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ABSTRACT Due to the proliferation of the Internet of Things (IoT), the IoT devices are becoming utilized
at the edge network at a much higher rate. Conventionally, the IoT devices lack the computation resources
required for carrying out ultra-edge analytics. In this paper, we go beyond the typical edge analytics
paradigm, which is mostly limited to user-smartphones, and investigate how to embed intelligence into the
ultra-edge IoT sensors. To conceptualize the smart IoT sensors with enhanced intelligence, we select the
arrhythmia detection task employing Electrocardiogram (ECG) trace as one of the mobile health (mHealth)
cases. The existing approaches are not feasible for ultra-edge IoT sensors due to the extensive noise-filtering
and manual feature extraction phase. Hence, in this paper, to facilitate the analytics, we propose a Deep
Learning-based Lightweight Arrhythmia Classification (DL-LAC) method, which employs only single-lead
ECG trace and does not require noise-filtering and manual feature extraction steps. As the proposed
technique, we design a one-dimensional Convolutional Neural Network (CNN) architecture. Complying
with the ANSI/AAMI EC57:1998 standard, four heartbeat types are taken into consideration as class labels.
The efficiency and the generalization ability of the proposed model are evaluated, employing four different
datasets from PhysioNet. The experimental results demonstrate that the proposed DL method outperforms
traditional methods such as the Delay Differential Equation (DDE)-based optimization, K-Nearest Neighbor
(KNN), and Random Forest (RF). The proposed DL-LAC illustrates encouraging performance in terms
of time and memory requirement when the trained model is transferred to virtualized microcontrollers
connected to IoT sensors.

INDEX TERMS Internet of Things (IoT), arrhythmia, electrocardiogram (ECG), deep learning (DL),
convolutional neural network (CNN), smart health, smart sensor.

I. INTRODUCTION
The escalation of Artificial Intelligence (AI), Internet of
Things (IoT) sensors, and numerous wearable devices
have radically enhanced mobile health (mHealth). However,
due to the hurdle of incorporating intelligence into these
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resource-constrained IoT devices, the IoT sensors continue
to be routine monitors. The conventional technique is to
employ the IoT sensors and wearables to sense user’s day
to day health data such as Electrocardiogram (ECG), Elec-
troencephalogram (EEG), temperature, respiration patterns,
diabetes level, sleep patterns, weight change, and so forth.
These health data accumulated by the regular IoT devices
are dispatched to a remote cloud for medical analytics,
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as portrayed in Fig. 1. Although this IoT and cloud-based
medical analytics serve the purpose of health monitoring,
it still raises a few major concerns that cloud-based architec-
ture cannot avoid easily. This paradigm of ECG data analytics
results in bandwidth consumption, delay due to transmitting
the enormous amount of health data, and privacy concerns
associated with the user’s health data.

FIGURE 1. How migrate the pre-trained AI model towards the
resource-constrained sensor.

Our goal in this paper is to analyze how to exploit the logic-
in-sensor concept, recently introduced by the coauthors’
earlier research work [1]. The logic-in-sensor architecture,
which is based on Magnetic Tunnel Junction (MTJ)-based
spintronic technology, can revolutionize themHealth industry
by enhancing the Quality of Service (QoS) such as commu-
nication delay, network bandwidth consumption and privacy
of user’s health data. Considering the user-smartphone as
an edge device that is capable of some analytics, the pro-
posed ultra-edge architecture shown in Fig.1 aims to bring
the intelligence or the analytics from the cloud to the edge
device using the logic-in-sensor concept. Following the hard-
ware enhancement and AI-based intrinsic noise processing,
as demonstrated in [1], in this paper, we intend to obtain
a lightweight solution to relocate the cloud-based medical
analytics to the ultra-edge smart IoT nodes, and hence, over-
coming the issues as mentioned earlier.

We have chosen an essential use-case of cardiac arrhyth-
mia, one of the major causes of Cardiovascular Diseases
(CVDs) [2]. Cardiovascular diseases are the leading cause of
death worldwide, which results in approximately 31% of all
global deaths; however, the risk can be eliminated if detected
and diagnosed with timely treatment [3]. Arrhythmias cause
the heart not to pump blood in the body adequately, and
the patients usually experience symptoms of faster or slower
heart pulsations. Conventional clinically graded 12-lead ECG
or consumer-grade wearables can be employed to monitor the
heart activity of a person. The electrical activity of the heart
is known as the ECG waveform, which is a crucial diagnostic
tool used to monitor the conditions of the heart and can
be used to identify arrhythmias [4]. Automatic detection of
irregular heartbeats from ECG signals is a significant task for
the smart diagnosis of CVDs, and it is becoming a prominent

area where AI can be employed extensively to automate the
process.

Recent advances in AI and the availability of more health
data, the utilization of the deep neural network has proven
to be indispensable for automating the smart healthcare sys-
tem [4]. ECG data analytics using Machine Learning (ML)
or AI techniques and analyzing time series ECG with non-
linear Delay Differential Equations (DDEs) are explored
broadly by traditional cloud-based medical analytics. How-
ever, the adaptation of localized embed intelligence at the
ultra-edge devices is still not extensively studied in the litera-
ture. For diminishing the communication delay and network
bandwidth with the cloud and preserve user-data privacy by
considering the localized analysis of the health data, a more
effective and lightweight analytics technique on-sensor is
critical. Therefore, in this paper, we considered several
ML techniques to pave the way to move the arrhythmia
analytics from the centralized cloud paradigm to ultra-edge
smart IoT. Among different AI approaches, we propose a
Deep Learning-based Lightweight Arrhythmia Classification
(DL-LAC) algorithm employing the one-dimensional Con-
volutional Neural Network (CNN) that emerges as the most
viable solution for ultra-edge ECG analytics.

The proposed CNN-based model is trained at a cen-
tral node and then can be transferred to the logic-in-
sensor simulation for inference. The proposed model can
be used to classify heartbeats employing raw single-lead,
and it does not require any noise-filtering of the ECG
signal, which makes the system lightweight and easy to
integrate with the ultra-edge node. In this vein, the pro-
posed deep learning-based CNN employs the recommen-
dation of Association for the Advancement of Medical
Instrumentation (AAMI) for the arrhythmia classification
task. We have considered four classes of heartbeats, namely
N , S, V , and F , in this paper, which represents nor-
mal, supraventricular ectopic, ventricular ectopic, and fusion
beats, respectively [5]. To evaluate the model’s generaliza-
tion ability, we experimented using four clinically graded
ECG datasets and considered different experimental settings
to test the model’s performance using accuracy, precision,
and f-score as performance metrics. Lastly, due to the high
fabrication cost of a single logic-in-sensor (approaching
$15k for the entire circuit and a further $10k for further
customization), we illustrate the viability of the proposed
method’s feasibility as a lightweight solution in an emu-
lated ECG sensor with a Raspberry Pi and a few other IoT
devices.

The remainder of the paper is constructed as follows.
Sec. II surveys the relevant research work. The problem
of traditional cloud-based analytics and the necessity of
lightweight analytics at the smart logic-in-sensor is dis-
cussed in Sec. III. The data preparation is outlined in
Sec. IV. Our proposed input representation and deep learn-
ing model are manifested in Sec. V. The performance
of our proposal is assessed in Sec. VI and contrasted
with those of K-Nearest-Neighbour (KNN), Support Vector
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Machine (SVM) and Random Forest (RF). Finally, Sec VII
concludes the paper.

II. RELATED WORK
Due to the availability of IoT devices that can deliver health
data, researchers are have been working on ECG classifica-
tion [6]. As an indispensable strategy for diagnosing heart
diseases, ECG monitoring is comprehensively studied and
analyzed. It is vital to detect cardiovascular diseases timely,
and for that purpose, continuous observation of ECG for
a prolonged period is essential. However, the conventional
method of long-time ECG monitoring is invasive and expen-
sive, and it hinders the daily activity of the patients. To over-
come this issue and introduce some level of automation in the
ECG monitoring system, cloud-based ECG analytics can be
employed where the ECG signal is usually transmitted using
wireless transmission techniques such as Bluetooth, Zigbee,
or Wi-Fi [7]–[9]. Therefore, most of these traditional auto-
mated ECG monitoring systems analyze the data at the cloud
and then send feedback back to the user or care-providers.
One of the proposed cloud-based analytics where the ECG
data are collected using a wearable monitoring node and
are transmitted straight to the IoT cloud using Wi-Fi [10].
An IoT-based patient monitoring system is proposed where
data is then processed using a Raspberry Pi, and useful
information is delivered to the IoT cloud for cloud-based
analytics [11].

In this proposed system [12], AdaBoost and Gradient
Boosting algorithm were applied to classify ECG using
single-lead ECG. An automatic and fast ECG arrhythmia
classifier based on a brain-inspired ML approach known as
Echo State Networks (ESN) was implemented in for faster
ECG analytics [13]. In another work, an accurate arrhyth-
mia classification method for ECG was proposed based on
extremeweighted gradient boosting (XGBoost) using a broad
range of feature set [14]. In [15], to tackle the patients’ privacy
concerns, Baza et al. have proposed a mimic learning-based
machine learning approach for automatic, secure, and effi-
cient analysis of Cardiovascular activities. A clustering-based
feature extraction algorithm followed by employing a number
of well-known ML classifiers for accurate recognition and
classification of arrhythmias is proposed in [16]. Researchers
have also employed mathematical methods to decompose
ECG, such as a nonlinear DDE was utilized to classify ECG
by differentiating features for various heart diseases [17].

Apart from traditional ML techniques, researchers have
also employed neural networks and deep learning-based
approaches for the classification of ECG heartbeats. In one
of the research works, the convolutional neural network
of 34-layer was adopted to classify with high accuracy that
transcends the cardiologist performance [18]. Principal Com-
ponent Analysis (PCA) based feature extraction followed
by a Multi-Layer Perceptron (MLP) was utilized in another
research [19]. Deep-learning-based, Long Short-Term Mem-
ory (LSTM) algorithm was proposed in [20], having
considerable low computational costs. Recurrent Neural

Networks (RNN) was used for binary classification (normal
and abnormal) of heartbeat in this research [21]. A Deep
Genetic Ensemble of Classifiers (DGEC) was proposed by
combining deep learning algorithms with an ensemble learn-
ing and genetic optimization of parameters for the classifi-
cation of various types of arrhythmias [22]. In our recent
work [23], these issues were raised and an attempt was made
to embed AI at the IoT sensor level to perform ECG predic-
tion at the ultra-edge network. However, the work concluded
the need for a systematic investigation and computational
analysis to conceptualize a fusion of logic and sensing to
render a continuous and lightweight arrhythmia monitoring
system.

III. PROBLEM FORMULATION
As manifested in the previous section, the healthcare sec-
tor still needs accelerating improvement in establishing
smart healthcare with embedded intelligent sensors. As our
research focus in this paper is lightweight arrhythmia mon-
itoring, we will discuss the drawbacks of the existing
ECG/arrhythmia monitoring system and the hurdles associ-
ated with transferring the existing analytics to ultra-edge IoT.
Traditionally, researchers have employed diverse heartbeat
classification techniques that generally require a number of
pre-processing steps such as noise filtering, manual feature
extraction, and so forth. The steps needed by the conventional
heartbeat classification employingMLmethods are exhibited
in Fig. 2. Diverse methods such as DWT, DDEs [24], and
ML techniques are commonly utilized in the conventional
feature extraction and classification tasks. Though these
ECG analytics techniques overcome many drawbacks of the
manual ECG monitoring, it still lacks the potential to be inte-
grated with logic-in-sensors due to the extensive computa-
tional steps. These conventional ECGmonitoring approaches
mostly rely on multi-lead ECG signal and requires multiple
preparatory steps (i.e., noise filtering), which is a significant
issue for combining these models with the ultra-edge IoT
logic-in-sensors [23].

Apart from ML techniques, traditionally DDE-based opti-
mization techniques have also been proposed for the ECG
monitoring task. However, the non-linear DDE for the
time-series ECG analysis technique cannot adequately infer
the system models in varying heart conditions. In this
approach, exhaustive search or heuristics must be developed
to select the most competent model for any given classifica-
tion task, which is a considerable challenge for lightweight
ECG analytics. Conventionally a non-linear DDE can be
expressed as follows:

f (ai, xτj ) = a1xτ1 + a2xτ2 + a3xτ3 + . . .+ ai−1xτn
+aixτ1xτ1 + ai+1xτ1xτ2 + ai+2xτ1xτ3 . . .

+aj−1x2τn + ajx
3
τ1
+ aj+1xτ12xτ2 + . . .

...

. . .+ a1xmτn , (1)
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Here, xτj can be expressed as: xτj = x(t− τj), in Eq. 1, n, t ,
m, and τj represents the number of delays, time, the degree
of non-linearity, and time delays, respectively. The selec-
tion of optimal time-delays and monomials is imperative
for building an effective DDE-based classification system.
For example, to select the optimal model for classification
using the DDE-based model, the authors applied the genetic
algorithm in [25]. Therefore, these approaches are not appro-
priate for integrating with the logic-in-sensors for ultra-edge
IoT analytics in polynomial time.

Apart from expensive computational requirements, some
of the other issues with the traditional ECG monitoring
system are that it requires internet connectivity to commu-
nicate with the cloud servers for ECG analytics. Hence,
it consumes considerable network bandwidth if the num-
ber of users is high. Furthermore, due to continuous data
transmission, cloud-based analytics can also raise significant
privacy concerns for the user’s private data. Therefore, this
approach can be a hindrance to secure ECG analytics for
arrhythmia detection. To address this challenge, we focus
on developing an automated, efficient, and lightweight sys-
tem with localized intelligence that can be deployed and
integrated with the logic-in-sensors for ultra-edge IoT ana-
lytics. To develop a lightweight ECG/arrhythmia mon-
itoring system, we envision an AI-aided technique for
classifying heartbeats employing a raw single-lead ECG
signal and compared the proposed model with tradi-
tional ML techniques adopting the architecture depicted
in Fig 2.

FIGURE 2. Steps of conventional ECG heartbeat classification.

IV. DATA PREPARATION
We have conducted ECG signal analysis to detect
arrhythmia by utilizing the MIT-BIH Supraventricular
Arrhythmia Database (DS1) [26], MIT-BIH Arrhythmia
Database (DS2) [27], St Petersburg INCART 12-lead
Arrhythmia Database (DS3), and Sudden Cardiac Death
Holter Database (DS4) [28] from PhysioNet [29]. The
datasets contain recordings of many traditional and
life-threatening arrhythmias along with cases of normal
heartbeat rhythm. Various researchers have employed these
datasets for diverse ECG based research [30], [31].

The datasets comprise a text header file, a binary file,
and a binary annotation file with.txt,.dat, and.atr extensions,
respectively.

1) Header file (.hea): This file contains a brief text file that
explains the signals’ contents, such as the name of the
record’s file, number of examples, type and format of
the ECG signal, and so forth.

2) Binary file (.dat): The binary files include digi-
tized representations of the ECG signals of each
record.

3) Annotation files (.atr): The annotation files contain
heartbeat labels that define the type of ECG signals at
a particular time in the ECG record.

We generated four separate heartbeat categories fol-
lowing the Association for the Advancement of Medical
Instrumentation (AAMI) EC57 standard from the annota-
tion files in each of the datasets. The summary of map-
pings between the heartbeat annotations for each class
is demonstrated in Table 1. We have employed the DS1
(MIT-BIH Supraventricular Arrhythmia Database) for the
hyper-parameter tuning and the training phase. In the run-
ning/inference stage, we test the model using the other three
datasets (i.e., DS2, DS3, and DS4). We exploited multiple
datasets to evaluate the generalization ability of the proposed
model. Although each of the datasets contains multiple ECG
lead’s data, we have employed the lead II in our experi-
ment as our model only requires single-lead-ECG tracing.
The distribution of four heartbeat labels is manifested in
the Table 2.

V. PROPOSED METHODOLOGY
A. PROPOSED CNN MODEL STRUCTURE
In this section, we illustrate the proposed lightweight heart-
beat classification technique for arrhythmia detection that can
be deployed and integrated with AI-aided logic-in-sensor.
A lightweight model for classification is an essential part of
integrating the AI-aided model at the ultra-edge IoT sensors
for faster analysis. Hence, we primarily focused on designing
the deep learning-based model that only requires a single
lead raw ECG signal so that the model can be sufficiently
lightweight. Sensors with embedded intelligence can be uti-
lized for long-term, accurate monitoring of a person’s car-
diac activity, which is demonstrated in one of the coauthors’
previous works [1]. Keeping the concept of logic-in-sensor
in focus, we developed a deep-learning-based lightweight
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FIGURE 3. Proposed training architecture leveraging CNN structure for the considered use-case. Once the model is trained at the cloud, it is
transferred to the smart IoT sensor’s AI module.

TABLE 1. Mapping DS1, DS2, DS3, and DS4 datasets to the AAMI
heartbeat classes [32].

TABLE 2. Frequency of heartbeats of each class in DS1, DS2, DS3,
and DS4.

model that can be integrated with these AI-aided sensors for
analysis of ECG at the ultra-edge device. The acquired results
of the ECG analytics can then be sent from the IoT nodes to
the care-providers.

We propose an automated deep learning-based one dimen-
sional (1-D) CNN that does not necessitate any noise-filtering
and manual feature extraction. The CNN model detects
unique patterns automatically from the raw single-lead

ECG signal. The ECG signals are sampled at a frequency
of fs before passing to CNN as input. The lightweight ECG
analysis for arrhythmia detection task takes an ECG signal
as input X = [x1, x2, x3, . . . xn], and outputs a sequence of
labels Y = [y1, y2, y3, . . . yn]. Here each yi represents one
of four different heartbeat classes and in terms of arrhythmia
classification yi ∈ {F,N ,V , S}. Table 1 exhibit of the
summary of each of the classes. We consider a minimum
length of ECG signal noted as δ to be passed as input to
the model. Every output label corresponds to a portion of the
input ECG signal, and collectively the output labels cover the
full sequence of the ECG signal record of a subject.

As the deep learning-based solution, a 1-D CNN is
designed and used because of its exceptional performance
in automatically detecting patterns in the ECG signal. The
proposed CNN model can be defined briefly as the com-
bination of the convolution layers, max-pooling layer, and
fully-connected layers. Fig. 3 represents the architecture of
the proposed CNN model. Here the model receives raw ECG
signal as input and generates heartbeat classes as output. CNN
consists of two segments; the first segment comprises nlAFE
number of 1-D convolution layers performing Automated
Feature Extraction (AFE) from the raw single-lead ECG
signal and an Automated Classification (AC) module that
process the extracted features using nlAC number of fully con-
nected layer followed by the output layer for classification.
The 1-D convolution operation can be expressed as in Eq. 2.

x lk =
∑

i∈nlAFE

(x l−1i ∗ wli + b
l
k ) (2)

Here, x lk and b
l
k can be defined as the input and bias for the

k th node of l th layer, respectively. The kernel is defined as wli
and the input of the ith node of the (l − 1)th layer is denoted
as x l−1i . To select the optimal activation function for the
proposed model, we performed hyper-parameter tuning. The
Rectified Linear Unit (ReLU) [33] is selected as activation
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function, �, defined in Eq. 3.

�(z) = max(0, z) (3)

In the first convolution layer, we also apply dropout with
a rate of α as the regularization technique, which will serve
the network in avoiding overfitting. Hence, the model can
gain enhanced generalization ability by randomly disregard-
ing some selected neurons in the hidden layers. After the
regularization layer, we employ the subsampling technique to
compress the size of the ECG data and reduce computation
time. We have employed the max-pooling layer to obtain
the maximum value in a particular region. Eq. 4 determines
the output of the jth unit of the subsampling layer l. where
x lj represents the output of the jth unit of layer l and x l−1joutput
represents the jth output group of layer l-1. The kernel size of
the max-pooling layer is set to a constant kminit for each of
the layers.

x lj = subsample(x l−1joutput ) (4)

The nth layer of the AFE module produces a feature matrix
from the ECG data. The extracted features by the initial
module are relinquished to the subsequent stage for further
analysis. In the next stage, the ACmodule consists of a single
flatten layer, followed by a fully connected layer and an
output layer. The flatten layer is responsible for transforming
the features into a vector that can be forwarded into a fully
connected [34]. ReLU and softmax activation functions are
selected to be used in the fully-connected layer and output
layer, respectively.

B. DEEP LEARNING-BASED LIGHTWEIGHT ARRHYTHMIA
CLASSIFICATION (DL-LAC) ALGORITHM
In this subsection, we present the steps of the training and
inference phases of our proposed DL-LAC algorithm.

The training phase of the proposed DL-LAC algorithm
includes Algorithms 1, 2, and 3. The training stage of
DL-LAC commences from Algorithm 1 with the inputs D, k ,
ξ , B, �, and δ. The details of each of the inputs are provided
in the algorithm’s input section. The training phase of the
algorithm returns the trained model (Mt ), which is further
harnessed in the inference phase. The algorithm initiates
with initializing the required parameters in the steps 1 to 3.
Then, in step 4, the ECG signal and the corresponding heart-
beat class labels are loaded from the dataset, which is later
utilized in training. After that, in step 5, the ECG data is
validated by checking with a pre-defined size threshold in the
DSV algorithm described in Algorithm 2. Afterward, in the
steps 6-11, the training ECG data and the heartbeat labels are
employed to train themodel (Mt ) using k-fold stratified cross-
validation. At the penultimate step, the trained model (Mt ) is
stored for further testing and validation. Finally, in step 13,
the algorithm concludes by returning the trained model.

For the data size validation purpose, our proposed DSV
algorithm is demonstrated in Algorithm 2. This algorithm’s
main objective is to validate the length or size of the

Algorithm 1 Training Phase of DL-LAC
Input: D (ECG data collection for training), k (number

of fold in cross-validation), ξ (number of epoch),
B (mini-batch size), � (activation function), δ
(threshold for data size)

Output:Mt (Trained model)
1 Mt ← ∅

2 Xδ ← []
3 yδ ← []
4 X , y← read ECG signal and annotated heartbeats from
D

5 Xδ yδ ← call DSV(X , y) from algo. 2
6 for (fold no. j = 1 to k) do
7 Xtrain, ytrain,Xval, yval ← set data and labels of jth

fold from Xδ , yδ
8 Ftrain← call AFE(Xtrain, �) from algo. 3
9 update the model parameters ofMt by passing Ftrain

through the AC module as depicted in Fig 3
10 compute validation performance using Xval, yval
11 end for
12 save the model parameters ofMt
13 returnMt

Algorithm 2 Data Size Validation (DSV)
Input: X (data), y (heartbeat labels), δ (threshold for

data size)
Output: Xδ (updated data after size validation), yδ

(updated heartbeat labels after size validation)
1 Xδ ← []
2 yδ ← []
3 for (i = 1 to length(X )) do
4 if (length(Xi) < δ) then
5 continue
6 else
7 Xδ ← add Xi[1 : δ]
8 yδ ← add yi
9 end if
10 end for
11 return Xδ , yδ

ECG signal by checking with a pre-defined threshold of δ.
The algorithm takes X , y, and δ as input and produces an
updated version ofX and y, denoted asXδ and yδ , respectively.
We utilize this algorithm in both the training and inference
phase before the start of their workflow.

In the Algorithm 3, the required steps for the AFE module
of the proposed model is manifested. We utilize this algo-
rithm from step 8 of the Algorithm 1, to extract the unique
features from the ECG signal. The extracted feature matrix
from this algorithm is then employed in the later module
for classification. The inputs to the algorithm are X and �,
whereas the extracted unique features (Ftrain) are returned as
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Algorithm 3 Automated Feature Extraction (AFE)
Input: Xt (training data), � (activation function)
Output: Fx (extracted features)

1 initialize γ (initial filter size), λ (filter size reduction
factor), nlAFE (number of conv. layers), α (dropout rate)

2 z1← γ

3 foreach layer i ∈ nlAFE do
4 Fx ← pass Xt through the convolution layer with zi

and �
5 if (i = 1) then
6 Fx ← apply regularization of rate α (dropout)
7 end if
8 Fx ← update Fx by passing through sub-sampling

layers (max-pooling)
9 zi+1← zi * λ
10 end foreach
11 return Fx

the output of the algorithm. Step 1 and 2 initialize the required
parameters. In steps 3 to 10, the automated feature extraction
module’s main workflow is illustrated for nlAFE number of
convolution layers. In step 4, the input is passed through the
1-D convolution, the results of which will then be forwarded
to the later layers. We employed dropout with a rate of α
for the first convolution layer (i = 1), which is expressed
in steps 5 to 7. Step 8 performs the sub-sampling operation
using the max-pooling technique described in the previous
subsection (Eq. 4). After that, we update the number of filters
to be used by the reduction factor λ, in the next convolution
layer in step 9. Finally, in step 11, the extracted feature matrix
is returned for the next module to use.

In the inference phase, the proposed DL-LAC algorithm is
exhibited in the Algorithm 4. It receives the location of test
ECG data for inference and returns the predicted class labels
(ypred ) for the corresponding sample. After loading the testing
ECG data from step 1, the pre-trained model (Mt ) is loaded in
the subsequent step. Step 3 is responsible for updating the test
data by validating the data length fromAlgorithm 2. In step 4,
the modelMt is used to predict the probabilities for a sample
ECG test data to belong in each of the four classes. In step 5,
the class with the highest probability is selected as the clas-
sified class for each sample data. Ultimately, in the last step,
the collection of predictions for all the data is returned.

C. COMPUTATIONAL COMPLEXITY ANALYSIS IN TERMS
OF MATHEMATICAL OPERATION
This section investigates the algorithm’s complexity and the
time cost to run the proposed deep learning-based lightweight
ECG monitoring system to detect arrhythmia. We analyze
the complexity of the proposed model’s training and infer-
ence steps in terms of the number of different operations
required by various stages of the model. The analysis primar-
ily encompasses the mathematical analysis of the algorithm

Algorithm 4 Inference Phase of DL-LAC
Input: pathtest (test data location)
Output: ypred (predictions by the model)

1 Xtest , ytest ← load all test ECG data and corresponding
class labels from pathtest

2 Mt ← load the pre-trained model
3 Xtest , ytest ← call DSV(Xtest , ytest ) from algo. 2
4 yprob← predict the probabilities for each sample of Xtest
employing the modelMt

5 ypred ← argmax(yprob)
6 return ypred

complexity in the training phase and inference phase through
determining the recurrence of each operation (e.g., addition,
subtraction, multiplication, and division, etc.).We express the
addition and multiplication operations as ADD and MUL,
respectively. In addition, we also analyze the occurrence of
comparisons denoted as COMP.

1) TRAINING PHASE
The training phase comprises the DSV algorithm for data
augmentation and the DL-LAC training phase for the pro-
posed CNN model. In the training phase of DL-LAC,
depicted in Algorithm 1, we perform computational overhead
analysis, considering that the appropriate hyper-parameters
of the proposed models are already selected after hyper-
parameter tuning employing the grid search technique.
We divide the overall analysis of the training phase, mainly
into three different fragments, such as the required data size
validation phase, feature extraction phase, and the classifica-
tion phase. Therefore, the total computational complexity can
be expressed as Eq. 5:

C(Training) = C(DSV )+ C(AFE)+ C(AC). (5)

Here, C(DSV ),C(AFE), and C(AC) indicate the required
computational overhead in the data size validation, automated
feature extraction, and automated classification phases,
respectively. For each of these three phases, the computation
complexity is divided into three parts: the required number
of additions, multiplications, and comparisons. In the first
stage, to calculate the complexity of the data size validation
phase, we mainly analyze the complexity of the Algorithm 2,
which is invoked from the training procedure (Algorithm 1).
The first four steps of the training algorithm are initializing
steps; hence these do not require anymathematical operations
(i.e., addition and multiplication). In step 5, the Algorithm 2
is invoked for validating the ECG data size. If the length of
considered training ECG trace is len(Xtrain), then the required
number of comparisons is also len(Xtrain) as the condition will
be validated for each ECG trace.

In the next phase, the computational overhead is deter-
mined for the feature extraction phase manifested in the
Algorithm 3 of the training procedure. For a particular layer
(l th layer) of the AFE module, if we consider that there are
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N l number of nodes for the convolution layer, then the num-
ber of required operations can be defined as Eqs. 6 and 7.

C(AFEADD)= nlAFE ∗ ξ ∗ N l
∗ (len(x l)/B)

∗((len(k l) ∗ len(x l−1))−(len(k l)−η)+ 1)

−(len(x l−1)−(len(k l)− η)) ∗ zl)), (6)

C(AFEMUL)= nlAFE ∗ ξ ∗ N l
∗ (len(x l)/B)

∗(zl ∗ ((len(k l) ∗ len(x l−1))

−(len(k l)− η)+ 1))+ (nlAFE − 1). (7)

Here, x l , k l , and zl indicate the input, kernel, and the
number of filters of layer l. The striding window length,
the number of epoch, and batch sizes are denoted by η, ξ ,
and B, respectively.
Also, in terms of the AFE phase, the number of compar-

isons required for nlAFE layers can be denoted as eq. 8. Here,
x l and zl implies the input and the number of filters in the l th

layer of the AFE phase. For zl number of filters, the number
of comparisons required at the layer l due to passing the input
x l through the activation function (�) is ((zl ∗ len(x l)). In the
sub-sampling layer (i.e., max-pooling layer), the number of
comparisons required is (len(x l)− (zl − 1)).

(AFECOMP) =
nlAFE∑
l=1

(ξ ∗ N l
∗ (len(x l)/B) ∗ ((zl ∗ len(x l))

+(len(x l)− (zl − 1)))) .(8)

The extracted features set (Fx) of the AFE phase will be
relinquished to the AC module of the proposed model for
the classification task. For a particular layer denoted as l,
if the output of the ith layer is γ i, then the computational
complexity for the ith layer can be (len(γ i) ∗ (len(Fx) −
1)) ADD, (len(γ i) ∗ len(Fx)) MUL. Thus considering the
number of fully-connected layers to be nlAC , the computa-
tional complexity of this phase can be denoted as Eqs. 9
and 10.

C(ACADD) =
nlAC∑
i=1

(ξ + (len(γ i)) ∗ (len(Fx)− 1), (9)

C(ACMUL) =
nlAC∑
i=1

(len(γ i)) ∗ len(Fx) ∗ ξ. (10)

In terms of the number of comparisons required in the
AC phase, considering nlAC layers, the cumulative compar-
isons due to the comparisons as are necessary for computing
the activation functions can be denoted as Eq. 11.

C(ACCOMP) =
nlAC∑
i=1

(ξ ∗ len(γ i)). (11)

Hence, by substituting the equations, as mentioned earlier
in the Eq. 5, the overall computational complexity in terms
of the number of mathematical operations required in the
training phase of the proposed DL-LAC algorithm can be
expressed as Eq. 12. The number of comparisons needed in

different stages of the DL-LAC algorithm’s training phase is
also considered in this equation.

C(Training)

=


ADD : C(AFEADD)+ C(ACADD)
MUL : C(AFEMUL)+ C(ACMUL)
COMP : len(Xtrain)+ C(AFECOMP)

+ C(ACCOMP).

(12)

2) INFERENCE PHASE
The inference/running phase is conducted to infer classes of
each testing ECG data employing the pre-trained lightweight
model (Mt ) and then evaluating it using the unseen data.
In correspondence with Algorithm 4, if we consider the test
data to be Xtest , and the size of test data after validating ECG
signal is len(Xtest ), then the computational complexity of the
inference phase can be denoted as follows:

C(Inference) =



ADD :
∑nlAFE

i=1 (len(x i)− (η + 1))
+

∑nlAC
j=1 (len(γ

j)− 1)

MUL :
∑nlAFE

i=1 (len(x i)− η)
+

∑nlAC
j=1 (len(γ

j))

COMP :
∑nlAFE

i=1 (len(x i))
+

∑nlAC
j=1 (len(γ

j))

+len(Xtest )

(13)

Eq. 13 illustrates that, in the inference phase, the pre-
trained model is able to produce results with consider-
ably lower computational operations and in linear time
(i.e., upper bound time-complexity of O(len(Xtest ), in Big
O notation). The complexity analysis indicates that it can
be utilized for lightweight arrhythmia classification at the
resource-constrained ultra-edge IoT node.

VI. PERFORMANCE EVALUATION
In this section, we manifest the simulation results to estab-
lish the algorithmic analysis of the proposed lightweight
DL-LAC method that is estimated in the previous section.
Hence, the proposed method is compared with the traditional
techniques in terms of classification performance, memory
consumption, and required time for inference.

A. PERFORMANCE INDICATORS
To evaluate the classification results, we adopted the combi-
nation of three measurement indicators, accuracy, weighted
precision, and weighted F1 score. The accuracy of a test is its
ability to correctly differentiate the three cases. Considering,
C = Number of classes in the considered classification task,
len(yi)= number of samples in the ith class, TPi= the number
of cases correctly identified to be in the ith class, and len(Y )
= total number of samples in all the class, the accuracy can
be denoted as Eq. 14:

Accuracy =

∑C
i=1(TPi)
len(Y )

. (14)
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The weighted precision can be expressed as Eq. 15.
It addresses how precise the model is out of those predicted
to be in ith class, how many of them are actually in ith class,
and the value is multiplied by the weight of the ith class as
follows:

Weighted precision =
C∑
i=1

(
len(yi)
len(Y )

∗
TPi

TPi + FPi
). (15)

Here, FPi represents the number of cases incorrectly iden-
tified to be in the ith class. Weighted F1 score is the weighted
average of precision and recall. Hence, although we did not
use recall directly as a performancemeasure, because of using
the F1 score, it is implicitly used. The weighted F1 score can
be obtained as follows:

Weighted F1 score =
C∑
i=1

(
len(yi)
len(Y )

∗ 2
Pi ∗ Ri
Pi + Ri

). (16)

In the above equation, the precision and recall of ith class
are indicated byPi andRi, respectively.Pi can be expressed as
TPi/(TPi + FPi) and Ri can be denoted as TPi/(TPi + FNi).
FNi denotes the number of cases incorrectly identified as a
class other than the ith class.

B. RESULTS AND DISCUSSION
We have conducted comprehensive experiments in a system-
atic approach to identify the optimal model. Here, the exper-
imental results can be summarized as follows:

1) The first phase of the experiment encompasses the
hyper-parameter tuning to find the optimal structure of
the model. The selected hyper-parameters were applied
in the proposed DL-based model.

2) In the second phase, we measured the model’s per-
formance employing the trained model obtained from
DS1 and then tested it using MIT-BIH Arrhyth-
mia Database (DS2), St Petersburg INCART 12-lead
Arrhythmia Database (DS3), and Sudden Cardiac
Death Holter Database (DS4).

3) In the third phase of the experiment, we evaluated the
proposed model’s generalization ability by utilizing
each of the four datasets individually for training and
testing purposes using k-fold cross-validation.

4) Finally, numerical analysis is carried out to assess
the proposed CNN models’ effectiveness in terms of
execution time required and memory consumption in
various IoT devices and compared to the traditionalML
techniques.

We performed hyper-parameter tuning to select the optimal
parameters for the proposed CNN-based model in the initial
phase of the experiment. Figure 4 demonstrates the results
of manual tuning for the number of convolution layers used
in the model by varying the number from one to five. The
experimental results illustrate that, for three convolution lay-
ers, the best performance is achieved with 96.26%, 0.9606,
and 0.9604 accuracy, precision, and F1-score, respectively.

FIGURE 4. Performance variation of the proposed/custom CNN model
with varying numbers of layers.

Therefore, we conducted further analysis using three number
of convolution layers in the proposed DL-based architecture.

Furthermore, to select the optimal activation function (�)
and the number of the initial filter size (γ ), we performed
a grid search technique. Figure 5 demonstrates the results
obtained from the grid searchwhere 5(a), 5(b), 5(c) represents
the initial number of filter equals to large, moderate, and
small, respectively. For the grid search, we considered three
sizes for the filters of the first convolution layer, such as large,
moderate, and small, with the value of 300, 150, and 50,
respectively. For selecting activation function (�), we exper-
imented with a set of five activation functions: relu, selu,
elu, tanh, and sigmoid. According to performance, the best
combination is evident when the activation is ReLU, and the
number of filters is large with the accuracy, precision, and
F1-score, respectively 96.23%, 0.96004, and 0.9601.

Additionally, to elect the optimal optimizer, batch size,
dropout, and epochs, we performed a grid search, which is
manifested in Table 3. We have conducted the grid search
among six widely used optimizers such as Adadelta, Nadam
(Nesterov-accelerated Adaptive Moment Estimation), SGD
(Stochastic Gradient Descent), RMSprop (Root Mean Square
Propagation), Adagrad (Adaptive Gradient Algorithm), and
Adam (Adaptive Moment Estimation). For the batch size,
we tuned the value employing a set of three different

TABLE 3. Selected parameters for each optimizer after employing grid
search.
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FIGURE 5. Performance comparison for different activation functions
with respect to different filter size of the proposed CNN.

values, such as 1000, 2500, and 5000. For selecting the
optimal dropout rate (α), we considered values from 0.1 to
0.5. We varied the number of epochs (ξ ) using three values
(i.e., 10, 50, and 100). The best performing combination
is obtained for the Adam optimizer along with batch size
5000, dropout rate 0.5, and the number of epochs 10. Hence,

for further analysis of the experiment, we employed these
parameter values for the model.

In the second phase of the experiment, we utilized DS1 as
the training dataset and then tested the model’s performance
using DS2, DS3, and DS4 as test dataset. Table 4 illustrates
the results for this phase. In all three test datasets, the pro-
posed model outperformed the traditional ML methods
(i.e., random forest, KNN) in terms of accuracy, precision,
and F1-score. The proposed CNN achieved an accuracy
of 94.07%, 92.04%, and 95.83%, while DS2, DS3, and
DS4 are harnessed as the test dataset, respectively. The pro-
posed custom CNN model is showing superior performance
over traditional ML techniques because the combination of
Convolution, sum-sampling, and regularization layers are
able to capture the detailed features from the ECG signal
automatically. Furthermore, due to the adaptive filter reduc-
tion in the deep convolution layers, the proposed model can
identify significant points from the ECG with higher effi-
ciency, and because of the use of the regularization layer,
the proposed approach is able to avoid overfitting during
training. However, the traditional methods are lacking the
ability to automatically retrieve significant features from
the ECG even after extensive manual pre-processing stages.
Although the proposed model outperforms the traditional
methods in terms of performance, the notable part is that the
proposed technique can achieve great accuracy even with raw
ECG signals, without adopting noise-filtering and manual
feature extraction of the ECG. The results reveal that the
custom CNN-based model is robust in detecting heartbeats
with high accuracy and lightweight because of using raw
single-lead ECG.

In the penultimate experimental phase (third phase),
we experimented using each dataset individually, as mani-
fested in Fig. 6, employing 3-fold stratified cross-validation
to validate the generalization capability of the proposed
model. Stratification is a method in which the samples are
rearranged to have a stable representation of the whole dataset

FIGURE 6. Performance of the proposed model for the third experimental
setting employing the four datasets individually (3-fold stratified
cross-validation). Here, DSi means the i th dataset.
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TABLE 4. Performance comparison of CNN with traditional ML methods for the second experimental setting using DS1 as the training dataset.

FIGURE 7. Area Under the Receiver Operating Characteristic (AUROC) curve derived for the third experimental settings utilizing 3-fold
stratified cross-validation.

by preserving the portion of samples for each class [35].
The cross-validation is performed after splitting each of the
four datasets into 80%-20% for training and testing pur-
poses. On the testing part of the dataset, the accuracy values
of the model are 94.79%, 94.12%, 94.97%, and 96.67%,
respectively, for DS1, DS2, DS3, and DS4. The encouraging

results illustrate the model’s ability to generalize diverse
types of ECG signals to classify arrhythmias. To investigate
the classification efficiency for each class, we manifested the
AUROC curve for each class. Figure 7 exhibits the ROC
curves where 7(a), 7(b), 7(c), and 7(d) corresponds to the
ROC curves for DS1, DS2, DS3, and DS4, respectively.
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FIGURE 8. Required execution time and memory consumption of various methods on a workstation and different micro-controllers used as a
proof-of-concept AI logic for the smart sensor.

For each dataset, the model demonstrated a high AUC score.
The AUC scores for the four datasets are 0.9113, 0.9406,
0.9796, and 0.9340 for DS1 to DS4, respectively. The promis-
ing results prove the model’s efficiency in distinguishing dif-
ferent classes of heartbeats to classify arrhythmia by employ-
ing a raw ECG signal.

Finally, we conducted the numerical analysis in terms
of time delay and memory consumption (in percentage) of
the proposed model and compared it with that of the tra-
ditional ML approaches (i.e., KNN, RF). Figure 8 illus-
trates the results obtained from the analysis. The initial
experiment was conducted on a workstation with Intel Core
i7, 3.00GHz CPU, 16 GB RAM, powered by Nvidia RTX
2060 GPU. We approximated the time and memory con-
sumption required for different IoT devices to determine
the model’s potential to integrate with the logic-in-sensor.
The microprocessor-based IoT devices we considered for
the numerical analysis are Jetson Nano (Quad-core ARM
A57 @ 1.43GHz), Raspberry Pi 4 (Quad-core Cortex-A72
@ 1.5GHz), and Raspberry Pi 3 (Quad-core Cortex-A53
@ 1.4GHz). Figs. 8(a) and 8(b) exhibit that the proposed
CNN-based model can be beneficial for real-time analysis
of the ECG signal as the model can perform efficiently with
limited resources due to employing raw-ECG signal without
any manual feature extraction.

The complexity analysis explained in Sec. V and the exper-
imental outcomes presented in this section precisely confirm
that the proposed lightweight ECG classification method can
be considered as a viable solution for embedding intelli-
gence into the resource-constrained ultra-edge IoT nodes.
The proposed DL-LACmethod’s generalization aptitude was
evaluated on four separate, publicly available real datasets by
adopting multiple experimental settings. Promising experi-
mental results signify that the proposed method performed
with efficiency in all the experiments. Therefore, the model
can be utilized for the ultra-edge IoT sensors to enhance
healthcare services.

VII. CONCLUSION
Centralized cloud-based analytics and edge analytics
on smart-devices are the traditional health monitoring
approaches. To make smart health even smarter, in this paper,
we focus on the necessity to go beyond the realms of con-
ventional methods and investigate how to incorporate intelli-
gence into the ultra-edge IoT sensors. As an example of the
smart ultra-edge healthmonitoring, we selected arrhythmia (a
cardiovascular disease) classification by analyzing the ECG
signal. As the sensors are resource-constrained, we designed
a deep learning-based lightweight heartbeat classification
model named DL-LAC, that utilizes raw single-lead ECG
to classify arrhythmia with encouraging efficiency. We com-
pared the proposed method with traditional machine learning
(e.g., KNN, random forest) and the DDE-based optimization
technique. The proposed method’s generalization ability was
evaluated using four different datasets. The promising exper-
imental outcomes manifest that the proposed deep learning
model has the potential to be coupled with smart IoT sensors
for ultra-edge computing to enhance the existing ECG mon-
itoring system. Therefore, this research can be considered as
a pioneering footprint to encourage the sensor foundries to
consider embedding intelligence into IoT devices, and if it
can be produced in mass production, the fabrication cost of
the intelligent sensors can be significantly reduced.
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