesticides sig-
nificantly essential for the economical production of tobacco
[3], [4]. Therefore, the heavy reliance on pesticides for con-
trolling pests in tobacco fields exacerbates the risk of farmers’
exposure to pesticides. Tobacco farmers in Pakistan fail to
protect themselves from getting exposed to pesticides pri-
marily for two reasons: firstly they are unaware of the risks
associated with pesticide exposure due to lack of informa-
tion, and secondly they still use the conventional rudimen-
tary pest/weed control techniques due to lack of availability
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FIGURE 1. Intra-Row Spacing Between Tobacco Plants.

of advanced application equipment. The environmental and
human health risks associated with agrochemical applica-
tion are mainly a result of imprecise spraying i.e. over-
application or uniform broadcast spraying indiscriminately
throughout the entire field. Therefore, there is a need to
develop intelligent application equipment that could detect
plants/weeds and precisely spray at the right place and right
time.

Tobacco plants are commonly grown in straight rows,
and the intra-row spacing between the plants ranges from
0.5 to 1 meter, as shown in Figure 1. Performing broad-
cast spraying indiscriminately on the entire tobacco field,
especially at the early growth stages, results in unnecessary
off-the-target application on bare soil between any two con-
secutive plants, which therefore accounts for environmental
pollution and pesticide leaching into the ground.

Hence, for conducting selective/site-specific pesticide
spray only on tobacco plants, the application equipment must
have the ability to detect and classify tobacco plants from
weeds, know where they are located inside the rows, and then
accordingly spray only on the targets i.e. tobacco plants.

A major problem encountered in the implementation of
vision-based site-specific spraying is the accurate detection
and classification of crop plants and weeds. To address the
challenge of precise spraying, considerable efforts have been
made by the research community for developing scientific
and technological solutions for spot/site-specific application
of agrochemicals, see for example [2]–[7]. All these solutions
have focused on the use of techniques that automatically
senses plants and weeds in real-time, and sprays agrochemi-
cals in a targeted style, that too only when necessary. A state
of the art plant-weed sensing and monitoring solutions can be
found in [8]. Several surveys on machine vision and imaging
processing techniques i.e. pre-processing, segmentation, fea-
ture extraction, and classification for plant and weed detec-
tion are available in [9]–[13].

The work presented here is part of a larger project aimed to
design, fabricate, and test a precision agricultural sprayer for
crops and orchards. The project has been carried out at the
Advanced Robotics and Automation Laboratory, one of the
11 affiliated labs with Pakistan’s National Center of Robotics
and Automation. This paper focuses on the development of

a machine learning-based tobacco crop/weed detection and
classification system for site-specific spraying.

The main objectives of this research work can be summa-
rized as follows:

1) Development of a vision-based learning model for the
detection and classification of crops and weeds.

2) Selecting the best machine learning algorithm for accu-
rately predicting/detecting tobacco crop and weeds.
Performance of the selected algorithm must be tested
on real datasets collected from farmfields under natural
conditions.

3) Integration of the learning-based vision model in the
tractor-mounted spraying system for autonomously
performing spot/site-specific spraying.

This paper is divided into seven sections. Section 2 presents
a critical assessment of related work available in the liter-
ature. A description of the steps involved in vision-based
classification problems is presented in Section 3. Exper-
imental hardware of the spraying system is briefly dis-
cussed in section 4. Results and discussion of traditional
machine-learning algorithms applied to the tobacco and
weeds classification problem, the development framework,
and real-time performance comparison on different target
machines are presented in Section 5. Section 6 concludes the
paper.

II. STATE OF THE ART
Significant attention has been paid by the scientific commu-
nity to the development of precise and targeted spraying solu-
tions for reducing pesticide/herbicide inputs so as to cut-down
their side effects [14]–[22]. Discerning the crop field scenario
i.e. understanding the crop/plant requirements or finding
where weeds are located in field is an essential key com-
ponent of intelligent precision spraying system. Computer
vision, a technology that enables a machine to automatically
analyze and understand the visual world, has been immensely
improved over the past few years and is therefore now
widely being used in many precision agriculture problems.
Numerous vision-based crop and weed detection techniques,
in the aforementioned context, have been proposed [22]–[31].
A brief summary on the previous work done on vision-
based crop/weed detection and classification is presented
in Table 1.
Despite the significant progress in the field of computer

vision, there still exist limited robust vision-based crop-weed
detection techniques that perform well in complex scenarios
such as fields densely populated with weeds, crop plants
that highly resemble with weeds, varying illumination levels,
different soil textures, and varying shape/color features at
different growth stages.

Most of the studies conducted thus far on crop/weed detec-
tion are not experimentally validated on tough and chal-
lenging real-world datasets like the one presented here in
this paper. This research study proposes and evaluates the
application of SVM classifier for the detection tobacco plants
and weeds in real field scenarios.
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TABLE 1. Summary of Vision-based crop/weeds detection and classification.
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FIGURE 2. Sample images from ARAL tobacco dataset.

III. METHODOLOGY OF MACHINE LEARNING-BASED
IMAGE CLASSIFICATION
The following sub-sections describe the methodology to
develop the proposed classification solution for tobacco and
weeds.

A. COLLECTION OF DATASET
Acquiring a pertinent dataset is the most tedious yet crucial
and important task in computer vision applications.

The process of data collection becomes even more chal-
lenging and expensive in the agricultural domain because
dedicated fields are needed so that a large number of
RGB, or in some cases near-infrared (>720mm), or red light
(620-680mm) spectral images of crops/weeds can be gath-
ered at different growth stages and under various lightening
conditions.

In the work presented here, a dataset was created that
consisted of images of weeds and tobacco plants captured in
Pakistan in the tobacco fields at Swabi, Khyber Pakhtunkhwa
(34◦09’07.3"N 72◦21’36.2"E). The images were taken at
early growth stages at various day timings and different light-
ing conditions using digital color cameras. The images in the
dataset were categorized into: (1) tobacco, and (2) weeds.
Each category had 97 images that were used to train different
machine learning models for the detection and classification
tasks. For the deep learning algorithm, the dataset comprised
of 2200 labeled images of tobacco and weeds. Figure 2 shows
sample images from the aforementioned dataset.

B. IMAGE PRE-PROCESSING
In image pre-processing, several image enhancement tech-
niques, including normalization, conversion to binary or
grayscale, alignment and resizing, noise removal, and

contrast/sharpness enhancement, etc., are used for improving
raw images.

In the given application, the most important pre-processing
step was to segment the green objects (tobacco and weeds) in
images from the background (soil). This was performed by
converting the RGB images into the CIE L*a*b color system
which works like human perception. L*a*b is a uniform
three-dimensional real number space with the three dimen-
sions (channels) being: L* (luminosity from black to white);
a* (hue along green to red); and b* (saturation along blue to
yellow).

FIGURE 3. Image histogram (a* channel).

For the given dataset, segmentation is performed using the
Otsu’s method for which the threshold is computed using the
a* channel due to its bimodal nature (Figure 3). This was not
possible in the RGB space. The resulting segmented image is
shown in Figure 4 with soil being automatically removed.
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FIGURE 4. Segmented image.

C. FEATURE SELECTION AND EXTRACTION
The feature selection and extraction step is themost important
step that involves the extraction of some selected features, i.e.
vital information, from the pre-processed images. The most
common features chosen in image classification problems are
(a) geometric features, such as shapes, contours, lines, edges,
points, and (b) color features, such as intensity and color
histograms. When choosing features for the tobacco/weeds
classification problem, the best candidates to consider were
color, texture, or shape features. The following subsections
present justification and description of the selected features.

1) TEXTURE FEATURES
Texture in an image is a measure of spatial distribution of
intensities in a neighborhood.

FIGURE 5. Example image for texture segmentation.

It was observed that tobacco images have a repeating pat-
tern of local variations in intensities. This can be demon-
strated by applying Gabor filters to an example image
(Figure 5). The Gabor filter which is a group of Gabor
wavelets automatically determines the boundaries between
tobacco and non-tobacco objects (weeds) based on their
texture characteristics. The extracted Gabor texture features
are input to a k-means clustering algorithm. This classifies
textured region of tobacco from other texture classes (weeds)
as shown in Figure 6. It is evident from Figure 6-(a) that the
tobacco plant has prominent texture features as compared to
the surrounding objects.

Other statistical methods to characterize texture include
Gray Level Co-occurrence Matrix (GLCM) or gray-level
spatial dependence matrix, contrast, entropy, and homogene-
ity etc. These methods give a set of measurements (feature
vector) of texture in a region.

In order to compute the Haralick texture features for
an image, the GLCM, P, is first computed which is a
two-dimensional array that stores the number of pairs of
pixels with similar gray levels.

Pd [i, j] = nij (1)

where nij is the number of occurrences of pairs of gray levels
(i, j) at offset d = (dx , dy) in the image. The elements of
Pd [i, j] are normalized to lie between 0 and 1 and, therefore,
can be interpreted as probabilities. A variety of numeric
features [52] are extracted from the GLCM to quantify the
image texture characteristics.

For the given dataset, the offset pair d = (0, 1) was used
which means the horizontal proximity of the pixels (i.e., pixel
next to the pixel of interest in the same row) was considered
to calculate second order statistics based on a symmetri-
cal co-occurrence matrix. The following metrics were com-
puted and used in the classification: angular second moment
(Energy), contrast, correlation, variance, inverse difference
moment (homogeneity), sum average, sum variance, entropy,
different variance, difference entropy, informationmeasure of
correction I and II, and maximal correlation coefficient.

2) SHAPE FEATURES
Geometric moments are statistical features. For a given image
function f (x, y), geometric moments of order (p + q) are
calculated as,

mpg =
N∑
x=1

N∑
y=1

f (x, y)(x)p(y)q (2)

For a region of interest, m00 is the area (calculated from a
binary image). From this, the center of gravity is calculated
as x̄ = m10/m00 and ȳ = m01/m00.
The central moments which are translation-invariant are

then computed as,

µpq =

N∑
x=1

N∑
y=1

f (x, y)(x − x̄)p(y− ȳ)q (3)

Scale-invariance is achieved by,

vpg =
µpq

µ
(1+(p+q)/2)
00

, p+ q ≥ 2 (4)

Rotation-invariance is achieved by,

φ1 = v20 + v02 (5)

φ2 = (v20 − v02)2 + v211 (6)

Invariance to general linear transformations is achieved by,

I1 = µ20µ02 − µ
2
11 (7)
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FIGURE 6. Texture-based segmentation using Gabor filters (Orientation between [0, 135] degrees in steps of 45 degrees).

I2 = (µ30µ03 − µ21µ12)2

− 4(µ30µ12 − µ
2
21)(µ21µ03 − µ

2
12) (8)

ψ1 =
I1
µ4
00

(9)

3) COLOR FEATURES
For color features extraction, color moments are used which
provide distinctive features to differentiate objects based on
their color. The basic idea of color moments is based on prob-
ability distribution of image intensities which can be charac-
terized by moments such as mean, variance, and skewness.
These three are the central moments of intensity distribution
and can be easily found for all color spaces such as RGB,
HSV, and L*a*b. In this work, central moments of input
images (in L*a*b color space) are found giving ninemoments
in total. These are defined as follows [53]:

Ei =
N∑
j=1

1
N
pij (10)

σi =

√√√√√(
1
N

N∑
j=1

(pij − Ei)2) (11)

si = 3

√√√√√(
1
N

N∑
j=1

(pij − Ei)3) (12)

where i is the color channel, pij is the j-th image pixel of i-th
color channel and N = m × n (m, n being the number of
columns and rows in the image, respectively).

D. CLASSIFICATION
The dataset, comprising of images, was labeled and split
into two sub-sets, namely, training and testing datasets. The
training dataset was used for training the classificationmodel,
and the testing dataset was used for verifying the accuracy of
the classifier.

The training data is formulated as:

(x1, y1), (x2, y2), . . . , (xn, yn). (13)

where x represents a feature vector [x1, x2, . . . , xm]T and y
represent the class (desired output) to which the input feature
vector belongs.

The selection of an apt classifier that is best suited to the
nature of data and application/problem being targeted is a
real challenge. For the data formulated in the previous step,
the classification algorithm (also called regression) aims at
learning a function f which approximates the training data in
the best possible manner i.e.,

yi = f (xi) ∀i ∈ 1, . . . , n. (14)

The algorithm finds regularities in patterns of the labeled
training data and can be classified using various approaches
such as those based on the type of learning (supervised
vs. unsupervised), assumption on the distribution of data
(parametric vs. non-parametric), and modeling technique
(statistical vs. neural network approaches). The output of
this step in the given context is to distinguish plants from
weeds as well as classify weeds further based on their species
(single-leaf or whole plant) and their leaf size (i.e. broad-
leaf or narrow-leaf).

Lastly, in order to evaluate the accuracy and generalization
ability of the algorithm, all possible sources of errors in
classification are identified. Labeled test data is used for eval-
uating the learned function. Once the errors in classification
results are minimized to a certain threshold, the algorithm is
deployed and exposed to unseen data.

In deep learning based object detection, a Convolutional
Neural Network (CNN) is used which is a specialized type of
deep Artificial Neural Networks (ANN) and is widely used
as a state-of-the-art in computer vision. The architecture of a
CNN consists of an array of layers of neurons such as convo-
lutional layers, max-pooling or average-pooling layers, and
fully-connected layers. Following here, the steps involved in
the deep learning approach have been explained.

Initially, an image as a 3D object (with length, width, and
height being the dimensions) is input to the neurons in the
first layer. Subsequent layers are divided into two general
categories (Figure 7):
1) Feature extraction layers: Inspired by the working of

the biological visual cortex, only sub-regions or small
patches of the input image (also called receptive fields)
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FIGURE 7. Deep learning framework for object detection.

connect to the neurons in the convolutional layer which
applies sliding convolutional filters (learned automat-
ically) to the input to generate feature maps. The
neurons in the hidden layers perform further convolu-
tion operations and sub-sampling (pooling) to extract
(learn) feature hierarchies which are the intermediate
representations of the input data and are helpful to
discriminate amongst object classes.
The feature extraction network is typically a pre-trained
CNN such as AlexNet, VGG16, Residual Network
(ResNet) 18, MobileNet v2, GoogLeNet and others.
With minor modifications, these architectures can be
used for new predictive modeling applications. For the
current problem, ResNet18 was selected for feature
extraction due to its low requirement for lower com-
putation resource and training time.

2) Classification layers: The extracted features (local
information) are then input to the units in one or more
fully-connected layers which multiplies them by a
weight matrix and adds to them a bias vector to dis-
cover underlying patterns specific to the dataset. These
feature vectors then serve as inputs to the output layers
(softmax and classification) that computes the output
classification probabilities.

A log loss between the predicted class labels and the
ground-truth class labels is used as an evaluation metric for
the classification model. The deep learning algorithm itera-
tively improves the classification accuracy (thereby reducing
loss) using an optimization algorithm such as Stochastic Gra-
dient Descent with Momentum (SGDM) to reach at a trained
model that has an optimized set of parameters (i.e., weights
and biases).

IV. FLUID FLOW CONTROL OF THE PROTOTYPE SPRAYER
The fluid flow control system of the sprayer is represented via
a block diagram shown in Figure 8, and the prototype model

FIGURE 8. Block diagram of precision agricultural sprayer.

of the boom sprayer developed is shown in Figure 9. The flow
control system comprised of a controller and essential hard-
ware (sensor and actuators etc.) for controlling the application
rate according to the field requirements. A fixed displacement
diaphragm pump (PRO-PUMPS DP-80, 12V DC) driven by
an electric DC motor was used to deliver the agrochemical
at 5.5 liters/min and at a desired pressure of 60 psi to the
four flat fan nozzles mounted on the boom. Each nozzle was
controlled individually via ON/OFF solenoid valves which
thereby allowed for more accurate application of agrochem-
icals. Application rate through the nozzles was controlled by
changing duty cycles of the PWM solenoid valves (UNI-D
UW-15, 12V DC) according to the feedback (reference) sig-
nal obtained from the vision system. A 100% duty cycle i.e.
a fully ON signal resulted in maximum flow rate whereas a
zero percent duty cycle i.e. an OFF signal resulted in no flow.

Information about flow rate and pressure in the system was
provided to the control unit by two flow meters (YS-201 Hall
Effect FlowMeter) and a pressure sensor (WIKAI TypeA-10,
15 Bar). An electronic proportional control valve (BURKET
1094, 24V DC, 4 – 20mA) was used to maintain the desired
pressure in the system. When the pressure in the system
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FIGURE 9. Precision agricultural sprayer.

exceeded the set pressure due to closure of any outlet/nozzle,
the EPV mounted on the by-pass return line regulated the
excess flow back to the tank. An additional line controlled by
a solenoid valve was used for agitation purposes. The pump’s
flow output and pressure were set greater than the boom’s
flow and pressure requirement in order to compensate for
the additional flow required for agitation and line pressure
losses. Information about the ground speed of the tractor
was obtained via a rotary incremental encoder (OMRON
E6H-CWZ6C, 1000 P/R) mounted on the front wheel of the
tractor.

V. RESULTS AND DISCUSSION
A. DESCRIPTION OF THE DEVELOPMENT FRAMEWORK
For real-time inference the commonly used portable devices
include the NVIDIA Jetson Nano, Jetson TX1, and Rasp-
berry Pi 4. For the implementation of this work, a Python
virtual environment in Python 3 was setup on a Raspberry
Pi 4 (Model B with 4 GB RAM) which had the Raspbian
Stretch Linux distribution running on it. The vision system
also included a Raspberry Pi camera and a Vision Processing
Unit (VPU) i.e., Intel Movidius Neural Compute Stick (NCS)
as shown in Figure 10. The Raspberry Pi camera module
version 2.0 has an 8-megapixel Sony IMX219 sensor, a physi-
cal sensor of size 3. 6×2.76mm, a resolution of 3280× 2464,
and a frame rate of 60 FPS (at 1080p). The camera
was mounted at a height of 1.8 meters facing downward.

FIGURE 10. Vision system (Raspberry Pi 4, Intel Movidius Neural Compute
Stick 2, and PiCam).

The popular open source neural network API Keras was
used which runs on top of the default Google TensorFlow
backend engine. Different reasons to choose Keras include
its modularity, speed, and ease of use.

For comparison, image features were learned using a pre-
trained deep neural network i.e., convolutional neural net-
work (CNN) on a laptop with MATLAB Deep Learning and
Statistics and Machine Learning Toolboxes 2020b. To extract
image features, the pre-trained deep network ResNet18 archi-
tecture [54] was used which is pre-trained on ImageNet. Like
other networks, ResNet18 extracts features in a hierarchical
fashion where the network’s layers extract low-level features
followed by the extraction of high-level features by deep
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FIGURE 11. SVM with shallow features from ResNet18.

TABLE 2. Accuracy during training (cross validation).

TABLE 3. Accuracy during prediction.

hidden layers. For the task at hand, ResNet18 was modified
by replacing its last (output) layer with an SVM classifier.
Originally the last layers of a CNN network outputs probabil-
ities of each label for a given input image. These probabilities
are calculated by an activation function based on outputs of
the previous (hidden) layers, weights, and a bias. For an SVM
classifier, these probabilities can be treated as features and are
used for training.

The generalization ability of a CNN model depends on
the number of feature maps learned by the hidden layers.
In the proposed algorithm, the number of hidden layers was
decreased and its effect on the performance (both its accu-
racy and training time) of the network as a feature extractor
was studied. As a result, the 13th intermediate layer of the
network was used for activation (Figure 11) which computes
256 feature maps, each of size 14 × 14, and gives the same
accuracy as that of the original network. Reducing size of the
network helped improve the processing time during training
and validation.

FIGURE 12. Real-time object detection.

For further comparison, the customized deep learning-
based object detection was compared with a similar deep
learning approach i.e., a Single Shot Detector (SSD). For
training, a dataset of 364 tobacco imageswas usedwhere each
image contained at least one instance of a labelled tobacco
plant. The dataset was split into test (70%) and validation
(30%) sets. As explained in the previous section, the SSD
architecture has two sub-networks: (1) feature extraction net-
work, and (2) a classification network. For feature extraction,
a pretrained MobileNet-v2 network was fine-tuned. The sub-
sequent detection sub-network composed of a few convolu-
tional layers and a fully-connected layer that modified the
MobileNet-v2 architecture into a single-class SSD network
for tobacco detection. Like before, the network input size
used was 224× 224× 3. For data augmentation, the images
in the training set was randomly flipped and scaled.

To deploy the deep learning application on the Inte’s
Movidius Vision Processing Unit (VPU), the Intel’s
Open Visual Inference and Neural network Optimization
(OpenVINO) kit has been used. The Intel Distribution
of OpenVINO toolkit 2021.1 for Windows 10 provides
CNN-based deep learning inference engines for all the Intel
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TABLE 4. Comparison of frame rates (in hertz) for the algorithms presented.

hardware categories i.e., CPU, GPU, and VPU. Other compo-
nents of the toolkit installed included the Intel Deep Learning
Deployment Toolkit, the Model Optimizer (that converts
Caffe/TensorFlow/MXNet/ONNX models to the Intermedi-
ate Representation format) andOpenModel Zoo (a repository
of pre-trained models).

B. RESULTS AND DISCUSSION
Accuracy of the proposed approach in this study is shown
in Tables 2 and 3. Figure 12 shows the detection result of
tobacco plant in real-time.

Table 4 summarizes result of the real-time performance
comparison on different target machines.

VI. CONCLUSION
The research work presented in this paper deals with the
detection of crop (tobacco) and weeds by utilizing RGB
cameras mounted on a boom sprayer in a real field. A classi-
fication and detection framework based on SVM was built
that could detect crops and weeds, and extract features
in real-time. Accuracy and real-time performance analysis
was conducted for the traditional SVM and the deep learn-
ing algorithm. Moreover, the dataset presented herein was
taken on real tobacco fields having multifaceted natural sce-
narios i.e. high weed densities, overlapped and occluded
weeds by tobacco plants, varying illumination levels due to
sunny/clouded weather conditions and day timings, different
soil humidifies, varying orientations of plant leaves, and soil
deposits on leaves of tobacco plants and weeds. Thus, the said
dataset helped in providing a truly tough and comprehensive

assessment of the machine learning and deep learning-based
detection and classification models.

It was observed that the fusion of color moments in L*a*b
space, Haralick texture features, and Hu shapemoments gives
both best accuracy and real-time performance for tobacco and
weeds classification. On the basis of these features, first train-
ing and then real-time detection was performed. Accuracy
of each machine learning algorithm was computed, with
the customized deep learning-based algorithm giving 100%
while the SVM algorithm giving 96%. However, for real-
time detection on an embedded platform (Raspberry Pi 4),
the SVM classifier achieved frame rate between 5 to 6 com-
pared to 0.22 FPS for the customized deep learning algo-
rithm. For the traditional deep learning approach (SSD with
MobileNet v2), though the FPS achieved was considerably
higher, the accuracy achieved was low (81%). This makes
the developed proposed solution (SVMwith hand-engineered
Haralick, Hu, and color feature) suitable to be embedded
in an agricultural precision sprayer. Future work involves
incorporating and testing fuzzy logic based control of the
variable-rate precision sprayer which will have the ability to
differentiate between plants and weeds in real-time, perform
site-specific/targeted spray on either crops or weeds, and also
change flow-rate according to the plant requirements (canopy
size, infestation level, etc.).
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