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ABSTRACT REST services are nowadays being used to support many businesses, with most major
companies exposing their services via REST interfaces (e.g., Google, Amazon, Instagram, and Slack). In this
type of scenarios, heterogeneity is prevalent and software is sometimes exposed to unexpected conditions
that may activate residual bugs, leading service operations to fail. Such failures may lead to financial or
reputation losses (e.g., information disclosure). Although techniques and tools for assessing robustness have
been thoroughly studied and applied to a large diversity of domains, REST services still lack practical
approaches that specialize in robustness evaluation. In this paper, we present a tool (named bBOXRT) for
performing robustness tests over REST services, solely based on minimal information expressed in their
interface descriptions.We used bBOXRT to evaluate an heterogeneous set of 52 REST services that comprise
1,351 operations and fit in distinct categories (e.g., public, private, in-house).Wewere able to disclose several
different types of robustness problems, including issues in services with strong reliability requirements and
also a few security vulnerabilities. The results show that REST services are being deployed preserving
software defects that harm service integration, and also carrying security vulnerabilities that can be exploited
by malicious users.

INDEX TERMS REST, RESTful, web API, web services, robustness testing.

I. INTRODUCTION
REST is an architectural style for the design of services
that is based on the principles that support the World Wide
Web [1]. Recently, it has become the de facto standard way
for offering a service on the Web [2]. A REST service
(also known as RESTful, Web API, or REST API) relies
on Uniform Resource Identifiers (URI) for identification of
its resources (e.g., a user profile, a purchase order) and on
HTTP for exchanging messages (which are usually JSON
documents). The use of HTTP includes the presence of a verb
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(e.g., GET, POST) that specifies the type of operation that
should be executed over the identified resource [1].

Major companies like Google, Amazon, Instagram, Spo-
tify, and Slack are now providing access to their services
via REST services. In fact, the use of other types of inter-
faces to expose services is now residual, at least considering
popular sites on the Web [2]. REST is a relatively loose
architectural style and some rigid aspects that are present in
other similar styles or technologies (e.g., SOAP services), like
the mandatory presence of an interface description document
(e.g., a WSDL document), lost their meaning in REST [1].
At the time of writing, there is no standard way of describ-
ing the interface of a REST service although the OpenAPI
specification [3] is gaining popularity [2].
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The less rigid access to REST services opens space for
unexpected inputs to be sent to services, potentially trigger-
ing residual faults that were not caught by Verification and
Validation (V&V) activities performed by developers (e.g.,
static analysis, code inspections, and unit testing). Although it
may be acceptable for a client to make mistakes and invoke a
certain operation with wrong parameters (e.g., out of bounds
or in the wrong format), it is not acceptable that the server
crashes or returns some kind of incorrect response. This is
especially true when the service is supporting a business
(or mission) critical activity.

The additional software layer and tools required to provide
REST services also add complexity to the development. Cur-
rently, the developer has to focus on new tasks like match-
ing the right HTTP verbs to certain operations, specifying
arguments in different ways (e.g., in REST many times a
particular argument can be found as a path parameter, i.e., it is
part of the URI that identifies the resource [2]), or correctly
documenting the API. For instance, a mismatch between the
API documentation and the actual service implementation
may lead clients to performwrong invocations by introducing
mistakes in the request payload. Regardless of what is sent by
a client, the service must be prepared to respond in a robust
manner.

Robustness is the degree to which a certain system or
component can function correctly in the presence of invalid
inputs or stressful environmental conditions [4] and has been
the target of several studies in the last decades. Koopman et al.
[5], [6] have most notably conducted work on the oper-
ating systems domain, but, especially due to the valuable
outcomes produced by robustness testing, numerous authors
have designed approaches and tools for other domains. These
include communication software [7]–[9], embedded systems
[10]–[12], middleware [13]–[15], self-adaptive systems [16],
web applications [17], and SOAP services [18]–[20]. Despite
this variety of explored domains, the robustness of REST
services has been largely disregarded by researchers and
practitioners.

In this paper, we aim at filling this gap by presenting an
approach and a tool, named bBOXRT - black BOX tool for
Robustness Testing of REST services. The approach, imple-
mented by bBOXRT, uses a service description document
as input to generate a set of invalid inputs (e.g., empty and
boundary values, strings in special formats, malicious values)
that are set to the service in combination with valid param-
eters. The tool can also operate as a fault injection proxy
between client and server (i.e., without requiring information
regarding the service interface). Service responses are, at the
time of writing, preliminarily analysed for suspicious cases
of failure (e.g., the presence of exceptions in the response,
response codes referring to internal server errors) and are
stored by the tool for a later detailed analysis by the tool user.

We demonstrate the usefulness of our approach and our
tool’s capabilities by performing tests over a set of 52 ser-
vices (comprising 1,351 operations) that fit in different
types: public services, middleware management services

(i.e., Docker), services built in-house (i.e., two TPC per-
formance benchmarks), and private services. We performed
a total of 399,901 tests, in which we disclosed a total
of 24,373 robustness problems. In addition to being important
information for the service developers and providers, results
mostly show that bBOXRT is able to disclose different kinds
of problems in the tested services (usage of incorrect data
types, missing input validation), which map to different cor-
rective actions (e.g., correcting a specification or fixing the
implementation). It was also able, despite not being its main
focus, to disclose security issues (e.g., services carrying SQL
Injection security vulnerabilities) and also private informa-
tion (e.g., stack traces, database queries, database instance
names). The source code of our tool along with the detailed
results from a robustness testing campaign of REST services
are available online at [21].

The main contributions of this paper are the following:

• The definition of an approach that specializes in evalu-
ating the robustness of REST services and requires min-
imal information regarding the interface of the service
being tested;

• A robustness testing tool, named bBOXRT, that imple-
ments our approach and is readily available to be used
by researchers and practitioners;

• The practical application of the tool to an heterogeneous
set of 52 REST services, including business-critical
services, in which it was able to show the presence
of several different software defects (including security
vulnerabilities) and the presence of bad programming
practices, illustrating the overall usefulness of the
approach.

The rest of this paper is organized as follows. Section II
presents related work and Section III presents the approach,
mapping it to the main components of our tool and how they
interact. Section IV presents the experimental evaluation and
results and Section V presents the main threats to the validity
of this work. Finally, Section VI concludes the paper.

II. RELATED WORK
Research on assessing dependability and specialized depend-
ability properties, like robustness of software systems started
several decades ago. Robustness testing approaches [16], [22]
typically make use of fault injection, in which faults are
deliberately introduced into the system (e.g., to evaluate fault
tolerance mechanisms [23]). A typical case found across dif-
ferent works [11], [22], [24]–[26] is the corruption of param-
eters in order to activate implementation faults (i.e., trying to
trigger failures), which is also known in the literature as error
injection [23].
Robustness testing became popular mostly due to its appli-

cation to operating systems (OS) by Koopman et al. [5],
Kropp et al. [22], Shelton et al. [27] among others [28]–[30],
but its application to many other different types of systems
(which hold different specificities) has been the object of
research in numerous domains. Robustness testing techniques
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can be found, in general, applied to communication sys-
tems [7]–[9], embedded systems [10]–[12], [31], middleware
[13]–[15], [32], web applications [17], [33], COTS [34]–[36],
autonomous and adaptive systems [16], [25], [26], [37], and
SOAP web services [18]–[20], [24], [38].

The work in the Ballista project [22] is recognized as a
landmark regarding the use of interface-level fault injection
to evaluate the robustness of operating systems. The approach
is based on exposing the operating systems to invalid input
conditions introduced at its interface. Ballista works by call-
ing each interface function of the system under test using a
combination of valid, boundary or invalid values, and logging
responses. The non-valid values are selected from a database
of faults that are essentially limit conditions that apply to
certain data types (e.g., the maximum value for an integer,
the minimum value for a float, values around these limits)
or values holding special characteristics (0, 1,−1). Triggered
failures are categorized according to their severity using a five
step failure mode scale, the CRASH scale [5].

While the work within Ballista mostly used the applica-
tion-operating system interface, other author created appro-
aches using different perspectives, namely the OS-driver
interface, such as the work by [39] which also uses more
diverse faults, e.g., bit-flips, random values (e.g., as in fuzzing
approaches), in addition to invalid and boundary values.
In [39] the authors use 4 categories (including a ’no failure’
category) to classify behavior according to the severity of the
observed failures.

A recent trend regarding operating systems robustness
evaluation approaches is set on mobile operating systems
[40], [41] and wearable applications. Cotroneo et al. [40] pro-
pose a tool, named AndroFIT, for the evaluation of depend-
ability properties of the Android operating system. The tool
relies on the injection of faults on Inter Process Communi-
cation (IPC) messages, library, and system calls. The faults
used include random and boundary faults, bit-level faults,
but also faults related with timing aspects (delays or unre-
sponsiveness), and invalid return values (i.e., interactions that
return an error code or terminate abruptly with an exception).
The observed behavior is categorized using a four level scale
(including ’no failure’), corresponding to the occurrence of a
crash, a fatal error, or a non-responsive application.

Liu et al. discuss a tool for fuzzing Android system ser-
vices in [41]. The tool identifies target interfaces and fur-
ther deeply nested interfaces (and other information like
variable types, names, and dependencies) to generate ran-
dom sequences of transactions to be executed by the target
system. The tool showed to be able to trigger several fail-
ures, which served to identify several software bugs. Wear-
ables have been the target of Yi et al. [42], in which the
authors target IPC messages and user interface events using
random values. The experiments were able to trigger sev-
eral different types of failures, including reboots, crashes,
or non-responsive applications. In [43], the authors present
a more extensive work that takes the state of the system into
consideration.

The robustness evaluation works that are the closest to
the domain of our work aim at evaluating the robustness of
SOAP web services. Salva and Rabhi [19] test stateful SOAP
web services by actively modelling their state (in the form
of Symbolic Transition Systems) through repeated system
calls. The work by Laranjeiro et al. [24] uses the mandatory
information present in a WSDL document, which describes
the service interface to generate a random workload (i.e.,
set of valid calls) that is used to observe the normal service
behavior. Then a set of invalid inputs are injected into the
workload requests and used to build test cases. Responses
from the service are observed and compared to the baseline
behavior and analyzed to find robustness problems, which are
categorized using an adaptation of the CRASH scale [5].

Salas et al. [38] use XML code injection, cross-site script-
ing and XPath injection in SOAP messages to exploit robust-
ness as well as security issues in services. Other works focus
on orchestrated compositions of SOAP web services, such as
Kuk and Kim [18] where the specifications of the component
services are read to generate virtual versions that will then
trigger erroneous behavior, or Ilieva et al. [20] that propose a
framework for testing BPEL service compositions, which is
able to inject invalid, boundary, unexpected or random data in
requests being processed by the composition. Further detail
on robustness evaluation techniques can be found at [44].

There are several recent approaches regarding the func-
tional evaluation of REST services, which are based on
diverse techniques (e.g., genetic programming, fuzzing,
model-based testing). Regarding black-box approaches, most
notably, Ed-douibi et al. [45] use a model of the OpenAPI
specification to generate test cases that are based on invalid
and boundary conditions. The tool is offered as a plugin for
Eclipse and is based on a relatively small set of faults, that do
not account for security issues. The tool is demonstrated on a
set of services selected from APIs.guru, where it was able to
detect several cases of failing services.

Viglianisi et al. [46] propose a black-box approach for
testing REST services, which is based on the application of
just three types of mutation operators: missing inputs, wrong
types, limit value overflow. The approach was demonstrated
on a set of services listed at APIs.guru, and showed to be
able to trigger crashes of the services being tested. In [47] the
authors propose an approach that is based on the creation of
faulty variants of test cases that essentially use omission and
out-of-range faults, and has the particular goal of exploring
inter-parameter dependencies. Thus, it requires that an Ope-
nAPI specification is written. Also worthwhile mentioning
is the work by Karlsson et al. [48], which is also based on
test generation (despite not explicitly targetting robustness),
although it requires the specification of service properties,
which is time or resource consuming, requires expertise, thus
not always applicable.

Regarding REST testing approaches (in general), there are
several other cases which are intrinsically different from our
own, such as being white-box approaches [49], or state-based
[50], [51], model-based [52], [53] or implementing other
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kinds of testing (e.g., regression testing) [54]. In the industry
there is also a wide variety of tools for testing REST services
[55]–[57], but these largely focus on functional or perfor-
mance testing and do not specialize in evaluating robustness.
Their adaptation to a typical robustness testing approach is
either not possible (e.g., licensing issues) or not practical due
to involving complex adaptation code.

In summary, current testing approaches for REST are either
complex ones (e.g., involving genetic algorithms, requiring
expertise for necessary artifacts) or are simply intrinsically
different from the one proposed in this paper (e.g., white-box
aproaches, model-based).

In this paper, we describe bBOXRT, a simple rule-based
black-box tool which is particularly specialized in robustness
evaluation and demonstrate its effectiveness in disclosing
robustness issues, even in highly tested business critical ser-
vices, where robustness is a major concern.

III. APPROACH FOR EVALUATING THE ROBUSTNESS OF
REST SERVICES
This section describes the approach defined for testing the
robustness of REST services. We first explain the main con-
cepts that support the approach and then introduce bBOXRT
tool. We overview the tool’s internal architecture and explain
the different roles and responsibilities of its main components
and how they work together to support each of the steps of the
approach.

FIGURE 1. Conceptual view of the approach.

A. APPROACH OVERVIEW
The conceptual view of our approach is shown in Figure 1.
In practice, using information regarding the interface of
the service under test (i.e., API description document),
our approach generates a combination of valid and invalid
requests that attempt to activate faults present in the service.
The approach is decomposed in the following steps: -
• Step 1: Interface description analysis. Basic informa-
tion about the service under test is collected by reading
and analysing the service’s interface description docu-
ment. Information regarding operations (e.g., resource
URIs and HTTP verbs to use), input and output data
types, error codes, or example requests is gathered to
be used in the next steps.

• Step 2: Workload generation and execution. Valid
requests (i.e., correct according to the specification) are
generated and sent to the service. This allows us to
understand the behavior of the service in presence of a
non-faulty workload.

• Step 3: Faultload generation and execution. Faulty
requests are created by injecting a single fault in each
request (e.g., a field is removed from a JSON document).
The faulty requests are sent to the service in an attempt
to trigger erroneous behaviors.

• Step 4: Result storage and analysis. Service responses
and test metadata (e.g., type of fault injected, resource
targeted) is stored for supporting the subsequent behav-
ior analysis.

In the next section (III-B), we explain these steps in further
detail and how they map to our tool’s different components.

B. TOOL ARCHITECTURE AND OPERATION
The tool was implemented in Java, and was developed with
modularity and extensibility in mind. Users may add new
functionalities to some of the tool’s components to optimize
its operation with respect to their use cases. The tool’s inter-
face is command-line and its source code and documentation
are available at [21]. The architecture of the tool is shown
in Figure 2, which depicts bBOXRT as a container whose
frontiers are delimited by a dashed rectangle. It is comprised
of multiple components that interact with each other and/or
with external entities, as detailed in the following paragraphs.

FIGURE 2. bBOXRT architecture.

The API Specification Parser is the component that sup-
ports Step 1 - Interface description analysis (identified in
the previous section). It reads an OpenAPI document (for-
merly known as Swagger [58]), specified in either JSON or
YAML format, that describes the interface of a given REST
service. The OpenAPI specification is becoming a popular
option for describing interfaces for this type of services [2]
and this is the reason we chose to support it, by default.
However, users may extend the tool to support for other API
specification languages (e.g., RAML [59]).

The main idea behind this first step is to identify and
extract relevant information for testing the service. An API
specification defines one or more target server URLs and
the set of unique API endpoint URIs (i.e., unique resources
at the server). Each endpoint is associated to one or more
HTTP verbs [1], typically POST, GET, PUT and DELETE
(PATCH and HEAD may also be found in some APIs). Each
set {endpoint, verb} is named an operation. Finally,
each operation may have from none to several input param-
eters (e.g., headers, payload), as well as a set of different
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expected responses, each identified by a unique HTTP status
code (e.g., 201 Created or 401 Unauthorized).

In Step 2 -Workload generation and execution, we have
the Workload Generator and the Executor components
involved. The main idea behind the Workload Generator is
to be able to generate a set of valid HTTP requests. If there is
access to an existent workload, the tool is also able to work
as a proxy for a certain client application or simply read a
set of stored requests (detailed instructions on how to start
the tool are available at [21]). Otherwise, this component
generates a random workload that complies with the specifi-
cation (i.e., in terms of data types, domain of the values used,
and overall parameter structure). The possible locations for
the generated values are the request payload (i.e., typically
a JSON object), the HTTP headers, the endpoint URI itself
(i.e., which is named a path parameter) or the HTTP query
string. The tool user can set the number of times each possible
parameter of an operation is to be randomly generated by
specifying a configuration value WL_REP. This may have the
effect of increasing the overall diversity of the set of requests.

In practice, the Workload Generator creates a request,
dispatches it to the Executor (which sends the request to
the service) and waits for the response on a queue (Q1 in
Figure 2). The response is useful for allowing the Workload
Generator to gather feedback (e.g., success or failure) and
having the possibility of adjusting the request generation
process (the tool currently does not perform any specific
adjustment of the workload generation process, but we intend
to implement specific adjustment strategies in future work).
For cases where the response represents an unsuccessful
case (e.g., status codes 4xx or 5xx), the user may set the
boolean configuration value WL_RETRY to true, which
will make the Workload Generator keep the failed request
in memory to be retried after executing all other workload
requests (e.g., operations dependent on the execution of oth-
ers). Requests holding a success status code (e.g., 200 OK)
are placed in a queue (Q2 in Figure 2) and will be used in
the next step of the approach. The current step ends if all
generated requests are executed or if the user sets a maximum
time limit (i.e., by specifying theWL_MAX_TIME parameter).
The Faultload Generator component is responsible for

injecting faults in the workload requests whose execution was
carried out with success (i.e., those available in queue Q2).
The faulty requests will then be delivered to the Executor,
thus supporting Step 3 - Faultload generation and execu-
tion. Internally, the Faultload Generator is helped by the
Fault Mapper (not visible in Figure 2) that keeps track of
the possible injection locations in a request. This component
keeps track of which parameters composing each request
have been covered with faults (and which faults) and, thus,
it guides the fault injection process by preventing the injection
of faults at an already explored location.

Table 1 shows the fault model currently used by the Fault
Generator. The faults are organized by data type and format-
ted as defined in the OpenAPI specification [58]. For that
reason, a data type may have multiple formats (e.g., a string

may contain a sequence of bytes or a date, or it may have an
unrestricted format - the default format). Each of the 57 faults
is described as a mutation rule to apply on a given request
parameter. Faults that share a common property are grouped
into a single fault type (e.g., numeric faults that focus on
near or over boundary values are grouped in the numeric
boundary fault type). Note that for the string fault types,
printable or non-printable refers to the respective portions
of the ASCII table, and malicious essentially refers to SQL
injection strings. The set of SQL injection strings comprises
several hundreds of malicious strings (over 800 strings at the
time of writing), extracted from [60]. Also, regarding the date
and date-time formats, we note that the faults of the former
are also applicable to the latter.

For each parameter of each request, the set of applicable
faults (those that match the parameter’s data type) is fin-
ished in order. Each generated fault is placed at the location
(e.g., path, payload) of the parameter being targeted. This
process is repeated FL_REP times, which allows us to under-
stand if the service shows consistent behavior in presence of
a specific fault. For certain types of faults, it also allows to
achieve a greater diversity of invalid requests for fault types
of stochastic nature (e.g., remove a random element from an
array). When the set of faults is finished for a given param-
eter, the Fault Mapper is set to point to the next unexplored
parameter in that request.

After a fault is injected, the corresponding faulty request is
dispatched to the Executor, which then sends it to the service
and waits for the response. Once returned, the response is
placed in a queue (Q3 in Figure 2) along with the original
request, the reference of the injected fault and the parameter
targeted. As in Step 2, the user may specify a configuration
to limit the duration of this process (i.e., FL_MAX_TIME),
otherwise all applicable faults are injected. Finally, the Result
Writer component retrieves all pending information from
queue Q3 and saves it to persistent storage for later analysis,
thus supporting Step 4 - Result storage and analysis.

The bBOXRT tool does not currently fully automate the
analysis of the service behavior, due to the typical com-
plexity involved in the identification of robustness problems
(with exception of cases where a perfect service specification
exists). The main difficulty is related with the large diversity
of responses (i.e., the underlying systems are also heteroge-
neous) that can be generated by a web service, which usually
requires the presence of an expert to manually distinguish
robust behavior from non-robust. We are currently exploring
the applicability of machine learning algorithms to this task,
which we plan to integrate in the tool in future work. Despite
this, we propose an analysis that covers two main aspects
(described in the next paragraphs): i) the severity of the
observed failure; and ii) the behavior of the service.

The behavior of the service is analysed and classified with
a failure mode scale, such as the CRASH scale [5], in which
we perform minor adjustments to fit the particular case of
REST services. CRASH distinguishes the following cases of
failure:
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TABLE 1. Fault model.

• Catastrophic: The service supplier (i.e., the underlying
middleware) becomes corrupted, or the server or oper-
ating system crashes. A restart of the system does not
allow recovering from the failure.

• Restart: The service provider becomes unresponsive
and must be terminated by force. A restart of the system
will allow recovering from the failure.

• Abort: Abnormal termination when executing a certain
service operation. For instance, unexpected behavior
occurs when an unexpected exception is thrown by the
service implementation.

• Silent: A service operation cannot be concluded, or is
concluded in an abnormal way, and the service imple-
mentation does not indicate any error.

• Hindering: The returned error message or code is incor-
rect and does not correspond to the actual error.

Some of the above failure modes are not distinguishable,
unless we have access to the service provider (e.g., a client
will not be able to distinguish between a catastrophic and a
restart failure), still when full access exists it is important to
distinguish the different cases of severity.

The service behavior should also be characterized in a
more detailed manner. In previous work [24], and based
on the analysis of results of robustness testing applied to
SOAP web services, we proposed the application of a set
of behavior tags. The main idea is to characterize behavior
using a finer level of granularity (i.e., the CRASH scale may
be too coarse-grained) and, at the same time, abstract imple-
mentation details that result in different response messages
that, in practice, represent the same behavior (e.g., a null
pointer expressed with different messages at the server
side).
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TABLE 2. Behavior tags.

Table 2 presents our proposal to better characterize ser-
vice behavior is a revision of the set of tags used in [24],
which we now adapted to fit the context of REST services.
We performed minor alterations to the tags as some SOAP
elements do not exist in REST (e.g., WSDL documents).
Also, we extended the set with two extra tags, allocation
error (AE) and parsing error, after analysing the experimental
results described in the next section.

IV. EVALUATION AND RESULTS
This section describes the experimental campaign carried
out to show the practical usefulness of our approach.
We first overview the experiments preparation and setup
(section IV.A), then we detail the main results (section IV.B)
and conclude with the main findings observed during the
experiments (section IV.C).

A. EXPERIMENTAL SETUP
To show the usefulness of the approach, we used bBOXRT
to test various types of services, which we selected accord-
ing to the following different factors: i) service dimension
(e.g., number of endpoints); ii) workload needs (e.g., just
a few parameters or several); iii) service observability
(e.g., from black-box to full access to code); and iv) context
of usage (e.g., some services serve to manage other ser-
vices, some services have strict reliability requirements). This
resulted in the definition of the following five sets of interest,
which represent a mix of the different factors presented and
that are described in the next paragraphs:
• Set 1: Popular services;
• Set 2: Public services;
• Set 3: Middleware management services;
• Set 4: Private services;
• Set 5: In-house services.
We began by identifying a set of 6 services, named Set 1

(Popular services), comprising a total of 395 testable oper-
ations (out of 594) provided by popular Web sites. We used

the alexa.com Top 500 popular web sites rank to handpick
the services, and we were particularly interested in services
having a seemingly detailed specification. The selected ser-
vices are Google Drive, Google Calendar, Spotify, Trello,
Slack, and Giphy. These services are known to be used
in business-critical environments (in particular, the former
four) and are expected to be developed with strong reliability
requirements (in lato sensu), as failures have direct (and also
indirect) impact on the business of the respective companies.

A set of 40 REST services was selected from the
APIs.guru online database to compose Set 2 (Public ser-
vices). APIs.guru is a well known large repository of hun-
dreds of public services and has been used as information
source for REST services in other works [61]–[63]. We per-
formed tests against 823 operations (out of 1,012) of the
services, which showed to be quite diverse (i.e., considering
the abovementioned criteria), being useful for showing the
effectiveness of our approach when applied to such different
cases.

For Set 3 (Middleware management services), we
selected a single service from Docker, a platform used for
managing virtualized software containers. We performed
tests against 70 of the 106 Docker Engine REST service
operations [64]. In the case of the Docker service, observ-
ability is set at a higher level, as we also had the server
logs to complement the analysis carried out over the service
responses.

Regarding Set 4 (Private services), we performed tests
against all the 45 available operations of Kazoo Crossbar,
a business-critical, cloud-based, Voice over IP and telecom-
munications service. This service supports part of the busi-
ness of a private company valued at over 1B$, thus, strong
reliability requirements are involved as any failure may have
impact on the business. For this service, we had no access
to source code, but a rather complete interface description
and also direct contact and feedback from the company’s
developers are available.

24744 VOLUME 9, 2021



N. Laranjeiro et al.: Black Box Tool for Robustness Testing of REST Services

Finally, for Set 5 (In-house services) we tested 4 ser-
vices holding 18 operations. The set of services is com-
posed of two implementations of TPC-App (version Vx0 and
version VxA), which is a performance benchmark for web
services that emulates the business of an online store [65],
and two implementations of TPC-C (Vx0 and VxA) which
is a performance benchmark for transaction processing sys-
tems that emulates the business of a wholesale supplier
[66]. All implementations were created in-house, where
Vx0 and VxA mostly differ in how the developers built
the SQL queries used by the services. While Vx0 uses
PreparedStatements to clean inputs and avoid SQL
code injection, VxA directly concatenates static strings with
user input without performing any validation, thus being
prone to being unsecure. Both TPC-App versions have an
average cyclomatic complexity [67] of 4.67 (measured by
the Statistic plugin [68] of IntelliJ IDEA 2019.2.3 [69]),
and Vx0 has 558 lines of code (LoC) while VxA has 566.
The TPC-C versions have an average cyclomatic complexity
of 17.2, Vx0 has 1128 LoC and VxA has 1179 LoC. We also
ran a static analysis tool, namely SpotBugs 4.0.2 [70] (with
the Find Security Bugs plugin 1.10.1 [71]), which was able
to identify 6 SQL injection vulnerabilities in TPC-App VxA
and 30 in TPC-C VxA. We manually inspected the code to
confirm the existence of these issues, which were due to
query concatenation with user input. SpotBugs also identified
further issues, but they were mostly bad coding practices or
false-positives.

The above five sets of services comprise 1,775 operations,
of which we tested 76% (1,351), because, at the time of
writing, the tool does not yet support generation of cer-
tain, less usual, payloads (i.e., media types like files or
MessagePack messages [72]). The experiments carried out
against the 1,351 operations used the same values for the
configuration parameters of bBOXRT, namely: WL_REP=10
indicates that each request parameter is generated 10 times;
WL_RETRY=true denotes that each unsuccessful request
is retried once; and FL_REP=3 means that each applicable
fault is used 3 times per parameter. Both WL_MAX_TIME and
FL_MAX_TIMEwere set to0, meaning that neither the work-
load or faultload execution phases were time-limited. In the
case of Set 5 (In-house services), we used the benchmarks’
client emulator applications and our tool worked only as a
fault injection proxy.

As a result of the above setup, the tests produced
399,901 responses that needed to be manually analyzed
for the identification of robustness issues. For the analysis,
we grouped the responses by operation and then by status
code. In a first round, and considering the large number of
responses to analyse, we performed a fast search to signal
responses showing obvious signs of robustness problems
(e.g., a 500 status code response holding an SQL exception)
or strongly suspicious cases (e.g., a stack trace in the response
payload). All other cases were optimistically marked as being
correct behavior. This resulted in 68,372 responses that we
analysed in detail. For each signalled response, we analysed

its whole contents and the respective service specification.
Responses that did not comply with the service specification
were marked as a problem, with the same happening with
unspecified cases that showed obvious signs of unexpected
behavior. The whole process resulted in a total of 68,245 indi-
vidual responses referring to robustness problems (repeated
test cases are included in this number). Some doubts remained
in 127 cases (e.g., the service states some problem occurred,
but there is no clear indication that a failure has occurred),
thus we marked them as Dubious and omitted them from the
discussion.

B. EXPERIMENTAL RESULTS
We begin with an overview of the results and then drill down
into the detail of the results for each set of services. In about
half of the services tested (i.e., 26 out of 52) we detected at
least one case of robustness problem. At the operation level,
bBOXRT detected at least one robustness problem in 167 of
the 1,351 service operations tested (i.e., in about 12% of the
operations). Of the 7,167 parameters available in these oper-
ations, 525 were involved in at least one robustness problem.
The tool actually disclosed 24,372 problems, each being the
consequence of injecting one type of fault at a particular
parameter of a certain service operation (i.e., not counting any
repetitions of a certain fault). The vast majority (i.e., ∼97%)
of the problems found represent failures of type Abort (i.e.,
23,764 failures that refer to unexpected exceptions or error
messages), with 608 fitting the Hindering failure mode.
Out of the total 49 faults implemented (shown pre-

viously in Table 1), 44 were able to trigger some fail-
ure. The five faults not involved in failures are: the faults
N_ReplaceDomainMax andN_ReplaceDomainMax+1
for numeric parameters; the fault S_AppendPrintable
for string parameters; and the faults Bi_Duplicate and
Bi_Swap for byte and binary parameters, respectively. The
former two faults were used but not involved in failures, while
the remaining three were not used at all, due to the respective
data types not being found in the tested sets of services.

Figure 3 presents the distribution of the 44 types of faults
that resulted in the 24,372 robustness problems (problems
arising from repetitions of a certain injection are not counted,
as they are essentially a confirmation that the problem exists
and its observation is repeatable). A longer bar means that
a particular type of fault was involved in disclosing a larger
number of robustness problems, thus the x-axis represents
the frequency of fault types (i.e., the number of times a
given fault type triggered a robustness issue divided by the
total number of robustness problems). The numbers between
parenthesis show the total number of times a given fault type
triggered a robustness issue (i.e., considering all parameters
where it was injected and excluding repetitions), and add up
to the total of 24,372. It is worth mentioning that we found
146 cases where the random workload actually triggered a
failure. In 81 of these we determined that the workload had
emulated one of the faults and we included these cases in the
analysis. The remaining 65 were excluded from the analysis,
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FIGURE 3. Distribution of the successful faults over the service sets.

as we were unable to determine what was the reason for the
failure.

In Figure 4 we can see the prevalence of behavior tags with
respect to the services in which robustness problems were
disclosed. Each tag is represented by its abbreviated name
(see Table 2 for the complete designation). The numbers
between parenthesis in the vertical axis refer to the overall
number of services displaying a given behavior (i.e., marked
by a certain tag).

FIGURE 4. Prevalence of the behavior tags in the tested services.

Figure 4 shows that the top issues across the services
include cases that are too vague to be classified (e.g., general
server error responses), meaning that some services are not
really informative to clients, which is an obstacle for reliable

service integration. There are also frequent issues related
with storage operations, which show that robustness issues
can be triggered deeper in the service code, namely at the
points of contact with subsystems. Server resource disclosure
is also a frequent behavior, with some services disclosing
internal information that should be kept from the outside. Null
references and conversion issues are also still in the top cases
of problems found across services, which are known to be
typical sources of robustness problems [24].

Table 3 presents the cases where robustness problems were
detected in Sets 1 and 2 (the results regarding Sets 3 through
5 are discussed later in this section). Table 3 includes the
name of the service, the number of operations tested (and
the total number of operations available in that service),
the status code of the robustness failure, the operations with
error responses, the number of arguments for those particular
operations and the number of vulnerable arguments, the target
datatype of the injected faults that resulted in some failure,
a description of the failure using the behavior tags, and the
CRASH scale classification [5]. Each type of injected fault is
accompanied by a number between parenthesis, which refers
to the number of arguments it affected in a particular opera-
tion (and resulted in a robustness failure).We use the word All
along with the number of affected parameters, when all faults
of a given data type triggered a certain problem. In some cases
the list or name of operations is too large to display and we
replaced it with the number of operations affected. We also
removed all cases of dubious behavior, as they are not relevant
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TABLE 3. Results of the experimental evaluation for Sets 1 and 2.

as those that represent clear robustness problems. Please refer
to [21] for a more detailed view of the results, including short
textual descriptions of each observation as well as the full
raw output of each test suite. In the following subsections,
we detail the results for each one of the sets.

1) RESULTS OF SET 1
Starting with Set 1 (Popular services), we found no error
responses for the Google Calendar, Giphy, and Trello ser-
vices. Regarding Google Drive, we detected one case, where
the service replied a 500 internal server error
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status code and a JSON payload with {error: {code:
500, message: null}}. This was observed in the
operation drive.permissions.list and in the oper-
ation drive.revisions.list, as a consequence of
injecting the S_ReplaceAlphanumeric fault in the
pageToken query parameter (present in both operations).
The goal of the former operation is to list all the permissions
set associated with a certain file, and the goal of the latter is
to list all the revisions (i.e., the change history) that have been
performed on a file. This case fits in Hindering failure mode,
as the returned error response is not correct. Note that other
problems in that particular operation were properly handled
with 4xx status codes and responses specifying the problem.

Three of the Spotify service operations (see Table 3)
produced a response with a 500 status code accompanied
by the payload {error: {status: 500, message:
Server error}}. This response was consistently trig-
gered by the empty parameter fault, null replacement
fault, the malicious string fault, and by appending or ran-
domly inserting non-printable characters. We also observed
502 bad gateway status code responses in three opera-
tions (one of which shared with the previous error response)
accompanied by a message signaling that the server was
unable to perform the intended action (i.e., either it could
not follow playlist, could not retrieve followers or could not
unfollow playlist [21]). The documentation of Spotify does
not specify the expected behavior for these cases, but still the
status code is anomalous, considering the remaining cases of
messages returned by the service (including cases where the
server detects a problem, in which 4xx codes are used).

2) RESULTS OF SET 2
We observed several different cases of robustness issues in
Set 2 (Public services), with most services displaying more
than one type of problem, ranging from pure robustness issues
to potential security problems. The next paragraphs discuss
just a few different examples, with the full information being
available at [21].

In a single operation of the Api2Pdf service, a response
with a 400 Bad Request status code was accompanied
by a full stack trace, revealing the partial structure of the
service source code, which is essentially a problem of infor-
mation disclosure. Therefore, an experienced user could take
advantage of this information for identifying entry points in
the service, such as the use of libraries with known vulnera-
bilities. We tagged this behavior withData access operations
because the payload message refers to the inability to find a
particular file, as well as Server resource disclosure due to
application-specific information being revealed by the stack
trace.

Another case of information disclosure was observed in
two operations of the BikeWise service, with a full SQL
query being included in the response payload and also spe-
cific information about the database management system
being used, namely PostgreSQL (identified by the payload
exception PG::InvalidRowCountInLimitClause).

This occurred because the limit query parameter contained
a negative number, and the service directly used this value
in the LIMIT clause of a PostgreSQL query without prior
validation. In addition, this operation actually treats this par-
ticular input as a string (instead of a number), which we could
verify by replacing the input with a typical SQL Injection
string that wouldwork in theLIMIT clause (e.g.,10 UNION
SELECT 1, 2, 3, 4, 5 --), which was accepted by
the operation, confirming it is vulnerable to SQL Injection.
This behavior is marked with the tags Command or schema
disclosure, Persistence error and Data access operations
(i.e., the problem relates to a database exception), System
Vendor Disclosure and System instance name disclosure
(i.e., the service revealed the name of the database vendor
and instance), and conversion issues (i.e., we detected that
the service actually treats this parameter as the wrong data
type).

Another operation of this service also disclosed a query
due to mishandling an out of bounds 32-bit integer (e.g.,
minimum minus one or maximum plus one) in the id
path parameter of the operation URI (/v2/incidents/
{id}), and failed to convert its string representa-
tion (i.e., in the HTTP request) to a 32-bit integer
space (i.e., Conversion issues and Overflow). Similarly
to the previous case, the PostgreSQL-specific exception
PG::NumericValueOutOfRange was also included in
the error response.Wewere also able to confirm the operation
is vulnerable to SQL Injection, by using a particular mali-
cious string (i.e., 100 UNION SELECT 1, 2, 3 --)
that was accepted by the operation.

In several APIs, we observed problems that are obvious
cases of missing or incomplete input validation. For instance,
in the Rat Genome Database service, we observed one case
of array out of bounds accompanied with the disclosure of
a full stack trace (server resource disclosure), triggered by
the injection of Any_empty fault and a few string faults
in the termString parameter of the vulnerable operations
(see Table 3). In the Traccar service, we observed a null
reference in three operations after injecting multiple faults
(e.g., Any_Empty, N_Replace0, B_Overflow) over the
deviceId, id and all parameters. The returned response
included a reference to a null pointer exception.

One operation of the HHSMedia Services API returned an
error after attempting to divide a number by zero (Arithmetic
operations and Division by zero), as a consequence of the
N_Replace0 fault, which replaces a numeric input with
the value zero. The same operation also produced an error
response related with the attempt to convert a null pointer to
a 32-bit integer. Further analysis revealed that the null pointer
originated from the failure to parse a string representation of
an out of bounds integer (e.g., integer minimum minus one).

3) RESULTS OF SET 3
In Set 3 (Middleware management services), all robust-
ness issues observed (during testing of the Docker Engine
API) are associated with the 500 internal server
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TABLE 4. Results of the experimental evaluation for Sets 3-5.

error status code (refer to Table 4). A common issue
is the failure to process or parse certain types of inputs
introduced by several different faults like Any_Empty,

N_Replace-1 or S_AppendNonPrintable. These
cases, marked with the Parsing error tag, resulted in
a message holding could not parse filters:
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invalid character ’<char>’. Notice that we found
many other cases of invalid inputs resulting in a proper 4xx
code being returned. The fact that a 5xx code is being returned
strongly suggests that the usual validation before parsing is
either not being carried out, or is being carried out incorrectly,
resulting in a failed attempt to parse inputs. This inconsistent
behavior should be made uniform. A similar case occurs with
thePluginUpgrade andPluginPull operations, which
fail with a 500 code whenever a JSON array in the request
payload is replaced with an empty value (but fail with 4xx
codes, when the array is null or carries other types of faults).

In the ContainerUpdate operation, we detected a
mismatch between the service specification and the service
itself. A long integer in field BlkioWeight makes the
service fail with a 500 status code mentioning that it was
not able to convert the value into a 16-bit unsigned inte-
ger. Again, this suggests that no validation is performed
before attempting parsing. The problem with this kind
of issue is that a client may not be expecting this kind
of server failure (as the specification does not state the
exact datatype). Similar conversion issues were found in a
few other operations (e.g., NodeUpdate, ImageSearch,
ContainerRestart).

4) RESULTS OF SET 4
Regarding Set 4 (Private services), there are some inter-
esting cases to mention. For instance, calls to the operation
rebootDevice using the empty fault on the DEVICE_ID
path parameter resulted in a 500 internal server
error status code, with a payload message containining
datastore fault (marked with tag Data access opera-
tions). Similarly, this same fault in the USER_ID path param-
eter of the loadUserDevices operation resulted in the
status code 503 service unavailable, accompanied
by the error message datastore fatal error, indi-
cating a severe problem has occurred at the datastore level.

In the changeAccount operation the empty value
and the random non-printable string triggered a 502 bad
gateway status code, accompanied by an HTML payload.
Note that this API is purely JSON-based (i.e., no HTML
responses should ever be returned to clients) and this type of
response typically originates from middleware that supports
these services. In some other cases, responses were vague
(e.g., init failed) or carried no payload at all (triggered by the
S_ReplacePrintable fault).

We contacted the developers, reported the issues and
received feedback. The developers confirmed that all reported
cases of responses holding 5xx codes are indeed problems
in the service that must be corrected, which emphasizes the
ability of the tool to detect issues that, in this case, have been
neglected by verification activities put in place from the
experienced developers in charge of the service.

5) RESULTS OF SET 5
The tests involving Set 5 (In-house services) resulted in
the disclosure of several robustness problems, from which

we present some highlights. In TPC-App, calls to the New
products operation in both Vx0 and VxA implementations
that use negative values or the maximum plus one on the
itemLimit parameter resulted in an error message stating
a call to setFetchSize (a parameter that specifies the
number of rows to be fetched from the database) using invalid
arguments. What is interesting is that this is a function of
the query parsing middleware and the Oracle JDBC driver
used (v10.2.0.2.0), does not validate the input of this func-
tion against negative or out of bounds values, a known bug,
which has been fixed (identified as bug report CORE-2130 in
liquibase.jira.com [73]). This case gives emphasis to the fact
that robustness tests can be used to detect bugs not only in
the implementation logic of a certain service, but also at the
middleware level.

In the same two previous operations, using the data
type maximum and minimum minus one, faults in the
itemLimit parameter resulted in a 500 status code
with the message OutOfMemoryError: Requested
array size exceeds VM limit followed by a full
stack trace (Server resource disclosure). The value is used
(without validation) to create an array, which exceeds the
amount of available memory and fails unexpectedly (accord-
ing to the specification).

We also observed differences between what the speci-
fication states and the actual implementation, namely the
use of strings to represent numbers. For instance, in the
Vx0 Change payment method operation, the wrong
representation of the poId argument as a String, led some
faulty requests to trigger a failure where the Oracle driver
tried to parse a number from a database query string. This
means that the injected invalid string reached the query
(and could have been gracefully stopped at the entry of the
operation).

The TPC-App VxA version is known to hold six vulner-
abilities, which our tool was also able to detect, despite not
being its main target. The large set of malicious faults used
were able to modify the structure of all vulnerable queries
(check detailed results at [21]). This was evident at the client
side, when it has received responses, such as ORA-00933
SQL command is not properly ended.

Regarding TPC-C implementation, we observed similar
issues to the ones presented earlier. Namely misrepresenta-
tion of datatypes, for instance in the Payment operation of
both Vx0 and VxA a boolean was misrepresented as string,
leading the service to abort the execution of the operationwith
an unexpected response (failure to parse a boolean). Typical
robustness issues, such as unhandled exceptions due to array
index out of bounds or null pointers were also observed.
All these issues could be easily avoided with proper valida-
tion of inputs.

Like in the previous benchmark, we again observed an
out of memory error. However, in this case it was actually
a data structure (i.e., an array) placed directly on the service
code (and not an internal JDBC driver data structure). The
code tried to instantiate an array by directly using the user
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input, allowing for a malicious initialization with a very large
number that led to the unhandled exception.

In the VxA version, which builds queries through con-
catenation, several Oracle errors were triggered by the query
parsing middleware, including ORA-00907 which states a
parenthesis is missing, and ORA-01756 where a quoted
string is not properly terminated.

In the VxA version of TPC-C, we successfully detected
28 of the 30 known SQL injection vulnerabilities. Our tool
could not reach the two undetected cases (present in the New
Order operation) because, in the New Order operation
code, they are preceded by an INSERT statement. As the
selection of the S_Malicious faults is random, the tool
simply selected cases that always broke the syntax of the
INSERT statement, leading the operation to abort with an
unexpected exception and not allowing to reach the two
remaining vulnerable queries.

C. MAIN FINDINGS
This section highlights the main findings of our experimental
evaluation by going through key aspects, which we identified
during this work. The main findings are the following:

• REST services are being made available on-line, carry-
ing residual bugs that affect the overall robustness of the
services.

• The robustness tests were able to disclose bugs that
reside at the service implementation level, but also at the
middleware that supports the service.

• Robustness tests were able to detect security issues,
where malicious inputs trigger issues related with miss-
ing validation or wrong input usage, as it is the case of
SQL Injection vulnerabilities.

• A common security issue found was related with infor-
mation disclosure, namely code structure, SQL com-
mands and database structures or database vendor.
A malicious user may take advantage of the information
to explore entry points or exploit know vulnerabilities in
the system.

• The faults that were most frequently involved in the
detection of robustness problems were the injection of
null and empty values and also string-related faults.
In this latter case, faults with random characters and also
malicious (SQL Injection) revealed to be quite effective.

• Considering the whole set of services tested, we fre-
quently observed services being affected by problems
related to storage operations, null references, and con-
version issues.

• Contrary to what was found in previous work regarding
SOAPweb services [24], the large number of null/empty
value faults that triggered robustness issues, did not
actually directly led to the disclosure of null references
problems. Either they triggered other kinds of problems
(e.g., Data Access Operations), or they triggered issues
that were camouflaged by the services and resulted in
vague responses being delivered to the client.

• The experiments revealed only Abort and Hindering
failures. Considering the large amount of executed tests,
this means that severe failure modes like Catastrophic
[22] seem to be difficult to trigger.

• Mismatches between the interface description and the
actual service implementation were detected during the
analysis of the tests results, emphasizing the ability of
the tests to flag such cases.

• It became evident that current OpenAPI specifications
associated with the services being tested are being
written without attention to basic operation details
(e.g., missing data type details) and several detected
cases turned out to be associated with robustness
problems.

• Most of the OpenAPI specifications analysed lack com-
plete information regarding the expected behavior of the
service (e.g., when in presence of invalid inputs), which
opens space for doubts when analyzing tests results and
create issues for applications that wish integrate these
services.

• In almost half of the services tested, we found non
descriptive error messages which, accompanied with a
poor specification, do not allow clients to get much
insight regarding the real issues.

• Access to server logs was not sufficient information
to allows us to understand the exact root cause of the
problems detected with the Docker Engine service.

• Robustness testing revealed useful even in services with
high reliability requirements (i.e., Set 1 and Set 4), being
able to detect issues that had escaped the verification
activities in place.

• Missing validation is the main cause for the detected
problems in the four TPC implementations (although
some related with poor practices, like query concate-
nation with user input). While some cases should be
obvious to avoid by senior programmers (e.g., using
prepared statements), others would be difficult to detect
(e.g., the use of a driver holding a bug).

• Robustness testing results seem to be highly repeatable,
at least considering the set of services tested. Each fault
was repeated three times per operation parameter and,
on average, in about 2.8 times we observed the same
outcome.

V. THREATS TO VALIDITY
In this section, we present the main threats to the validity of
this work and discuss mitigation strategies. We start by men-
tioning the fact that we manually analyzed 399,001 results,
which may have added some error to the process (e.g., cases
of undetected failures). We focused our attention on the obvi-
ous or highly suspicious cases of robustness problems. The
identification of robustness issues can be subjective, which is
especially true when the service specification lacks sufficient
information. To reduce the likelihood of error, we had these
cases double checked by an Experienced Researcher.

The tests over the public services were carried out without
isolation for other concurrent requests (i.e., from other users).
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Even so, we repeated the injection of faults three times to
observe that on average, in 2.8 times the outcomes were the
same.
The robustness testing tool may hold residual soft-

ware defects, which might have affected some observations
(e.g., by not emulating a certain fault as expected). We tried
to carry out typical V&V tasks throughout the development
of the tool, and we placed it in contact with diverse service
APIs (i.e., with different number of operations, parameters
and payload requirements) so that any issue would become
evident. In the end, when analysing the results of the tests
we checked the requests that were involved in each failure to
verify if the tool had injected the expected fault.

Finally, the tool configuration used during the tests,
namely the number of faults to generate for a certain parame-
ter (some faults involve random value generation), the ran-
dom workload involved (which may not provide sufficient
coverage, or may provide a biased coverage) may have led us
to disclose fewer issues in some services, showing an image
of the overall robustness of services that is not really represen-
tative of reality. We did try to run a relatively large number of
tests (i.e., especially considering the manual time-consuming
steps of the experiments) and we acknowledge that there
may be many other issues that we were not able to disclose.
Nevertheless, the diversity and number of disclosed issues
provide us and developers with useful information for robust-
ness assessment and that can be used by providers to improve
their services.

VI. CONCLUSION
In this paper, we presented an approach and a tool for car-
rying out robustness tests on REST APIs. We introduced
the concepts behind our approach, and described bBOXRT
architecture, mapping its components to the different phases
of a typical robustness testing campaign. We showcased the
capabilities of bBOXRT tool in the form of a practical exper-
iment, by performing tests over 52 REST services grouped
in 5 different sets. Results showed the ability of the tool
to test different kinds of services and disclose robustness
and also security issues across nearly half of the tested
services.

We are actively improving the tool by fixing any under-
lying issues. As future work, we intend to improve upon
its extensibility in order to ease the process of adding new
functionalities (useful for researchers and practitioners alike).
We also intend to add support for additional payload types
(e.g., files, media types other than JSON) as well as imple-
ment faults that specialize in the middleware that supports
REST services. Finally, we will also consider studying the
applicability ofMachine Learning algorithms to automate the
process of classifying test results.
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