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ABSTRACT The evaluation of Hankel integration is an important part in the interpretation of electromag-
netic (EM) data, especially in physical and geophysical applications. The digital linear filter (DLF) method
is commonly applied. For an optimal digital filter design based on matrix inversion, it requires optimization
over the model space of the spacing and shift. This is typically obtained by a grid search algorithm on
gradually refined grids. In this paper, we apply a particle swarm algorithm to optimize the spacing and shift
in the model space. In this algorithm, we use a group of particles to search the model space and do not have
to grid the model space sequentially to finer meshes. It has been applied to search the optimal spacing and
shift for analytical function pairs, indicating a fast convergence. The performance of the obtained 201-point
filter is examined and compared with other published filters based on analytic function pairs and controlled
source electromagnetic (CSEM) applications. The results indicate that the proposed 201-point filters have a
good numerical performance in terms of accuracy over a large offset range.

INDEX TERMS Electromagnetics, transforms, digital filters, Hankel transform.

I. INTRODUCTION
The calculation of Hankel integrals is typically required in
optics, electromagnetics (EM), and electronic engineering.
However, for these practical applications, most Hankel inte-
gral problems generally have no analytical solution and can
only be calculated numerically. The oscillation characteris-
tic of Bessel functions makes the calculation of numerical
integration difficult. Therefore, the calculation of the Hankel
integral is considered as one of the most important parts in,
for example, numerical modeling of EM responses in geo-
physical applications [1]–[9],and numerous work has been
dedicated to solve this integral [10]–[15].

The digital linear filter methodmakes the calculation of the
Hankel integration more practical [16]. This algorithm trans-
forms the Hankel integral into convolution and calculates the
filter spectrum. The filter coefficients can be obtained by
the inverse Fourier transform of the spectrum. Later authors
work on developing efficient digital filters for solving the
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Hankel transform of different applications [17]–[23]. The fil-
ter coefficients can also be obtainedwith the direct integration
method as proposed by authors, which is less commonly used
in the literature [24], [25].

For most applications, since no analytic solutions are avail-
able, the accuracy of the filters for one specific problem
can be hard to be justified. For this purpose, some authors
develop the direct integration method to provide an accurate
evaluation of the Hankel transform [26], [27]. Especially
after Key [28] made his integration code publicly available,
the Hankel transform solution from direct integration is used
as a benchmark for other methods, facilitating people to
develop more efficient and accurate filters.

More recently authors develop thematrix inversionmethod
to calculate the filters by directly discretizing the Hankel
transformation [29], [30]. This can be considered as a variant
of the Wiener-Hopf least square method [27], [31]. This
method needs to find optimal spacing and shift parameter,
which are optimized over a sequence of gradually refined
grids. The literature shows that the optimal solution of the
spacing and shift parameter can be random over a large
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detailed region (in this region every filter is good), and the
refinement needs expertise especially during the last stages of
the search process [30]. Automatic determination of optimal
spacing and shift parameters is of practical importance and
not reported in the literature, which is the primary goal of
this paper.

In this paper, to avoid the gradual refinement process and
subjective choice of one particular randomly-distributed solu-
tion, we apply the particle swarm algorithm to search an opti-
mal solution (spacing and shift parameters). In Methodology
part, we have a brief review of digital linear filter technology
and then have a description of particle swarm algorithm. In
the Numerical test, the designed filter is compared with other
filters developed in the literature based on analytic function
pairs and three controlled source electromagnetic (CSEM)
applications. Its numerical performance is examined based
on the comparison. In the conclusion, we summarized the
numerical performance of our algorithm.

II. METHODOLOGY
A. HANKEL TRANSFORM CALCULATION
The Hankel transform of f (l) with the kernel being Bessel
function of the first kind is defined as

F(r) =
∫
∞

0
f (l)Jn(lr)dl, (1)

where n typically used in real applications is 0 or 1, and f is
the function being transformed. By substituting r = ex and
l = e−y, and multiplying by ex on both sides of (1), we obtain

exF(ex) =
∫
∞

−∞

f (e−y)Jn(ex−y)ex−ydy, (2)

which is a convolution equation. With the discretization of
x = 1m and y = 1n (1 is the sampling interval or the
spacing), equation (2) can be approximated by

e1mF(e1m) =
∞∑

n=−∞

f (e−1n)e1(m−n)Jn(e1(m−n)), (3)

Equation (3) is a discrete form of the convolution equa-
tion. Practically, to produce more accurate integration results,
we typically shift y by δ. Then equation (3) can be rewritten
as

e1mF(e1m) =
∞∑

n=−∞

f (e−1n−δ)e1(m−n−δ)Jn(e1(m−n−δ)),

(4)

in the standard convolution form, equation (4) can be written
as

g(m) =
∞∑

n=−∞

f (n)hn(m− n) =
∞∑

n=−∞

f (m− n)hn(n) (5)

where g(m) = e1mF(e1m), taken as the output of the linear
system, f (m− n) = f (e−1(m−n−δ)) is considered as the input
function, and hn is the unknown kernel response function

(filter coefficients). For a filter with limited number of points
(e.g., N ), then (1) at any offset rm can be evaluated as

F(rm) =
N∑
n=1

f ( e
1n+δ

rm
)hn

rm
(6)

to solve (6), we need to know hn. This can be performed in
both the spectrum and sample domains based on analytical
Hankel transform pairs (with known inputs and outputs). For
example, in this paper we use the following analytical Hankel
transform pairs (also used in the literature [19]), given by∫

∞

0
lexp(−al2)J0(lr)dl =

exp(− r2
4a )

2a
, (7)∫

∞

0
l2exp(−al2)J1(lr)dl =

r
4a2

exp(−
r2

4a
), (8)

where a > 0, r > 0.
In the spectrum domain, the convolution of the two func-

tions in (5) can be transformed into simple multiplication and
the kernel response spectrum (filter response) can be easily
obtained by dividing the output with the input. The filter
spectrum is then inverse Fourier transformed to calculate the
filter response in the sample domain. In this paper, we directly
calculate the kernel response in the sample domain as in
Kong [29]. We assume that hn has a limited length N in the
sample domain. From (6), we need N equations at rm,m =
1 . . .N , to solve the kernel response hn, n = 1 . . .N , with
known input and output (from analytical Hankel transform
pairs). Then the calculation of hn based on (6) is equivalent
to solve the following linear system in matrix form as

g = Ah (9)

where g is the vector with elements of gm = F(rm), h is the
vector with elements of hn and A is the matrix with entries of
f (e1n+δ/rm)hn

rm
.

Once h is calculated from (9), then we use (6) to calculate
the Hankel integration in (1) for any functions. Previous stud-
ies show that the choice of the spacing and shift parameters
impacts the filter calculation and influences the accuracy
of Hankel transform calculation based on the digital filter
method [31]. In order to produce an accurate evaluation of
the Hankel integral, we need to obtain the optimal digital
filters based on searching over the spacing and shift parameter
space [30].

B. PARTICLE SWARM ALGORITHM
The particle swarm algorithm was initially proposed by
Eberhart and Kennedy for the optimization of nonlinear con-
tinuous functions [32]. Within this algorithm, a group of
particles are used and each particle retains its best solution
encountered during the optimization process (the best posi-
tion of an individual). At the same time, the algorithm has
memory of the global best position for the particle group.
With proper choice, the particle swarm algorithm can con-
verge to the global best solution efficiently.
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To better understand the particle swarm methodology,
we give a brief introduction on how it works: A group
of particles consisting of m individuals (models) in the
N-dimensional parameter space are generated with random
positions and initial velocities. In each iteration, the move-
ment of a particle is affected by the particle’s own historical
best position Pbest and the historical best position of the
particle group Gbest . The velocity vj and position Xj of each
particle are updated in the manner as defined by

vj = ωvj + c1 · r1j · (Pbestj − Xj)

+ c2 · r2j · (Gbest − Xj) (10)

Xj = Xj + vj (11)

where ω is the inertia weight, and c1 and c2 are the learn-
ing factors, which determine the convergence speed of the
particles to Pbest and Gbest; j is the jth individual particle,
and r1j and r2j are the random weights in the range [0,1]
corresponding to each particle generated for each iteration.
The second term on the right of (10) makes the particle move
to its own historical best position. The third term makes the
particle move to the historical best position of the group. Dur-
ing the inversion, ω, c1 and c2 are decreasing linearly [33].
After calculating the fitness of all individuals for each

iteration, the algorithm updates the best positions of both the
individual and the particle group as indicated in Fig. 1. Once
the optima spacing and shift is obtained, we can calculate the
filter response. The Hankel transform for general functions
can be calculated using (9).

FIGURE 1. The flow of particle swarm algorithm.

C. OBJECTIVE FUNCTION
For each iteration as shown in Fig. 1, we update a group of
particles Pi. For each particle, it comprises the spacing1 and

shift δ. The following steps are used to calculate the response
filters and fitness for f (x) (typically has analytical Hankel
transform) for each particle:

1) Calculate e1m (i.e., rm offset) and e1n+δ (filter
abscissa) at N offsets and N abscissae (chosen by
users).

2) Calculate the Hankel transform analytically (e.g.,
right hand side of (7) or (8) ) to form g and
f (e1n+δ/e1m)/e1m to form A in (9) and then invert A
for h.

3) Now using h and the same analytical function pair,
we can calculate the numerical solution F(ri) at any ri
according to (6). Since the analytical Hankel transform
exists, we can also calculate the true result Fi at ri.

4) Calculate the fitness (objective function) using

8 =

√√√√∑M−1
i=0 (

∣∣∣F(ri)−FiFi

∣∣∣)2
M

, (12)

where M is the total data points used to calculate the
fitness (typically smaller than the total data points N ).
Since Fi can be very small (close to zero), we only
consider Fi greater than a preset value.

III. NUMERICAL TEST
In this section, we use the particle swarm algorithm to
calculate the optimal spacing and shift, and the matrix inver-
sion method to calculate the filter coefficients based on ana-
lytical transform pairs for J0 and J1. Then the calculated
filter is examined quantitatively based on analytical transform
pairs. For comparison purpose, other filters are considered
in this paper. These include the 801-point filter proposed by
Anderson (called Anderson801 [21]), the 61-point filter by
Guptasarma and Singh (called New61 only for J0 [31]), the
241-point filters by Kong (Kong241 [29]), the 201-point fil-
ters used by Key (Key201 [28]), and the 201-point filters pro-
posed by Werthmüller with careful multiple-time refinement
(Wer201 [30]) andwithout refinement (called Brute-force201
[30]) The filter from our algorithm is referred as PSO201 in
the paper. Finally, the obtained filter coefficients are applied
to the Hankel transform calculation for the electromagnetic
forward modeling to verify its effectiveness and practicability
by comparing the result from our method with those from
other filters. All the tests coded in Python run on a system
of 4 processors with 12 GB RAM.

A. CALCULATION OF FILTER
Using the analytic transform function pair in (7) and (8),
we design a 201-point filter (PSO201) based on a parti-
cle swarm algorithm. The number of individuals is 50 and
the preset maximum number of iterations is 40. The Brute-
force201 filter is calculated using the algorithm proposed by
the work [30] and no refinement is applied [34]. The value of
r considered ranges from 10−3 to 107 m. The search ranges
for the spacing and shifting are from 0 to 2 and −4 to 0,
respectively. Preset value used in this paper for Fi is 10−20.
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For the Brute-force201 filter, the two dimensional spacing
and shifting plane is uniformly discretized into 50× 40 cells.
If the relative difference of fitness between two consecutive
iterations is less than 0.01 for more than 15 consecutive
iterations, we consider to terminate the algorithm.

The convergence process of all particle for the particle
swarm algorithm is shown in Fig. 2. As indicated in Fig. 2,
at the beginning, the particle spreads the whole model space.
As the algorithm proceeds, all particles converge rapidly to
the optimal region.

FIGURE 2. The positions of all particles at the (a) 1st, (b) 10th, (c) 20th
and (d) 30th iterations during the optimization process of the particle
swarm algorithm.

The convergence process for the spacing, shifting and min-
imum amplitude is shown in Fig. 3. It can be seen from Fig. 3
that as the optimization algorithm proceeds, the values of

FIGURE 3. The convergence process of the particle swarm algorithm for
the (a) spacing, (b) shift and (c) fitness.

the group-best spacing, shift, and fitness converge fast at the
beginning. After about 26 iterations, the group-best spacing
and shift stay constantly as the iteration increases, indicating
a convergence.

B. ANALYTICAL FUNCTION TEST
In this subsection, we carry out the quality test on the calcu-
lated PSO201 filters for J0 and J1 based on the analytic func-
tion pairs (7) and (8) from Anderson [19] and the following
function pairs [31]:∫

∞

0
lexp(−al)J0(lr)dl =

a
(a2 + r2)3/2

, (13)∫
∞

0
lexp(−al)J1(lr)dl =

r
(a2 + r2)3/2

, (14)

where a > 0, r > 0.
We calculate (7) and (8) numerically using different filters

mentioned above at different offset r . The comparison of
relative errors from different filters for J0 and j1 is carried out
in Fig. 4 and Fig. 5, respectively. As indicated in Fig. 4, for
J0 our calculated filter and Brute-force 201 have generally
better accuracy over the whole considered range, followed
by Wer201. In general, New61 performs worst among the
considered filters. For J1, our filter and Wer201 perform
better than the rest. Key201 has a general poor performance
over the considered range. As indicated in the figures, all the
filters can be inaccurate outsider certain range (e.g., more
than 10 in this example).

FIGURE 4. Relative errors of different digital filters of J0 for the
calculation of analytical function pair in (7).

FIGURE 5. Relative errors of different digital filters of J1 for the
calculation of the analytical function pair in (8).

The comparison of relative errors from different filters
for (13) is carried out in Fig. 6. In general, all the digital filters
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FIGURE 6. Relative errors of different digital filters of J0 for the
calculation of analytical function pair in (13).

have some certain ranges in which they can perform better
than others. For example, the New61 filter performs better
than Kong241, PSO201, Brute-force201 and Wer201 in the
range (10−5 to 10−1). Key201 is most accurate near r = 1.
When r is larger than 103, PSO201, Brute-force201 and
Wer201 perform better. Since PSO201, Brute-force201 and
Wer201 is based on the same analytic function pair, they
have generally similar numerical performance. As indicated
in Fig. 6, sinceAnderson801 uses a longer filter, it is generally
accurate over the whole considered range.

For J1 filters, the comparison is shown in Fig. 7 for differ-
ent offsets based on (14). As indicated in Fig. 7, Key201 is
most accurate over a large range from less than 10−3 to
larger than 103. The Anderson801 filter is accurate over the
whole considered range with maximum relative errors of less
than 10−8. PSO201, Brute-force201 and Wer201 are more
accurate at large offsets and relatively less accurate at short
distances. Relative to all other considered filters, theKong241
filter is generally less accurate.

FIGURE 7. Relative errors of different digital filters of J1 for the
calculation of the analytical function pair in (14).

As indicated for both J0 and J1, the Anderson801 filter
has better overall accuracy. However, it certainly needs more
computing time compared with the other filters, which is also
considered as an important factor for real applications. For
large offsets typically encountered in real geophysical appli-
cations, the use of PSO201, Brute-force201 and Wer201 is
desirable. Relative to Wer201, our filters are produced using
a global optimizer without manual refinement steps (can be
difficult even for a person with advanced expertise) and avoid
potential local optima.

C. APPLICATION IN CSEM
To examine the practical application of the filter obtained
with the particle swarm algorithm, three CSEM conductivity

models in the work [30], are considered in this paper. The
numerical performance of our PSO201 filter on these real
applications is compared with the other filters considered in
this paper.

Since these models do not have an analytical Hankel trans-
form, we use the solution from the QWE algorithm proposed
by key [28] as the reference result, based onwhich the relative
difference for each filter is calculated. Because the QWE
algorithm is considered accurate within around 15000 m, all
the following comparisons are carried out at offsets less than
20000 m. Our algorithm is based on the direct matrix solution
method of Kong [29] and Werthmüller et al. [30]. An open
source code [34] is used to calculate EM responses for an
electric dipole.

The firstmodel is amarine CSEM two-layermodel initially
proposed by Kong [29], as indicated in Fig. 8. The resistiv-
ity of the ocean is 0.31 � · m, and the uniform half-space
is 1� ·m. A x-directed horizontal electric dipole source with
a frequency of 1 Hz is located in the sea at 50 m above the
seafloor.

FIGURE 8. The two-layer CSEM model from Kong [29].

Fig. 9(a) shows the numerical performance for differ-
ent filters based on the two-layer marine CSEM model.
As indicated in the figure, PSO201, Brute-force201 and
Wer201 have a similar numerical performance in terms of
the minimal field magnitude calculated. They can accurately
evaluate a field smaller than 10−25 V/m at an offset within
larger than 15000 m. However, Key201 and And801 can only
calculate a field larger than 10−22 V/m at a distance up to
slightly larger than 10000 m. Kong241 is slightly better than
Key201 and And801.

Fig. 9(b) shows the relative difference of the x-component
electrical field for different filters using the QWE solution as

FIGURE 9. The numerical performance comparison of different filters
based on the half-space marine CSEM model from Kong [29]. (a) shows
the calculated x-component electric field, and (b) shows the relative
difference over a wide range against the QWE solution.
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the reference. Quantitatively, it shows that PSO201, Brute-
force201 and Wer201 produce the most accurate results with
the smallest relative difference over the whole computational
domain. Key201 performs much poorer than PSO201, Brute-
force201 and Wer201. For this model, And801 performs
poorest over the whole considered range especially at long
offsets. It shows that for this model, the direct matrix inver-
sion method can produce generally better filters. A com-
parison to the previous analytical cases indicates that the
performance of a filter can be different for different problems.

The second model is a typical four-layer marine CSEM
model used in Key [28] as shown in Fig. 10. The first layer is
a 1000 m-deep seawater layer with resistivity of 0.30 � · m.
A 100 m-thick anomalous layer with resistivity of 100 � ·m
is embedded in the 1 � · m uniform half-space at 1000 m
depth. The source is located at 10 m above the seafloor and
the frequency used is 1 Hz. The receivers are located on the
seafloor.

FIGURE 10. The four-layer marine CSEM model from Key (2012) [28].

The comparison of the numerical performance in terms
of maximum offset and minimal field magnitude evaluated
by different filters is shown in Fig. 11(a). As indicated in
the figure, for this model all the filters can calculate the
field accurately within the range of [0, 20000] m. It clearly
shows that the filters may provide a calculation at larger
maximum offsets and with weaker signal. However, since
QWE is considered accurate onlywithin around 20000m, it is
unjustified to make a further comparison at an offset larger
than 20000 m.

Fig. 11(b) shows the relative difference of the x-component
electrical field for different filters based on the four-layer

FIGURE 11. The numerical comparison of different filters based on the
four-layer marine CSEM model [28]. (a) shows the calculated
x-component electric field and (b) shows the relative difference over a
wide range against the QWE solution.

model. It shows that And801 and Kong241 perform poorest
among all the considered filters. PSO201, Brute-force201
and Wer201 are more accurate than the rest over the whole
computational range. Among the filters based on the matrix
inversion method, Wer201 is most accurate for a large
range. PSO201 performs better at small distances (e.g., less
than 2500 m)

The third model considered is a three-layer land CSEM
model as shown in Fig. 12 [30]. A 100 m-thick layer with
resistivity of 500 � ·m is embedded at a depth of 1000 m in
the 10� ·m uniform half-space. The source operating at 1 Hz
is located at 0.5 m depth, and the receiver depth is 0.8 m.

FIGURE 12. The land CSEM three-layer model [30].

The x-component field is calculated over the range
[0, 20000] m for different filters for the land three-layer
model as shown in Fig. 13(a). Similar as in the previ-
ous case, all the filters have similar numerical performance
within 20000 m in terms of minimum magnitude calculated.
Within this range, all the filters produce comparable results
for this model. A detailed relative difference comparison
is shown in Fig. 13(b). For this case, Kong241 produces
largest relative difference over the whole range. Brute-force,
Key201 and And801 have a comparable accuracy. The filters
based on the matrix inversion using optimal spacing and shift
generally produce more accurate results.

FIGURE 13. The numerical performance comparison of different filters
based on the land 3-layer CSEM model [30]. (a) shows the calculated
x-component electric field and (b) shows the relative difference over a
wide range against the QWE solution.

IV. CONCLUSION
The calculation of Hankel transforms based on the digital
filter method needs to find the optimal spacing and shift-
ing. This is commonly carried out using linear search algo-
rithms on different grids (typically gradually refined and can
potentially be trapped at local minima). In this paper we

VOLUME 9, 2021 22821



L. Zeng et al.: Efficient Filter Generation Based on Particle Swarm Optimization Algorithm

apply a particle swarm optimization algorithm to optimize
the spacing and shift for the filter design (no refinement
needed). This algorithm uses a group of particles and retains
the best solution encountered during the search process. This
algorithm can effectively avoid the use of gradual refinement
process. The numerical performance of the calculated filter
is compared with other published filters in terms of relative
difference, and minimum field magnitude and maximum off-
sets calculated based on analytic function pairs and CSEM
applications (i.e., two marine CSEM models and one land
CSEM model).

For the analytic function pair, our algorithm is comparable
with filters based on matrix inversion (Brute-force201 and
Wer201). It performs much better at large offsets against the
traditional filters (e.g., Anderson801, Kong241, Key201 and
New61). For the two-layer marine model, our filter performs
better than Anderson801, Kong241 and Key201 in terms
of both relative difference, and minimum filed magnitude
and maximum offsets calculated. Again, PSO201, Brute-
force201 and Wer201 present a similar numerical perfor-
mance. For the four-layer marine and three-layer land CSEM
cases, all the considered filters have the similar minimum
field magnitude and maximum offsets over the considered
offset range. The relative difference for PSO201, Brute-
force201 and Wer201 is generally comparable (PSO201 is
slightly larger than Wer201 and smaller than Brute-force201)
and much smaller than Anderson801, Kong241 and Key201.
However, the Wer201 filter is based on the spacing and shift
parameters generated with gradual refinement steps and the
choice can be subjective due to their random distribution in
the solution space [30]. It is worth noting that although we
use the particle swarm optimization algorithm to optimise
the spacing and shifting of a digital filter in this paper, other
similar methods, such as monarch butterfly optimization
(MBO), earthworm optimization algorithm (EWA), elephant
herding optimization (EHO), moth search (MS) algorithm,
Slime mould algorithm (SMA) and Harris hawks optimiza-
tion (HHO), can be also applied equally for this purpose.
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