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ABSTRACT In this paper, we first focus on the topic of calculation of cross gramians for linear square
systems, which are constructed approximately from the Laguerre series expansion coefficient vectors that
are obtained by solving a recurrence formula instead of solving Sylvester equations directly. Then based on
such approximate cross gramian, the reduced-order models (ROMs) are produced by truncating the states
that are associated with the smaller approximate Hankel singular values (HSVs). In addition, combining with
the idea of dominant subspace projection method, we modify our proposed algorithm to obtain a ROM that
preserves the stability. What’s more, our algorithms are extended to non-square case successfully. The main
properties of ROMs are discussed as well. Finally, some numerical simulations are provided to illustrate the
effectiveness of our proposed algorithms in the views of accuracy and computational cost.

INDEX TERMS Model order reduction, Laguerre functions, cross Gramian, balanced truncation, stability.

I. INTRODUCTION
Model order reduction (MOR) was first developed in the
area of system and control theory, which studies properties
of dynamical systems in application for reducing their com-
plexity while preserving their input-output behaviors as well
as essential properties like stability and passivity. Nowadays,
such technique is widely applied in simulation and design of
very large-scale integrated (VLSI) electrical circuits, weather
prediction, air quality simulation, system analysis, virtual
synchronous machine (VSM) and many other engineering
fields [1]–[5].

In system and control theory, balanced truncation (BT) is
a robust MOR tool [6] and is now commonly used in many
dynamical systems [7]–[11]. It produces a stable-preserving
reduced-order model (ROM) by truncating the states that are
associated with smaller Hankel singular values (HSVs), and
provides a global error bound. However, such method needs
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to solve two Lyapunov equations that have the computational
cost of O(n3), where n is the dimension of the system.
So exact BT method is expensive to implement for dealing
with large-scale systems. As a result, BT method based on
approximate controllability and observability gramians is an
alternative choice which aims to obtain an approximate bal-
anced system in a numerically efficient way, such as low rank
square root method (LRSRM), dominant subspaces projec-
tion model reduction (DSPMR), BT-basedMOR via low rank
decomposition of controllability and observability gramians
using Legendre polynomials [12]–[14].

The definition of cross gramian for single-input-single-
output (SISO) linear time-invariant (LTI) systems first
appeared in [15] which is the solution to a Sylvester equa-
tion. Then such definition was extended to multi-input-multi-
output (MIMO) symmetric systems successfully in [16]. Due
to the fact that the cross gramian contains the controllabil-
ity and observability information at the same time, a vari-
eties of classical BT-based methods were proposed. How-
ever, a major constraint of the cross gramian is that it is
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computed strictly for square systems and exhibits the core
property [16] only for symmetric systems. So it is origi-
nally concerned with MOR for the symmetric case. In order
to extend its applications in MOR, a series of constructive
results on improving such technique have been achieved.
At first, such approach was extended the use of the cross
gramian from symmetric systems to some special general
symmetric systems such as orthogonally symmetric system
[17], whose cross gramian satisfies the core property. Then
some strategies on symmetrization were taken into account.
In [18], relies on a symmetrizermatrix and uses an embedding
technique, a symmetric system was produced. In [19], it pro-
posed the definition of cross gramian for non-square systems,
which converts the original system to the so-called SISO
"average" system. While based on multiple decompositions,
a non-square system is converted into a coupled system with
a series of SISO subsystems [20]. Based on these techniques,
the MOR based on cross gramian has been extend to non-
square case successfully. Besides, some algorithms have been
proposed to improve the efficiency of calculating the low-
rank decomposition of cross gramians, such as the Laguerre
polynomials [21], the matrix sign functions [22] and the
hierarchical approximate proper orthogonal decomposition
(HAPOD) [23]. Based on these low-rank factors of cross
gramian, several BT-related MOR methods were proposed.
In order to extend the usage of cross gramians, in [24], the
empirical cross gramians for nonlinear systems and param-
eterized systems were introduced based on the trajectories
of the underlying system with perturbations in the input as
well as initial state and the Galerkin projection was generated
by performing the singular value decomposition (SVD) on it.
Moreover, in recent years, some newMORmethods based on
cross gramian were proposed, such as H2 optimal technique
in combination with the Stiefel manifold [25], the DSPMR
method that needs a single HAPOD instead of multiple
decomposition [26].

Motivated by improving the efficiency of BT methods, our
paper proposes a series of MOR algorithms based on approx-
imate cross gramians via Laguerre functions, which have
been successfully applied to MOR for linear and nonlinear
systems [27]–[29]. Our approach aims to calculate the low-
rank decomposition of cross gramians, whose factors are con-
structed directly from the expansion coefficients of impulse
responses in the space spanned by Laguerre functions by
solving a recurrence formula. Combined ideas from LRSRM,
an associated ROM is produced by truncating the states that
are corresponding to the smaller approximate HSVs. Com-
pared with BT methods, our proposed algorithm just needs
to solve sparse linear equations instead of solving Sylvester
equations and only one SVD technique for a low-dimensional
matrix is implemented, which makes it more flexible and
computationally efficient. Moreover, in combination with
the dominant subspace projection method, our algorithm is
improved to alleviate the shortcoming, which may unexpect-
edly lead to an unstable ROMeven if the original one is stable.
In addition, referred to the "average" system, our proposed

algorithms are extended to non-square case for dealing
with MOR.

This paper is organized as follows. In Section II, the cross
gramians of square LTI systems and Laguerre functions are
introduced briefly. In Section III, the calculation of cross
gramians whose low-rank decomposition factors are con-
structed via Laguerre series as well as the associated algo-
rithms based on LRSRM is proposed for square and non-
square LTI systems respectively. Then a modification based
on DSPMR of the proposed algorithms is also introduced.
The main properties of the ROMs, such as the relation to
BT-based methods and stability preservation, are discussed
as well in this section. In Section IV, some numerical simu-
lations are provided to indicate the efficiency of our proposed
methods. In Section V, some conclusions on our related work
are given.

Throughout our paper, these following notations are used.
I denotes an identity matrix that has proper dimension. For a
matrix A ∈ Rn×n, A > 0means A is a positive definite matrix,
while A < 0 denotes a negative definite matrix. λi(A) is the
ith eigenvalue of A.

II. PRELIMINARIES
A. CROSS GRAMIANS FOR LTI SYSTEMS
Consider a stable LTI input-output system as follows:{

ẋ(t) = Ax(t)+ Bu(t),
y(t) = Cx(t),

(1)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, x(t) ∈ Rn, y(t) ∈ Rq

is the output and u(t) ∈ Rp is the input. In general, such
system can be simply indicated by {A,B,C} as well. Without
loss of generality, we assume that x(0) = 0. The transfer
function H (s) of system (1) is H (s) = C(sI − A)−1B. It is
noted that system (1) is square if p = q and is symmetric if
H (s) is symmetric.

The cross gramian of square system (1) is defined as

WX =

∫
+∞

0
eAtBCeAtdt,

which is the solution to the following Sylvester equation

AWX +WXA+ BC = 0. (2)

What’s more, the relevant controllability gramian WC and
observability gramian WO are given by

WC =

∫
+∞

0
eAtBBTeA

Ttdt

and

WO =

∫
+∞

0
eA

TtCTCeAtdt.

The HSVs σi of system (1) are given by

σi =
√
λi(WCWO), i = 1, 2, · · · , n.

The core property of the cross gramian [16] in MOR is

W 2
X = WCWO. (3)

VOLUME 9, 2021 22329



Z.-Z. Qi et al.: Model Order Reduction Based on Approximate Cross Gramian and Laguerre Series

Note that the above equation (3) holds only for symmetric
LTI systems. As a result, the HSVs of symmetric LTI system
{A,B,C} can be analogously given by the eigenvalues of its
cross gramian WX :

σi = |λi(WX )|, i = 1, 2, · · · , n.

It should be pointed out that the cross gramians of non-
symmetric, square MIMO LTI systems can be obtained by
solving the Sylvester equation (2) as well, however without
any theoretical background as for the symmetric case, so there
is no guarantee for obtaining the ROM with appropriate
quality [30].

In addition, from the definition of cross gramian, WX can
be interpreted as cross covariance matrix of the system’s
impulse response and adjoint system’s impulse response. As
originally in [6], these impulse responses are trajectories,

ẋ(t) = Ax(t)+ Bδ(t)⇒ x(t) = eAtB,

ż(t) = ATz(t)+ CTδ(t)⇒ z(t) = eA
TtCT.

As a results, from the definition of WC , WO and WX , it has

WC =

∫
+∞

0
x(t)xT(t)dt,

WO =

∫
+∞

0
z(t)zT(t)dt,

WX =

∫
+∞

0
x(t)zT(t)dt. (4)

B. LAGUERRE FUNCTIONS
The Laguerre polynomials are defined as follows:

li(t) =
et

i!
di(e−t t i)

dt i
, i = 0, 1, 2, · · · .

Then Laguerre functions are given by Laguerre polynomials
as follows:

φαi (t) =
√
2αe−αt li(2αt), i = 0, 1, 2, · · · ,

where α is a positive real constant [27]. The Laplace trans-
form of φαi (t) is

8αi (s) = L(φαi (t)) =
√
2α

s+ α

(
s− α
s+ α

)i
, i = 0, 1, 2, · · · ,

where L is the Laplace transform. According to [27], the
sequence of {φαi } forms a uniformly bounded orthogonal
basis for the Hilbert space L2(R+); thus the impulse response
function h(t) of system {A,B,C} admits the Fourier-Laguerre
expansion as:

h(t) =
+∞∑
i=0

Fiφαi (t). (5)

Applying Laplace transform on both sides of (5), it holds

H (s) =
+∞∑
i=0

Fi8αi (s).

According to [27],H (s) can be optimally approximated in the
H2 norm sense by the truncated Fourier-Laguerre expansion

H (s) ≈
m−1∑
i=0

Fi8αi (s).

III. MOR BASED ON CROSS GRAMIAN VIA LAGUERRE
SERIES
In this section, a series of MOR algorithms based on cross
gramian and Laguerre series for LTI systems, as well as the
main properties of ROMs, like the stability, will be fully
discussed.

A. LOW-RANK APPROXIMATION TO CROSS GRAMIANS
FOR SQUARE LTI SYSTEMS
Consider an SISO LTI system as follows:{

ẋ(t) = Ax(t)+ bu(t),
y(t) = cx(t),

(6)

where A ∈ Rn×n, b ∈ Rn and c ∈ R1×n. According to (4)
with impulse response of system (6) and its adjoint system,
as well as from Parseval’s theorem, the cross gramian in the
frequency domain is given by

WX =

∫
+∞

0
x(t)zT(t)dt =

1
2π

∫
+∞

−∞

X (iω)ZH(iω)dω

=
1
2π

∫
+∞

−∞

(iωI − A)−1bc(−iωI − A)−1dω. (7)

For X (iω), expand it in the form of Laguerre series as follows:

X (iω) = (iωI − A)−1b =
+∞∑
i=0

fi8αi (iω),

where fi ∈ Rn is the Fourier coefficient vectors. Let u =
iω−α
iω+α , then X (iω) can be represented as

X (iω) = (1− u)[α(1+ u)I − (1− u)A]−1b

= (1− u)[u(A+ αI )− (A− αI )]−1b

=
1
√
2α

(1− u)
+∞∑
i=0

fiui.

Namely, it holds
√
2α(uEu − Au)−1b = −

√
2α(I − uA−1u Eu)−1A−1u b

= −
√
2α
+∞∑
i=0

(A−1u Eu)iA−1u bui

=

+∞∑
i=0

fiui,

where Au = A− αI and Eu = A+ αI . Hence, it leads to

fi = −
√
2α(A−1u Eu)iA−1u b, i = 0, 1, 2, · · · .

Let X (iω) ≈
m−1∑
i=0

fi8αi (iω) and b̃ = −
√
2αb, where m is

the desired approximation terms of the Laguerre series and
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is about 10 ∼ 30 for an acceptable accuracy in general, then
fi can be calculated by a recurrence formula as follows:

Auf0 = b̃, Aufi = Eufi−1, i = 1, 2, · · · ,m− 1,

which are represented as the following linear equations

PF = B, (8)

where

P =



Au 0 0 · · · 0 0
Eu −Au 0 · · · 0 0
0 Eu −Au · · · 0 0
...

...
. . .

. . .
...

...

0 0 0
. . . −Au 0

0 0 0 · · · Eu −Au


,

F =



f0
f1
f2
...

fm−2
fm−1


, B =



b̃
0
0
...

0
0


.

For the state z(t) with impulse response of the adjoint sys-
tem of system (6), we expand its transform Z (iω) as Laguerre
series:

Z (iω) = (iωI − AT)cT ≈
m−1∑
i=0

gi8αi (iω),

where gi ∈ Rn is the Fourier coefficient vector. Analogously
to (8), gi can be given by

QG = C, (9)

where

Q =



ATu 0 0 · · · 0 0
ET
u −ATu 0 · · · 0 0
0 ET

u −ATu · · · 0 0
...

...
. . .

. . .
...

...

0 0 0
. . . −ATu 0

0 0 0 · · · ET
u −ATu


,

G =



g0
g1
g2
...

gm−2
gm−1


, C =



c̃T

0
0
...

0
0


,

and c̃T = −
√
2αcT.

Finally, substituting the approximations ofX (iω) and Z (iω)
into (7), it has

WX =
1
2π

∫
+∞

−∞

X (iω)ZH(iω)dω

≈
1
2π

∫
+∞

−∞

[
m−1∑
i=0

fi8αi (iω)][
m−1∑
i=0

gi8αi (iω)]
Hdω

=
1
2π

∫
+∞

−∞

[
m−1∑
i=0

fi8αi (iω)][
m−1∑
i=0

gTi 8
α
i (iω)]dω

=
1
2π

∫
+∞

−∞

[
m−1∑
i,j=0

figTj 8
α
i (iω)8

α
j (iω)]dω

=

m−1∑
i=0

figTi .

Let
F =

[
f0 f1 · · · fm−1

]
∈ Rn×m

and
G =

[
g0 g1 · · · gm−1

]
∈ Rn×m,

then the cross gramianWX of SISO LTI system (6) is approx-
imately given by

WX ≈ FGT, (10)

which can be regard as the low-rank decomposition form of
the WX .

On the other hand, a squareMIMOLTI system is taken into
account as follows:{

ẋ(t) = Ax(t)+ Bu(t),
y(t) = Cx(t),

(11)

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rp×n. Then the
structures of B and C can be decomposed as

B =
[
b1 b2 · · · bp

]
and

CT
=
[
cT1 cT2 · · · cTp

]
,

where bi is the ith column of B and ci is the ith row of C .
From the definition of cross gramian WX , it leads to

WX =

∫
+∞

0
eAtBCeAtdt =

∫
+∞

0
eAt (

p∑
i=1

bici)eAtdt

=

p∑
i=1

∫
+∞

0
eAtbicieAtdt.

Let W i
X is the cross gramian of the ith subsystem {A, bi, ci},

then it holds

WX =

p∑
i=1

W i
X .

While similar to Section II.A,W i
X can be interpreted as cross

covariance matrix of the ith subsystem’s impulse response
and its adjoint system’s impulse response, which are trajecto-
ries,

ẋi(t) = Ax(t)+ biδ(t)⇒ xi(t) = eAtbi,

żi(t) = ATz(t)+ cTi δ(t)⇒ zi(t) = eA
TtcTi .
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As a result, we obtain

WX =

p∑
i=1

W i
X =

p∑
i=1

∫
+∞

0
xi(t)zTi (t)dt

=
1
2π

p∑
i=1

∫
+∞

−∞

Xi(iω)ZH
i (iω)dω.

Analogously to (10),W i
X can be given byW i

X ≈ FiGT
i , where

Fi =
[
fi,0 fi,1 · · · fi,m−1

]
and Gi =

[
gi,0 gi,1 · · · gi,m−1

]
that are calculated from (8) and (9) respectively for the sub-
system {A, bi, ci}. If we choose F =

[
F1 F2 · · · Fp

]
and

G =
[
G1 G2 · · · Gp

]
, then we obtain

WX =

p∑
i=1

W i
X ≈

p∑
i=1

FiGT
i = FGT. (12)

Obviously, the cross gramian of square MIMO case can
reduce to the classic cross gramian in case of an SISO system.

B. BASIC ALGORITHMS FOR SQUARE LTI SYSTEMS
For the square LTI system {A,B,C}, after obtaining its low-
rank decomposition of cross gramian WX from (10) or (12),
an SVD technique is applied to GTF :

GTF =
[
U1 U2

] [61 0
0 62

][
V T
1

V T
2

]
,

where 61 = diag{σ̃1, σ̃2, · · · , σ̃r } and
62 = diag{σ̃r+1, σ̃r+2, · · · , σ̃rN }with rN = rank(GTF). The
projections SL and SR can be constructed as follows:

SL = GU16
−

1
2

1 , SR = FV16
−

1
2

1 .

Obviously, it has STL SR = I . As a result, the resulted ROM of
system {A,B,C} is given by{

ẋr (t) = Arxr (t)+ Bru(t),
yr (t) = Crxr (t),

(13)

where Ar = STLASR ∈ Rr×r , Br = STLB ∈ Rr×p, Cr =
CSR ∈ Rp×r . Since we truncate the smaller singular values
of GTF , then referring to the square-root method, for a given
approximate error tolerance "tol", the order r of the ROM
(13) is adaptively chosen by the following approximate error
indicator

δ = 2
rN∑

k=r+1

σ̃k < tol,

where {σ̃1, σ̃2, · · · , σ̃rN } is in decreasing order. The above
procedure of obtaining ROM (13) is summarized as Algo-
rithm 1.
Remark 1: In Algorithm 1, only one SVD technique is

applied to an m × m dimensional matrix with m � n and
the computational cost is O(nm2) except Step (1), so the
total complexity is related to the numerical cost of solv-
ing linear equations (8) and (9), which strongly depends on
the structure of A. Generally speaking, for a sparse matrix,

Algorithm 1 Cross Gramian Based on LRSRM for Square
Systems
Input: A, B, C , tol, α, m;
1) Compute low-rank factors of F and G from (8) and

(9) respectively;
2) Compute the SVD of GTF : GTF = U6V T, Ur =

U (:, 1 : r), 6r = 6(1 : r, 1 : r), Vr = V (:, 1 : r),

where r satisfies δ = 2
rN∑

k=r+1
σ̃k < tol;

3) Compute SL = GUr6
−

1
2

r , SR = FVr6
−

1
2

r ;
4) Compute the ROM: Ar = STLASR, Br = STLB, Cr =

CSR.
Output: Ar , Br , Cr , r .

the computational cost is O(c2mn), where c is the aver-
age number of nonzero elements per row/column of such
matrix [31]. On the other hand, for relatively large models,
some fast iterative methods like generalized minimal resid-
ual (GMRES) [32] and biconjugate gradients stabilized (BI-
CGSTAB) method [33], are alternative ways to obtain the
solutions to (8) and (9).

Although Algorithm 1 is similar to exact BT-based meth-
ods, however, a main drawback is that it is a Petrov-Galerkin
projection (SL 6= SR), whichmay lead to numerical errors and
instabilities. In order to alleviate such shortcoming, we com-
bine the idea from DSPMR method to modify our algorithm.

In DSPMR method [12], the order r of the ROM may
be still larger than a desired number even though r is much
smaller than n since r = rank([F G]). In order to reach a
desired order r that is arbitrary small (r � n), we need a
modification on DSPMR method. At first, we compute the
SVDs of

1
‖F‖F

F = UF6FV T
F

and
1
‖G‖F

G = UG6GV T
G ,

where ‖ · ‖F denotes the Frobenius norm. The scalar factors
1
‖F‖F

and 1
‖G‖F

are the so-called weighting factors which aim
to equilibrate the influence of controllability and observabil-
ity that may be skewed, i.e., due to different scaling of B
and C . Then we choose the first k columns of UF and UG
to construct a matrix and apply the ’economy size’ SVD to it[

UF (:, 1 : k) UG(:, 1 : k)
]
= U6V T.

Finally, we choose U as the projection, then the correspond-
ing ROM is given by{

ẋr (t) = Arxr (t)+ Bru(t),
yr (t) = Crxr (t),

(14)

where Ar = UTAU , Br = UTB and Cr = CU . In general,
k is often chosen as k 6 min{rank(F), rank(G)}. The above
procedure of MOR is summarized as Algorithm 2.

22332 VOLUME 9, 2021



Z.-Z. Qi et al.: Model Order Reduction Based on Approximate Cross Gramian and Laguerre Series

Algorithm 2 Cross Gramian Based on DSPMR for Square
Systems

Input: A, B, C , k , α, m;
1) Compute low-rank factors of F and G from (8) and

(9) respectively;
2) Compute the SVDs:

1
‖F‖F

F = UF6FV T
F ,

1
‖G‖F

G = UG6GV T
G;

3) Compute the ’economy size’ SVD:[
UF (:, 1 : k) UG(:, 1 : k)

]
= U6V T

;

4) Compute the ROM: Ar = UTAU , Br = UTB, Cr =
CU , r = rank(U ).

Output: Ar , Br , Cr , r .

Remark 2: In the above algorithms, the choice of the
parameter α is important since it directly affects the accuracy
of the approximation of the ROM. Such topic for linear
systems has been discussed in [27], [34], where more details
about how to choose the parameter α can be found. For
example, a good choice of α is 4B 6 α 6 π2B,where B is the
bandwidth measured in Hz of the original system (6) or (11).
What’s more, comparedwith themomentmatching approach,
since α is a real number, the matrices in the reduction remain
real during projection, which makes it suitable for circuit
synthesis.

C. MAIN PROPERTIES
One hand, from (4), according to Parseval’s theorem, the
controllability gramianWC and observability gramianWO of
the square system {A,B,C} satisfy

WC =

∫
+∞

0
x(t)xT(t)dt =

1
2π

∫
+∞

−∞

X (iω)X (iω)Hdω

=
1
2π

∫
+∞

−∞

(iωI − A)−1BBT(−iωI − AT)−1dω

and

WO =

∫
+∞

0
z(t)zT(t)dt =

1
2π

∫
+∞

−∞

Z (iω)Z (iω)Hdω

=
1
2π

∫
+∞

−∞

(iωI − AT)−1CTC(−iωI − A)−1dω.

According to the structures of B and C , we have

WC =

p∑
i=1

W i
C , WO =

p∑
i=1

W i
O,

where W i
C and W i

O are controllability and observability
gramians of SISO subsystem {A, bi, ci} respectively.

As a result, analogously to (12), it holds

WC =

p∑
i=1

W i
C ≈

p∑
i=1

FiFT
i = FFT (15)

and

WO =

p∑
i=1

W i
O ≈

p∑
i=1

GiGT
i = GGT, (16)

where Fi and Gi are calculated from (8) and (9) for the
subsystem {A, bi, ci}, while F =

[
F1 F2 · · · Fp

]
and G =[

G1 G2 · · · Gp
]
. As a result, the approximation (15) and

(16) can be regarded as the low-rank decomposition of WC
andWO either for square case or SISO case. Then comparing
with the LRSRM algorithm in [12], we have the following
property.
Property 1: The ROM (13) obtained by Algorithm 1 is the

same as the ROM obtained by LRSRM [12] that is based on
approximate controllability and observability gramians (15)
and (16).
Remark 3: The equivalence of the ROMs obtained by BT

based on exact gramians only holds for symmetric systems,
however, fortunately, we extend such equivalence relation
based on approximate gramians to the square case success-
fully under some certain conditions.

On the other hand, fromwhat was mentioned in [35], if A+
AT < 0 and E > 0, the LTI system

Eẋ = Ax(t)+ Bu(t), y(t) = Cx(t),

is stable. As a result, for the stability preservation, we have
the following property.
Property 2: For the square LTI system (11), if A+AT < 0,

the ROM {Ar ,Br ,Cr } obtained by Algortihm 2 is stable.
It should be pointed out that a stable LTI system may

not satisfy A + AT < 0. As a result, two strategies are
alternative to retain the stability. One hand, according to [34],
if A is continuous-stable, by solving the following Lyapunov
equation

ATQ+ QA+ I = 0

and applying the Cholesky decomposition to Q: Q = LLT,
an equivalent system {TAT−1,TB,CT−1} of {A,B,C} is pro-
duced with T = LT, which makes Â + ÂT < 0 with Â =
TAT−1. Using Algorithm 2 to system {TAT−1,TB,CT−1},
it leads to a stable ROM.

On the other hand, according to [36], for a stable matrix A,
if it exists a positive definite matrix J such that

JA+ ATJ < 0,

and WT
= (UTJU )−1UTJ , where U is calculated from

Algorithm 2, then the ROM {WTAU ,WTB,CU} is stable as
well.

D. NON-SQUARE LTI SYSTEMS
Finally, we consider the non-square LTI system as follows:{

ẋ(t) = Ax(t)+ Bu(t),
y(t) = Cx(t),

(17)

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n, p 6= q.
Obviously, the cross gramian of such system can not be
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calculated from Sylvester equation (2) since the dimensions
of B and C are incompatible. So at first, we partition B and C
as

B =
[
b1 b2 · · · bp

]
, bi ∈ Rn×1,

and

CT
=
[
cT1 cT2 · · · cTq

]
, cj ∈ R1×n.

For the SISO subsystem {A, bi, cj}, the related gramians are
given by

W i
C =

∫
+∞

0
eAtbibTi e

ATtdt,

W j
O =

∫
+∞

0
eA

TtcTj cje
Atdt,

W ij
X =

∫
+∞

0
eAtbicjeAtdt.

It is clear that WC =
p∑
i=1

W i
C and WO =

q∑
j=1

W j
O. As a result,

from the core property (3), it produces

WCWO = (
p∑
i=1

W i
C )(

q∑
j=1

W j
O) =

p∑
i=1

q∑
j=1

(W ij
X )

2.

For square systems, its cross gramian WX satisfies

WX =

p∑
i=1

W ii
X . (18)

According to [19], the cross gramian of non-square system
(17) is defined as the sum of cross gramians of the pq SISO
subsystems, i.e.,

WX =

p∑
i=1

q∑
j=1

W ij
X .

Obviously, such cross gramian does not retain the property (3)
and it should be emphasized that the cross gramian of non-
square case does not reduce to the classic cross gramian in
case of a square MIMO system (compare (18)).

What’s more, we can obtain

WX =

p∑
i=1

q∑
j=1

W ij
X =

p∑
i=1

q∑
j=1

∫
+∞

0
eAtbicjeAtdt

=

∫
+∞

0
eAt (

p∑
i=1

q∑
j=1

bicj)eAtdt

=

∫
+∞

0
eAt (

p∑
i=1

bi)(
q∑
j=1

cj)eAtdt.

It is seen that the cross grmaian WX of system (17) equals to

the cross gramian of the SISO system {A,
p∑
i=1

bi,
q∑
j=1

cj}. As

a result, analogously to Algorithm 1, we have the following
algorithm for non-square case. (see Algorithm 3)

Algorithm 3 Cross Gramian Based on LRSRM for Non-
Square Systems
Input: A, B, C , tol, α, m;
1) Compute low-rank factors of F and G of the SISO

system {A,
p∑
i=1

B(:, i),
q∑
j=1

C(j, :)} from (8) and (9);

2) Compute the SVD of GTF : GTF = U6V T, Ur =
U (:, 1 : r), 6r = 6(1 : r, 1 : r), Vr = V (:, 1 : r),

where r satisfies δ = 2
rN∑

k=r+1
σ̃k < tol;

3) Compute SL = GUr6
−

1
2

r , SR = FVr6
−

1
2

r ;
4) Compute the ROM: Ar = STLASR, Br = STLB, Cr =

CSR.
Output: Ar , Br , Cr , r .

Algorithm 4 Cross Gramian Based on DSPMR for Non-
Square Systems
Input: A, B, C , k , α, m;
1) Compute low-rank factors of F and G of the SISO

system {A,
p∑
i=1

B(:, i),
q∑
j=1

C(j, :)} from (8) and (9);

2) Compute the SVDs:

1
‖F‖F

F = UF6FV T
F ,

1
‖G‖F

G = UG6GV T
G;

3) Compute the ’economy size’ SVD:[
UF (:, 1 : k) UG(:, 1 : k)

]
= U6V T

;

4) Compute the ROM: Ar = UTAU , Br = UTB, Cr =
CU , r = rank(U ).

Output: Ar , Br , Cr , r .

Meanwhile, analogously to Algorithm 2, we also have
Algorithm 4 based on DSPMR for non-square systems.

Since the non-square system (17) and its associated "aver-
age" system have the same matrix A, which is related to
the stability of the system, thus the results about stability
preservation in Section III.C can be extended to non-square
case based on Algorithm 4 successfully.
Remark 4: Comparing with the methods for non-square

systems in [18] and [20], Algorithm 3 and Algorithm 4 may
be more efficient, especially when there are more input and
output nodes.

IV. NUMERICAL SIMULATIONS
In this section, three numerical examples are provided to
demonstrate the effectiveness of our proposed algorithms in
different cases. We make a comparison with the classical
BT method [6] and cross-gramian-based dominant subspaces
(CG-DS) method [26]. All examples are performed in MAT-
LAB(R2016b) and we use MATLAB’s ode15s to solve dif-
ferential equations in this paper.
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TABLE 1. Computational cost and stability of ROMs in Example 1.

Example 1: The first example is the (full order model)
FOM benchmark that comes from [12]. This is an SISO LTI
system (with E = I ) of the structure:

ẋ(t) = Ax(t)+ Bu(t), y(t) = Cx(t),

with order n = 1006 and the component matrices are given
by the following forms:

A1 =
[
−1 100
−100 −1

]
, A2 =

[
−1 200
−200 −1

]
,

A3 =
[
−1 400
−400 −1

]
,

A4 =


−1

−2
. . .

−1000

 ,

A =


A1

A2
A3

A4

 , B = [B1B2
]
,

B1 =

 10
...

10

 ∈ R6, B2 =

 1
...

1

 ∈ R1000, C = BT.

Numerical results show that A is stable and A+ AT < 0.
We calculate four ROMs: S-1is obtained by Algorithm 1,

S-2 is obtained by Algorithm 2, S-3 is obtained by the CG-
DS method and S-4 is obtained by the classical BT method.
The input is u(t) = e−t . Here the parameters are α = 100,
tol = 10−6 and m = 20.
Fig. 1 shows the transient responses of four ROMs as well

as relative errors, while Fig. 2 shows the comparison about
HSVs of different ROMs with the ones of original system.
Table 1 shows the computational cost of calculating different
ROMs and the stability.

From Fig. 1, Fig. 2 and Table 1, it is seen that: (i) all
of the four ROMs obtained by these methods have a good
performance in approximating the output behavior of original
system; (ii) our proposed algorithms provide a competitive
approximation with BT and are slightly better than CG-DS;
(iii) the corresponding computational time consumed by our
proposed algorithms are a little less than the other methods;
(iv) these ROMs well approximately match the first several
HSVs of the original system.
Example 2: The second example is a model of compact

disc (CD) player [37]. The model describes the dynamics
between the lens actuator and the radial arm position of a

FIGURE 1. Results of responses in Example 1.

FIGURE 2. Results of HSVs in Example 1.

portable CD player. This square system is described by the
following model that has 120 states with two inputs and two
outputs

ẋ(t) = Ax(t)+ Bu(t), y(t) = Cx(t).

Numerical results show that A is stable and A+ AT < 0.
We calculate four ROMs: S-1 is obtained by Algorithm 1,

S-2 is obtained by Algorithm 2, S-3 is obtained by the CG-DS
method and S-4 is obtained by the classical BT method.
The input is u(t) =

[
e−t 0

]T. Here we choose α = 50,
tol = 10−6 andm = 16. Numerical results show that the first
component y1(t) of y(t) is well approximated when the order
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FIGURE 3. Results of responses in Example 2.

FIGURE 4. Results of HSVs in Example 2.

decreases to 10. Thuswe only compare the second component
y2(t) of different ROMs.

In Fig. 3 the transient responses of four ROMs are com-
pared with the original system as well as relative errors, and
in Fig. 4 the HSVs of different ROMs are compared with orig-
inal system. In Table 2, the computational cost of calculating
different ROMs as well as the stability is compared.

According to the results in Fig. 3, Fig. 4 and Table 2, it is
seen that: (i) all the ROMs can approximate the transient
response of original system very well; (ii) our proposed algo-
rithms have a superior performance to BT, especially Algo-
rithm 1, and are competitive with CG-DS; (iii) our proposed

TABLE 2. Computational cost and stability of ROMs in Example 2.

TABLE 3. Computational cost and stability of ROMs in Example 3.

algorithms need a little less computational cost of calculating
ROMs than those of CG-DS andBT; (iv) these ROMs can also
closely match the first several HSVs of the original system.
Example 3: At last, we consider a 2D model for a tunable

optical filter, which is a single-input-five-output system with
the order n = 1668 [38]. The non-square system realization
is described as

Eẋ(t) = Ax(t)+ Bu(t), y(t) = Cx(t),

where E is diagonal with det(E) 6= 0. Then the state equation
can be converted to

ẋ(t) = Âx(t)+ B̂u(t),

where Â = E−1A and B̂ = E−1B. Numerical result shows
that such system is stable but Â+ ÂT is not a negative definite
matrix. Solving the Lyapunov equation as follows:

ATQ+ QA+ I = 0

and applying the Cholesky decomposition to Q : Q = LLT.
Let T = LT, then an equivalent system is produced

˙̃x(t) = Ãx̃(t)+ B̃u(t), y(t) = C̃ x̃(t),

where Ã = T ÂT−1, B̃ = T B̂ and C̃ = CT−1. In this case,
we can see that Ã+ ÃT < 0.
We calculate four ROMs: S-1 is obtained by Algorithm 3,

S-2 is obtained by Algorithm 4, S-3 is obtained by the CG-DS
method and S-4 is obtained by the classical BT method. The
input is u(t) = e−5t . The parameters are α = 1045, tol =
10−6 andm = 10. Numerical experiment result shows that all
the outputs are almost the same, so only the first component
y1(t) of different systems are compared.

The transient responses of ROMs obtained by fourmethods
are compared with the original system in Fig. 5, as well
as the corresponding relative errors. In Fig. 6, the HSVs of
four ROMs are compared with the ones of original system.
The computational cost of calculating four ROMs and the
corresponding stability are shown in Table 3.

From the results in Fig. 5, Fig. 6 and Table 3, it is seen that:
(i) all the ROMs have better approximations to the transient
response of original system; (ii) compared with CG-DS and
BT, our proposed algorithms for non-square case provide a
slightly better performance; (iii) Although CG-DS needs the
least time to calculate the ROM, our algorithms are more
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FIGURE 5. Results of responses in Example 3.

FIGURE 6. Results of HSVs in Example 3.

efficient than BT; (iv) the ROMs obtained by Algorithm 3 and
Algorithm 4 can more or less match the first several HSVs of
the original system, which implies that the definition of cross
gramian for non-square systems in [19] is reasonable.

In addition, it should be pointed out that even though
the ROM S-1 is stable in these three examples, the stability
preservation is not guaranteed in general either for Algo-
rithm 1 or Algorithm 3.

V. CONCLUSION
In this paper, we first discuss the calculation of approxi-
mate cross gramian via Laguerre series. Then a series of
MOR algorithms based on the low-rank decomposition of
approximate cross gramians for LTI systems are proposed.

The cross gramian is approximately calculated from the
expansion coefficients of Laguerre functions that are obtained
by a recurrence formula instead of solving the Sylvester
equation directly, which makes it more flexible and compu-
tationally efficient. What’s more, we modify our algorithm
to alleviate the shortcoming, which may lead to an unstable
ROM for the original stable systems. Meanwhile, the ROM
retains the stability under some certain conditions and is
equivalent to the one obtained by LRSRM based on approx-
imate controllability and observability gramians in square
case. In addition, our algorithms are extended to non-square
LTI systems successfully, which also retain the stability.
Finally, the results of numerical simulations illustrate the
effectiveness of our proposed methods. In order to extend the
applications of our algorithms, the topic on calculating cross
gramians for nonlinear systems will be taken into account in
our future work.
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