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ABSTRACT The applicability of machine learning-based analysis in the field of biomedical field has
been very beneficial in determining the biological mechanism and validation for a wide range of biological
scenarios. This approach is also gaining momentum in various stem cells research activities, specifically for
stem cells characterization and differentiation pattern. The adoption of similar computational approaches to
study and assess biosafety and bioefficacy risks of stem cells for clinical application is the next progression.
In particular where tumorigenicity has been one of the major concerns in stem cells therapy. There are
many factors influencing tumorigenicity in stem cells which may be difficult to capture under conventional
laboratory settings. In addition, given the possible multifactorial etiology of tumorigenicity, defining a one-
size-fits-all strategy to test such risk in stem cells might not be feasible andmay compromise stem cells safety
and effectiveness in therapy. Given the increase in biological datasets (which is no longer limited to genomic
data) and the advancement of health informatics powered by state-of-the-art machine learning algorithms,
there exists a potential for practical application in biosafety and bioefficacy of stem cells therapy. Here, we
identified relevant machine learning approaches and suggested protocols intended for stem cells research
focusing on the possibility of its usage for stem cells biosafety and bioefficacy assessment. Ultimately,
generating models that may assist healthcare professionals to make a better-informed decision in stem cell
therapy.

INDEX TERMS Machine learning, deep learning, image processing, stem cell, cancer stem cell, personal-
ized medicine, biosafety and bioefficacy.

I. INTRODUCTION
Stem cells are undifferentiated cells found in all multicel-
lular organisms which possess a unique self-renewal ability
and multi-potential differentiation [1]–[3]. Stem cells have
been associated with the fields of regenerative medicine and
tissue engineering with the goal to improve health and quality
of life, especially patients with debilitating diseases. Stem
cells can be divided into three categories: (1) embryonic
stem cells (ESC) derived (ESC) from early-stage embryos;
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(2) adult stem cells (ASC) and (3) induced pluripotent stem
cells (iPSC). These cells owe its regenerative capacity to
its ability to migrate to the If your paper is intended for a
conference, please contact your conference editor concern-
ing acceptable word processor formats for your particular
conference. injured part of the body, to divide and produce
daughter cells, which have the ability to differentiate into
other lineages of cells in order to repair the damaged tissue
under appropriate conditions [4]. The ability for stem cells to
induce regeneration can be influenced by culture condition
and the type of secretomes released [5]. Stem cells have
been studied and even applied for the treatment of various
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FIGURE 1. An overview of the current research trend in stem cells research. Collection of datasets particularly on characterization of stem and
cancer cells would enable machine learning approach to be applied in stem cells research and subsequently in stem cells therapy.

clinical conditions. However, there are risks which needed
for further evaluation (before clinical application), such as
miss-differentiation of cells, miss-targeting of cells, immune
rejection and the biggest concern is genomic instability or
tumor formation [6], [7].

While the application of stem cells for treatment is on the
rise, their overall quantity in the body is scarce. Generally, cell
therapy protocols require hundreds of millions of MSC per
treatment and this would require cell expansion in vitro for
about 10 weeks before implantation [8]. In this regard, long-
term expansion or manipulation of stem cells may contribute
to cellular senescence or even tumorigenesis in vitro, which
may cause them to be non-viable for clinical usage. This has
led to concerns of biosafety and bioefficacy of stem cells in
clinical application [9], [10]. The aforementioned concerns
are mainly due to poor understanding of stem cells biological
mechanism, which has prevented it from being used widely
in research in clinical application. Experimental approaches
based on phenotypic and genotypic profiling are limited,
whereby, they can also be expensive and time- consuming
[11]–[13]. Furthermore, these approaches would also require
subsequent validation assays to confirm its accuracy, which
apart from the small sample size, can also lead to misinter-
pretation of data.

The recent development in stem cells research has shown
that machine learning application can be used to overcome
some of these limitations, particularly in phenotypic pro-
filing of stem cells [14], [15]. Other potential applications
that could be explored are annotation of stem cell genome
[16], predictions of protein binding, identification of specific
markers [17] or key transcriptional factors of stem cells and

characterization of stem cells transcriptional regulatory net-
works [18].

There are datasets generated from experiments to quantify
molecular variables related to stem cells biosafety and bio-
efficacy, such as the gene and proteins interactions. However,
these datasets are complex with an intricate network of
molecular interactions and analysis [19], [20]. To address
this complexity, machine learning could provide next-level
analyses that would allow better insights and the genera-
tion of new information for better biosafety and bioefficacy
assessment [18]. As such, this would also allow medical
practitioners to be better informed in offering personalized
treatment to patients in stem cells therapy.

A similar approach is seen in cancer research, whereby,
machine learning has been widely applied in the identifi-
cation and classification of cancer cells. Similar machine
learning models and approaches can be applied in stem cells
research [21]–[24] that could assist in accelerating the evalua-
tion of safety and efficacy of stem cells. This could potentially
bring stem cells to the forefront of personalized medicine.
The current and future research trends in stem cells research
are presented as an overview in Figure 1. In this review, the
advantages and limitations of machine learning in stem cells
research were presented, including on how next-generation
machine learning methods could be used to expand our
understanding of stem cells biology and their biosafety and
bioefficacy risks. We anticipate that machine learning could
have substantial impacts on stem cells research and therapy,
providing a supporting tool in making a personalized clinical
decision. This includes tailoring treatments for optimization
in individual patients.
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II. STEM CELLS BIOSAFETY AND BIOEFFICACY PROFILES
In general, stem cells are unspecialized cells with
self- renewal and differentiation (into specialized cell)
abilities [25]. However, each type of stem cells has different
characteristics, which are attributed by their origin, biological
characteristics and functionality. The ESC cells are pluripo-
tent stem cells originated from the inner mass of blastocyst of
the embryo and can give rise to the entire body tissue organs
except for placenta and umbilical cord [26]–[28]. Meanwhile,
ASC cells are somatic cells-derived from a certain part of the
adult body, which can only give rise to stem cell progeny of
the original site [29] in which they are found. They are known
to be multi-potent with limited differentiation capacity [30],
[31]. Adult stem cells are also known as mesenchymal stem
cells (MSCs) [32]–[35].

The iPSCs are capable in giving rise to all kinds of cell
types in the body but the difference is that iPSCs are repro-
grammed stem cells, whereby, somatic or primary cells are
biologically reprogrammed, giving rise to stem cells simi-
lar in characteristics as ESCs in culture [36]–[38]. Due to
this technique, iPSCs have been widely used as it reduced
the dependency on ESCs and ASCs, which are limited in
the cell population. The iPSCs have been profoundly uti-
lized not only for repair, replenishment and replace the
damaged cell, tissue and organ but they have also been
employed for drug-response therapy [39]. Due to the regen-
erative capacity of stem cells, they have been regarded as
a powerful tool in regenerative medicine, particularly in
the treatment of debilitating diseases. However, such poten-
tial and capability have given rise to other clinical con-
cerns, such as adverse effects associated with biosafety and
bioefficacy issues. These effects may not materialize imme-
diately after receiving stem cell therapy. Post therapy mon-
itoring may be difficult as there are no established pre- or
post-parameters and further, there is no ‘one-size-fits-all’
protocol to enable such monitoring procedure. To develop
a stem cell-based therapy, we must first ensure the safety
and efficacy of stem cells. High efficiency of stem cells is
needed to have effective homing, engraftment and persistence
in damaged tissues, which would enable a stable interac-
tion between the transplanted and the injured tissues. This
is important to maximize the therapeutic capacity of stem
cells.

Studies on biosafety and bioefficacy of stem cells have
been carried out for many years. There have been few reports
addressing the biosafety and bioefficacy profiles of stem cells
[10], [40], [41], which showed the importance of addressing
these issues. As of now, there is no standard or conclusive data
that can be used to establish a proper protocol for biosafety
and bioefficacy assessment. Further, any protocols and guide-
lines established would need to be internationally accepted
and harmonized [42]. The proposedminimal criteria to define
human mesenchymal stem cells (MSC) was established by
the Mesenchymal and Tissue Stem Cell Committee of the
International Society for Cellular Therapy (ISCT). These

criteria are; 1) MSC must be plastic-adherent when cultured
in standard culture conditions, 2) MSC must express CD105,
CD73 and CD90 and lack in the expressions of CD45,
CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR
surface molecules and 3) MSC must be able to differentiate
to osteoblasts, adipocytes and chondroblasts in vitro [43].
Since then, further investigations on stem cells characteristics
were carried out, which can be (directly or indirectly) used to
evaluate the biosafety and bioefficacy profiles of stem cells.
With regards to adult stem cells (ASC) or MSC, studies have
shown that these stem cells were reported to have low risks
of tumorigenicity in long-term culture [4], [44] and low risks
of abnormalities following long-term cryopreservation [45].

While there are no significant changes in stem cells differ-
entiation ability, cryopreservation caused stem cells to appear
less fibroblastic in appearance [46]. Long-term culture of
stem cells was also reported to alter its stemness and differ-
entiation ability [46], [47]. On the other hand, tumorigenicity
risks of embryonic stem cells (ESC) and induced pluripotent
stem cells (iPSC) have been reported, which pose a hurdle
in stem cell therapy [48], [49]. Furthermore, the differences
in cell microenvironment and culture conditions contributed
by biophysical and biochemical cues can affect stem cells
response, for example, cell culture in hypoxia [50]–[53], use
of serum [54] and fluid shear forces [55]. This evidence also
showed that stem cells response is affected by both static and
dynamic interventions. Despite the successful clinical appli-
cation of stem cells, the sample size is rather small, which
may not be sufficient to determine the safety and efficacy of
the treatment. The application of human allogeneic adipose-
derived MSC showed feasibility in a pediatric patient with no
adverse effects of up to 12 months following treatment [56].

While Lennmyr et al. [57] showed that all adult patients
affected by lymphoblastic leukemia was successfully treated
with allogeneic hematopoietic stem cell transplantation
(alloHSCT) with an increased overall survival rate of more
than 10% in 5 years [57]. Meanwhile, Schlenk et al. [58]
evaluated alloHSCT among patients having acute myeloid
leukemia (AML) showed a significant beneficial impact after
treatment. Similarly, Cornelissen et al. [59] reported that
AML patients that were treated using alloHSCT have a sig-
nificant beneficial impact with the overall increased survival
rate of 12% and was successfully validated using cytogenetic
profiling. However, there have been variations in terms of
treatment outcomes and responses, which can be due tomulti-
ple factors that can be difficult to ascertain. Examples of these
factors include different donors [60], age of donors [61] and
different culture protocol [62], which may contribute to non-
standardized outcomes and potentially adverse effects in stem
cells therapy that can be irreversible. This hasmade it difficult
to assess and to establish a standardized protocol to evaluate
the biosafety and bioefficacy risks of stem cells. Therefore,
machine learning-based predictive analytical methods are
desirable to accelerate the discovery of new stem cell mark-
ers for safety assessment and to forecast stem cell therapy
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efficacy in order to minimize the potential adverse effects and
to maximize the success of treatment.

III. LIMITATIONS IN STEM CELL THERAPY WHICH POSE
EFFICACY AND SAFETY ISSUES
Although suitable stem cells safety and efficacy profiles and
assessment are still not well established, stem cells have
been used for various disease treatments. Stem cell therapies
have been applied for the treatment of anemia [63], multiple
myeloma [64]–[66], arthritis [67], [68] and even stroke [69],
[70]. Stem cells therapies have also been applied for blood-
related cancers, whereby, patients have undergone allogeneic
hematopoietic stem cell transplantation (alloHSCT) for tha-
lassemia [71] and acute myeloid leukemia (AML) [72]–[75].
In some cases, determining post-treatment efficacy and safety
of stem cell therapy may be restricted due to the difficulty
in following up after treatment. It might also be due to stem
cells’ dynamic responses in different individual recipient and
disease models, which lead to variations in the outcome of the
treatment. In this regard, there have been reports addressing
post-treatment complications of stem cells therapy within a
year following the treatment.

Rovo and Tichelli [76] reported cardiovascular complica-
tion risk following allogeneic hematopoietic stem cell trans-
plantation leading to considerable morbidity and mortality,
including patients having critical diseases, such as dyslipi-
demia, arterial hypertension, diabetes mellitus and kidney
disease. There have been reports of undesired differentia-
tion and malignant transformation [77] as well as the abil-
ity to promote tumor growth and metastases, which has
been a major concern in stem cells therapy [78]. Patients
who have undergone autologous stem cell transplantation
(ASCT) for lymphoma have a significant risk of developing
therapy-related acute myeloid leukemia [74], [79], [80] and
myelodysplasia (t-AML/MDS) [81]. This may be attributed
by the ASCT procedure that includes priming chemotherapy,
total body irradiation and the extensive cellular proliferative,
which occur during engraftment, leading to the develop-
ment of t-AML/MDS. Graft-Versus-Host Disease (GVHD)
is another adverse effect that occurs following stem cell
treatment [82]–[84], which can be overcome by the use of
a mismatched allograft that necessitates T cell depletion.
Surprisingly, a greater HLA mismatch was associated with a
lower risk of GVHD [85]. Themismatched donor lymphocyte
infusion (DLI) was specifically created for prophylactic treat-
ment of T cell depleted mismatched allograft recipient [85].
All of these stem cells donors and recipients’ responses may
be important factors needed to be considered carefully. Bio-
logical assays and geneticmolecular expression data profiling
may be able to overcome such limitations and challenges, but
they may be cost-prohibitive and time-consuming. Antibiotic
matching, biomarker details and signaling pathways are all
essential information needed but may require subsequent
validation assays for accuracy. In this regard, dependency
on biological assays may lead to the misinterpretation of
data, particularly in terms of the similarity in biomarkers and

molecular signaling pathways of various microenvironment
and disease models. Hence, machine learning-based charac-
terization and classification profiling techniques may be able
to capture the genotypic and phenotypic differences as well as
the changes that occur in a shorter period with more accuracy
in terms of safety and efficacy of the stem cells.

IV. MACHINE LEARNING APPLICATION OPPORTUNITY IN
STEM CELLS BIOSAFETY AND BIOEFFICACY EVALUATION
Understanding stem cells behavioral response and changes
have been mainly carried out through biological assays that
employed time-consuming and laborious methods [86], [87].
Furthermore, just like any biomedical datasets, stem cells
datasets are generally limited by sample size [88]. To increase
data for analysis, some investigators used 3D printing to
create bio-scaffolds to mimic the natural environment of stem
cells, but this approach was not always successful, whereby,
stem cells often migrated away from the printed scaffolds or
locations. Hence, the analysis of stem cells’ intrinsic ability
and response were not always accurate. To overcome this
limitation, the machine learning approach to study stem cells’
complexity is gaining momentum, particularly on the aspect
of molecular and genomic changes in pluripotent stem cells.

Machine learning is a common method in data analytics
for identification and recognition of patterns, which when
applied to stem cell biology, will enable the discoveries of
new insights with reasonable accuracy in a shorter amount
of time. This approach would also be of advantage as stem
cells are known to form predictable patterns in their natural
environment as they mature into tissues. Such analytics are
difficult to duplicate in the lab, costly to perform, laborious
and time consuming to execute. For instance, Libby et al.
[89] used extended cellular Potts model to capture pluripo-
tent stem cell organization dynamics that enabled them to
demonstrate morphogenic dynamics through a model-driven
exploration of stem cells behaviors, which is a vital step in
organ modelling [89]. Understanding that the individual stem
cell is different even if they are genetically cloned has led
to the Allen Cell Explorer produced by the Allen Institute
for Cell Science in Seattle, USA. The Allen Cell Explorer,
which complements various ongoing projects, is an online
catalogue, including the 3D images of stem cells as well as
the iPSC that were produced using deep learning analysis and
cell lines altered with the gene-editing tool, CRISPR [90]. It
is also a growing library that charts the uniqueness of single
cells at DNA, RNA and protein levels [90]. This gives a more
holistic and unbiased approach to predict and understand
multiple aspects of cellular structure and behaviors.

Although machine learning application in stem cells
research is not a commonality at this stage, a proof-of-concept
study has been presented previously [91]. Zhang et al. [91]
employed machine learning and microscopic image analysis
to identify iPS progenitor cells in their effort to understand the
origin and underlying mechanism of iPSC particularly at the
early stage of cell reprogramming, including the biomarkers
involved. However, the proposed model by Zhang et al. [91]
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showed inconsistencies in their prediction with large fluc-
tuation. The model can only predict iPS progenitor cells
with a minimum precision of 52%. The model is incapable
of handling additional iPSC features and phases to achieve
higher accuracy of the prediction performance.

Machine learning models have been applied in cancer
diagnostics and prognostics [15], [92]–[94], whereby, similar
predictions and interpretationmodels can be applied in under-
standing stem cells, specifically for its biosafety and bioef-
ficacy evaluation. Similar machine learning techniques can
be used in predicting and studying the dynamic changes of
stem cells behavior in a particular environment, which should
be directed towards understanding its impact on biosafety
and bioefficacy for clinical application. The combination of
the dataset from cancer research and stem cells research
for various machine learning models should be considered
as an approach in understanding stem cells behavior and
interactions as well as the risks of developing adverse effects
following therapy.

A. IMAGE-BASED DATASET FOR MACHINE LEARNING IN
STEM CELLS RESEARCH
The common workflow of image processing consists of the
preparation of image input data, pre-processing, segmenta-
tion, feature extraction and classification steps. The micro-
scopic image should be prepared by capturing the cell image
from cells or tissue samples using the microscopic digital
camera or software. Technical expertise for manual clas-
sification may be required for image labelling, especially
for images that will be used for supervised training. For
automated application, the microscopic images provided by
authorized databases can be used for training and testing.
For simple and efficient methods of segmentation and fea-
ture extraction steps, techniques such as Convolutional Neu-
ral Networks (CNN), K-Means and Mean Shift should be
adopted. The SVM, Naive Bayes and Fully Convolutional
Neural Network (FCNN) are among the techniques that have
been used for cancer cell classification, which has the poten-
tial to be applied in stem cell research. Image processing or
analysis has been beneficial in cancer research. Computer
vision software based on machine learning and deep learning
algorithms is making automated analysis possible in deliv-
ering fast and accurate results. In this regard, image pro-
cessing plays a crucial role in the diagnosis and detection of
cancers as well as in monitoring cancer progression patients
[23]. Similarly, machine learning is capable in overcoming
limitations in stem cells research, whereby, lab-based char-
acterization and classification using chemical reagents and
biological assays can be labor-intensive, expensive, and time-
consuming as well as less accurate.

Most implementations of supervised machine learning
relied on extensive training data using extracts from large
and high-throughput biological data and features, such as
cellular images and genome analysis. From the perspectives
of cancer diagnosis and stem cells therapy, the machine
learning approach is useful to understand the regulatory

genomics. This includes the identification of regulatory vari-
ants, the effects and origins of mutation using DNA sequence,
analyzing whole cells, the population of cells and tissues
through detecting features that can be difficult or impossible
to uncover in conventional laboratory settings [95]. Pattern
recognitions and classifications of such biological data are
important in identifying factors, which pose biosafety and
bioefficacy risks of stem cells in clinical application.

While different techniques have been developed for anal-
ysis, deep learning method provide a more effective strategy
due to the diversity of the data. It has been used to classify
lesions and nodules; localize organs, regions, landmarks and
lesions; segment organs, organ substructures and lesions; by
retrieving images based on content; generating and enhancing
images; and combining images with clinical reports [13],
[96], [97]. The application of deep learning in analyzing
images has been widely used in cancer stem cell phenotype
research. Ke Fan et al. [98] demonstrated that the combi-
nation of SVM, RF and CNN was able to measure mor-
phological dynamic and colony formation of iPSCs within
7 days. The application of SVMby Tanaka et al. [99] enabled
automated classification of adipogenic and osteogenic dif-
ferentiation as well as undifferentiated features of human
mesenchymal stem cells (hMSC) in RGB color image. Mean-
while, Theagarajan and Bir Bhanu [100] have developed
and proposed new automated detection and classification of
human embryonic stem cell (hESCs) with an accuracy of
94.46% using the application of CNN for phase contrast
hESC image analysis.

B. STEM CELLS AND CANCER CELLS FEATURE
ENGINEERING FOR MACHINE LEARNING
Several studies have shown that stem cells and cancer cells
share some similarities. These similarities can be attributed
to their functional capability that is conceptually similar in
terms of their ability to self-renew and to proliferate [101].
However, they are also fundamentally different, whereby,
these cells can be distinguished by different regulatory mech-
anisms reflected in at least three characteristics; 1) propa-
gation and proliferation ability, 2) morphology and 3) cell
surface markers. These characteristics may be considered
for risks evaluation associated with the safety and efficacy
of stem cells. Image-based high-content screening has also
become increasingly important in stem cells research in mon-
itoring the changes in phenotype, such as cell morphology
and differentiation [102], [103].

1) PROLIFERATION AND PROPAGATION ABILITY
In terms of proliferation ability, it is important to under-
stand that normal stem cells are regularly more vigilance in
controlling their proliferation, but this ability is lacking in
cancer cells [101]. Cells population doubling time is one of
the distinguishing factors that can be included as a feature
used to train the machine learning model. However, it is
important to also take into account the different models [101]
used to understand cancer propagation. Cancer stem cells
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FIGURE 2. Representative images of human adult stem cells and selected cancer cell lines (10X magnification). A) ADSC (Human
adipose-derived stem cells), B) MCF-7 (Human breast cancer cell line), C) HGT-1 (Human gastric cancer cell line), D) U937 (Human
lymphoma cell line) and E) HEPG2 (Human liver cancer cell line). Differences in cell morphology may enable machine learning
approach in evaluating the risks of biosafety and bioe fficacy in stem cells therapy.

(CSCs) model is rare and is a phenotypically distinct group of
cells, which may hierarchically induce the stable generation
of non-tumorigenic and tumorigenic cells. They can proba-
bly be generated from normal stem cells or precursor cells
within tissues after mutations and resistant to conventional
chemotherapy occurred [104].

Although they are rare, certain markers have been sug-
gested for the identification of CSCs. In the clonal evo-
lution model, cancer cells are distinctive in phenotypes
with malignant potential and ability for disease propaga-
tion by undergoing additional genetic mutations. While in
the interconversion model, cells can interconvert between
being actively malignant and relatively quiescent, which is
associated with the phenotypic differences between these
cells. Although there are distinctive differences in the cells
in each model, they are not mutually exclusive, whereby,
tumorigenic cells are able to undergo further genetic and
epigenetic alterations, depending on their microenvironment
regardless of which model the cells follow [105]. Based on
the propagation and proliferation ability, specifically asso-
ciated biomarkers, cell count or numbers and time-period
depicting cells population growth could be the features that
can be included in the training models to distinguish the
characteristics of normal stem cells and cancer-associated
cells.

2) CELL MORPHOLOGY
Morphologically, stem cells and cancer cells may show dif-
ferent cell features, which can be viewed microscopically
(Figure 2). Microscopic images of cells are crucial to extract
information for the machine learning models to distinguish
the different features of normal stem cells and cancer cells
based on their sizes and shapes. Generally, the appearance
of normal stem cells is more consistent in their shapes and
smaller in size while cancer cells can be abnormal and vary in
shapes and sizes, whichmay be contributed by their heteroge-
neous nature. Although they may exhibit unique differences
in their morphology, cell features, and motions require labo-
ratory experimental approaches to create sample dataset prior
to machine learning modeling. Based on a suitable model,
the identification of cancer progenitor cells can be confirmed
based on the morphology and motion pattern, which may be
different from normal cells.

Zhang et al. [91] used time-lapse microscopic images
of iPS forming cells in early stage reprogramming and
selected 11 types of cell morphological and motion features,
which included the area of coverage and speed for modelling
to perform feature selection. Further analysis of cell motion
showed that migratory motions for progenitor cells can be
distinguished by the direction and distance to bring distant
progenitor cells together. However, the input of cell features
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described by Zhang et al. [91] and Meygola et al. [106]
would require high-resolution time-lapse imaging to allow
the detection or tracing of cellular events. With regards to cell
segmentation and tracking, Dzyubachyk et al. [107] used cou-
pled active surfaces algorithm and time-lapse fluorescence
microscopy images. While Türetken et al. [108] proposed
an integer programming to track elliptical cell populations in
time-lapse image sequences. In the case of image segmenta-
tion, the challenge with live-cell imaging is in determining
which parts of images correspond to which individual cells.
Van Valen et al. [83] showed that this can be solved by
applying CNN that can robustly segment fluorescent images
of cell nuclei and phase contrast images of cells without the
use of a fluorescent cytoplasmic marker.

3) CELL SURFACE MARKERS
Cell surface markers are associated with features and changes
in cell morphology and progression. Some require deep epi-
genetic experimental approaches for input. It is challenging
in determining specific markers for normal stem cells, cancer
cells or CSCs as most of these markers can be presented in all
types of cells, making them non-specific. Otherwise, these
aspects would require machine learning approach in identi-
fying specific cell surface markers. In comparing between
normal stem cells and cancer cell progression, it is mostly
discussed within the context of CSCs, as stem cells have also
been shown to be involved not just in cancer initiation and
progression but also in CSCs generation [109]. Nevertheless,
contradictory results on CSCs and stem cells relationships are
still very much debatable.

Although both cells share some similarities in terms of self-
renewal and differentiation ability, there are studies Some
studies showed different characteristics between the two cell
types and this can be delineated by the existence of spe-
cific cell markers [101], [110]. This feature can be used
for machine learning approach to classify and track stem
cells progression in a particular environment for the risks
of them conforming or inclining towards cancer-associated
cells. An important attribute of CSCs is that they have the
ability to trans-differentiate into different phenotypes [111],
[112], whereby, they can express angiogenic and vasculo-
genic markers and also be able to organize a pseudo vas-
cular network. Several studies have also associated these
characteristics to the expression of potentially CSC markers
in several types of cancer cell lines, such as breast cancer
cell lines, MDA-MB 453 and MDA-MB 231 [113]–[115],
non-small cell lung cancers (NSCLCs) [116], renal cell car-
cinoma Cell [117], nasopharyngeal carcinoma cell (NPC)
[118], colon cancer cells mucoepidermoid carcinoma cell
lines (YD15) and its derivative (YD15M) [119]. From
these studies, it can be summarized that the character-
istics of malignancy and cancer progression were typi-
cally associated with a panel of surface markers, which
are CD133+,CD44+,CD24−,OCT3/4, or/and NANOG
[120], [121]. On the other hand, the CD44highESAlower or

CD44highESA
high

expressions indicated the presence of CSCs
population in squamous cell carcinoma in breast through a
comprehensive analysis of data obtained from flow cytom-
etry, immunohistochemical and real-time polymerase chain
reaction (RT-PCR) [112].

Surface markers regulation leading to the induction of
epithelial-mesenchymal transition (EMT), which resulted in
the acquisition of invasive and metastatic properties is also
one of the characteristics found in CSCs [119], [122]. EMT
phenomenon in CSCs has been reported as metastasis pre-
cursor, which enable the cells to acquire invasiveness and
become extremely resistant to conventional therapies [112],
[117]. The down-regulation of E-cadherin and upregulation
of N-cadherin, which are termed as cadherin switching cas-
cade, is a major hallmark of EMT. The cells which are under-
going EMT can be accurately identified through intensive
genomic profiling for downregulation of cytokeratin (CK)
and upregulation of vimentin, N-cadherin and fibronectin.
This may be important markers for the characterization and
identification of CSCs [119]. Currently, image analysis has
been employed in the study of stem cells reprogramming
and its progression using iPSCs. Kusumoto et al. [123]
employed CNN to identify endothelial cells derived from
iPSCs, whereby, the networks were trained using phase
contrast images of endothelial cells based on morphology
only. The network performance was then assessed by K-fold
cross-validation, which confirmed that CNN was able to
identify endothelial cells based on morphology with high
performance. On the other hand, computer vision-based deep
learning was also used to study the progress of stem cells dif-
ferentiation. CNNwas also able to be trained with transmitted
light microscopy images to identify pluripotent stem cells
from early differentiating cells and its ability to recognize the
features with more than 99% accuracy [124]. Similarly, the
classification of light microscopic images was used to predict
lineage choice and cellular movement of primary hematopoi-
etic progenitors during differentiation [125]. Despite limited
machine learning application for stem cell biosafety and
bioefficacy, comparative and classification analysis of stem
cells can be carried out by comparing the cell images of
stem cells and cancer cells without having the dependency on
molecular and biological assays. Depending on a particular
niche (i.e., whether in vitro or in vivo conditions), stem cells
can initiate or acquire senescence or cancer characteristics.
This has been demonstrated in glioblastomamultiforme study
by Adamski et al. [126], which reported that, there is a
putative link between cellular dormancy of malignancies and
stem cell-like characteristics in cancer that could be due to
the co-expression stem cells markers. Based on these studies,
the prediction in the risks of stem cells to acquire cancer
characteristics prior to clinical applications is possible.

V. TECHNICAL RECOMMENDATION OF MACHINE
LEARNING IN STEM CELLS RESEARCH
Machine learning classification techniques have been applied
in cancer research to identify and classify the types of cancer
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FIGURE 3. Overview of a typical pipeline of image processing steps for machine learning classification. Adapted from Jyoti Rawat et. al [138].

cells with relatively high accuracy, sensitivity and specificity.
Some popular applications involved Support Vector Machine
(SVM), K-Nearest Neighbors (KNNs), Artificial Neural Net-
works (ANNs), Decision Tree (DT), Random Forest (RF)
and Bayesian Networks (BNs) [121], [122], [127]–[131]. In
addition to cancer, the classification of microscopic red blood
cells images from hematological disorder, such as sickle cell
disease using deep-CNNs were able to reveal a diverse and
any alteration in the cell shapes related to their biomechanical
and bio-rheological characteristics. The deep-CNN employed
showed good performance, high accuracy and robust pre-
dictions that enabled clinicians to assess the severity of the
disease [132]. Similar techniques can be used to assess or
profile stem cells biosafety and bioefficacy based on image
analysis.

With regards to image analysis, there are typical
preliminary steps of image processing techniques. The pro-
cess consists of input image data, image pre-processing,
image segmentation, feature extraction and classification
steps (Figure 3). The microscopic data is commonly used
as an input for the training. Segmentation is a critical step
that ensures the success of all subsequent algorithm steps.
This entire approach of segmentation can be divided into
three steps: image pre-processing, image segmentation and
features extraction. In image pre-processing, the process
commonly starts with the selection of sub-image or panel
(usually nuclei or cell). The RGB color components and
grayscale analysis will then be performed for sub-image or
panel to find the contrast among the sub-image objects. The
contrast level of RGB components is shown by the colored
histogram.

The further segmentation process will then be performed to
the sub-images by doing image refining, filling and splitting
processes to identify the region of interest of the respec-
tive sub-images. Features such as size, shape and texture
can then be extracted according to the calculation on the
region of interest. By comparison, between Mean Shifts
segmentation [131] and K-Means segmentation [132], the
K-Means technique is one of the most popular method as
it is simple, fast and efficient. Technically, K-means makes
two broad assumptions, whereby, the number of clusters is
already known. K-means is fast and has a time complexity
O(knT ), where k is the number of clusters, n is the number of
points and T is the number of iterations [133]. The results of
segmentation can then be used for the classification process
to differentiate between the normal and abnormal cell. The
typical process of image processing shown in Figure 3 has
been commonly used in most nuclei-based cancer image
processing.

For example, by applying deep learning, patterns from
several types of data, such as from cancer cell dataset and
stem cells dataset can be automatically extracted [133]. This
includes the detection, segmentation and recognition of cell
images that can be used to predict the risk of cell irregularities
that could jeopardize stem cells clinical application. The
detection of cell irregularities is a multistage process, which
also includes pre-processing tasks, such as segmentation and
feature extraction from microscopic cell images before the
application of CNN [134]. This approach can be used to
observe and evaluate stem cells progression, particularly dur-
ing the expansion phase to detect and predict the risk of
abnormalities prior to clinical application. The expansion of
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FIGURE 4. The machine learning architecture of cancer detection process which can be
applied in stem cells biosafety and bioefficacy assessment. Adapted from Naik & Dixit [134].

cells is required to increase the number of cells to ensure
sufficient cells can be used in stem cells therapy.

It is a cell manipulation procedure, whereby, technical
manipulation can increase the possibility of genotypic and
phenotypic alterations [135]. Naik & Dixit [134] reported
detailed technical steps in detecting cancer from microscopic
biopsy images, comprising of the training and testing of the
algorithmmodel. Themachine learning architecture of cancer
detection by Naik & Dixit [134] is shown in Figure 4. For
both training and testing tasks, the sequence of step started
by taking image samples using a microscope, followed by
the segmentation and features extraction step using the CNN
based image processing and finalized by a classification
step using the Naive Bayes Algorithm. By using the CNN
based image processing, the microscopic image that contains
nuclei, cytoplasm and other features are segmented into 12
smaller bricks. In each segmented brick, the CNN based
interpretation on types of cancer was done according to the
features of grey level, color, texture, Law’s Texture Energy
(LTE), wavelet and Tamura’s features. This interpretation,
which was given in percentage, was then subjected to Naive
Bayes algorithm to classify whether the image indicates
the cells to be cancerous or not. In this regard, the CNN
algorithm may be applied as the basic principle of deep
learning-based cell identification. As reported by Kusumoto
et al. [123], the deep learning identification is more straight-
forward and achieves higher accuracies compared to the

other machine learning techniques without the requirement
of image labelling. The technical steps implemented by Naik
& Dixit [134] can be adopted for the detection and evaluation
of stem cells biosafety and bioefficacy risks.

In cancer research, the focus on early detection is important
to stop or slow down the progression of tumor growth. Similar
motivation can be applied in stem cells research, whereby,
machine learning approach can be used to observe stem cell
progression, especially during the expansion phase to eval-
uate the risk of biosafety and bioefficacy. To do this, there
should be an automated identification system based on cell
morphological images using the machine learning approach.
With the enhancement technology of CNN and deep learning
algorithm on cell image analysis, the nuclei-based analysis
seems promising. The nuclei-based analysis has been used
in cervical cancer and blood-related cancer screening. The
images can be obtained or captured using a light microscope
supported by a CCD camera in a standard size.

These images can be included as a dataset, which can
technically be classified into categories for labeling (such
as normal, abnormal, healthy or unhealthy). These datasets
can be applied for automated machine learning approach for
abnormality evaluation of stem cells. Hussain et al. [136]
has simultaneously conducted nuclei (nucleus) segmentation
and classification from the cervical cancer morphological
cell image using U-net architecture-based fully convolutional
neural network (FCN). Figure 5 shows the nuclei image
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FIGURE 5. Nuclei image processing and machine learning classification architecture using U-net architecture-based fully
convolutional neural network (FCN). Reproduced from Hussain et al. [136] with permission.

FIGURE 6. Nuclei image processing and machine learning classification architecture using
mean -shift clustering algorithm. Reproduced from Wang et al. [137] with permission.

processing and machine learning classification architecture
by Hussain et al. [136]. They adopted the shape representa-
tion model based on auto-encoders which act as a network
regularizer to increase the strength and robustness of the

FCN. The U-net architecture-based FCN framework was able
to predict the type of nucleus class either belonging to the
normal or abnormal classes from the cervical cancer smear
images. It worked by assigning pixel-wise labels to individual
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FIGURE 7. Nuclei image processing and machine learning classification architecture using
support vector machine (SVM) classifier module. Reproduced from Jyoti Rawat et. al [138] with
permission.

nuclei in a whole slide image, which enabled the identifica-
tion of multiple nuclei belonging to the same or different class
as individual distinct instances.

Wang et al. [137] conducted the nuclei segmentation
process on cervical cancer morphological cell image using
Mean-Shift clustering algorithm. Figure 6 shows the nuclei
image processing and machine learning classification archi-
tecture by Wang et al. [137]. The classification was carried
out based on the shape and textural features of the segmented
images. The color space and Gabor features were extracted
from the segmented image and put together to obtain a
better classification performance. The nuclei segmentation-
based analysis was also conducted by Rawat et. al [138]

on leukemia morphological cell image based on the global
thresholding and histogram equalization. The details of nuclei
image processing and machine learning classification archi-
tecture are described in Figure 7. The normal and abnormal
classes were classified using the support vector machine
(SVM) classifier. On the other hand, Negm et. al [139] con-
ducted the K-Means clustering-based segmentation process
on nucleus, cytoplasm and whole-cell of leukaemia morpho-
logical cell image to classify the normal and abnormal classes
based on the decision support system classification.

Figure 8 shows the architecture of nuclei image processing
and machine learning classification by Negm et al. [139].
As described in this figure, K-means clustering segmentation
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FIGURE 8. Nuclei image processing and machine learning classification architecture using K-Means clustering-based segmentation.
Reproduced from Negm et al. [139] with permission.

process started by segmenting the nuclei or whole cell and
the images were classified by a representation of three-color
components, RGB (red, green, blue). The histogram of the
color components indicates the contrast of the images. The
most contrasted images were selected for K-mean clustering

segmentation step. The K-means clustering-based segmenta-
tion was performed by partitioning the pre-processed image
into K-mean clusters, classifying and grouping items into k
groups (k is the number of pre-selected groups), minimizing
the sum of squared distances between the items and the
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TABLE 1. A summary of current machine learning application in stem cell research and cancer research.
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FIGURE 9. Overview of commonly used image processing-based machine learning techniques in cancer research which can be applied in stem cell
research for stem cells biosafety and bioefficacy assessment.

corresponding centroid used in grouping [140]. For example,
if the grouping items are; background, other non-target cells
and the cells to be extracted, thus, the K number is 3 (K1:
background, K2: other non-targeted cells and K3: cells to
be extracted). Through the K-Means algorithm, the desired
region of cells (nucleus, cytoplasm and whole-cell) can be
separated from the unwanted region (background and other
non-targeted cells). The segmented desired region can then
proceed for features extraction step, which based on geom-
etry, statistics, textures and size ratio. The analysis of these
features was then performed to differentiate the regions for
the classification step. Taken together, the techniques and
algorithms used in cancer research are recommended to be
used in stem cells research, particularly for biosafety and
bioefficacy evaluation as summarized in Figure 9. Taking
cues from the summary of the image processing pipeline in
Figure 9, we proposed a framework-specific for biosafety and
bioefficacy assessment, as depicted in Figure 10. Ideally, this
framework will be applicable to identify stem cells abnormal-
ity, particularly during the cell expansion phase. Following
the proven studies in the similar domain, supervised learning
will be employed where images with known normality level
will be used as a training data. By utilizing CNN based
image processing algorithm, the image of stem cells from
microscope was segmented into smaller sub-image of a single
cell that contains nuclei, cytoplasm and other features.

In each segmented sub-image, the CNN based interpre-
tation on the type of stem cell normality can be carried
out according to the cell and nuclei features as exemplified
previously [134]. The recommended features that should be
considered are size, shape, grey level, color, texture, Law’s
Texture Energy (LTE), wavelet and Tamura’s features. The
performance metric for the model will be based on the fea-
tures’ percentage of stem cell from each single cell sub-
image that showed normal or abnormal conditions. The sum
of average for each feature will then become a metric for
the classification using various models, such as Naive Bayes,
Decision Tree or Random Forest. The summary of current
machine learning application in stem cell research and cancer
cell research is shown in Table 1.

VI. THE CHALLENGES AND FUTURE OF PERSPECTIVES
In summary, the possibilities to adopt the aforementioned
technical steps in stem cell research, particularly for risk eval-
uation in biosafety and bioefficacy are immense. The over-
lapping aspects of stem cell biology and cancer cell biology
have led to the increase of large and highly complex datasets
being generated from biological experiments from quantify-
ingmolecular variables, such as gene, protein andmetabolites
associated with different cancer and stem cells types. This
has given insights into further understanding of the biolog-
ical systems. Taken together, their involvement in disease
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FIGURE 10. Image processing machine learning architecture proposed for stem cells research particularly for biosafety and
bioefficacy assessment using microscopy images of human adipose derived stem cells as an example.
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progression and mechanism can be realized using machine
learning and deep learning approaches. These approaches
are able to address the complexity and heterogeneity of
these datasets, providing new perspectives and generate novel
hypotheses, particularly with regards to biosafety and bio-
efficacy risks and concerns in stem cells therapy. However,
just as in any biomedical datasets, some of the challenges
identified that may occur in stem cells research datasets are;
1) data requirements, which require large, labeled data to
make deep learning successful, 2) overfitting in data training
may inaccurately reflect underlying relationships, particu-
larly in the heterogenous dataset and 3) interpretability of
deep learningmodels may require better interpretingmethods
of its output [97].

Although the size of these datasets is increasing, there is
still a need for massive, large datasets to reach meaningful
perspectives and outcomes. Just as any biological system,
data from stem cells biology can be incredibly complex with
thousands of variables from different facets of physiological
conditions. With suitable machine learning and deep learning
models, we can assess the aspects of biosafety and bioefficacy
of stem cells for clinical application. The generated model
could also be used to identify fundamental design principles
to create a suitable microenvironment for stem cells growth
without jeopardizing their mortality and without altering their
epigenetic components that may lead to cellular abnormality.
However, to create such large and well-annotated datasets
to study such complex network would require multi-omics
datasets, which can be very expensive.

One of the options that could be utilized to take on this
challenge is to use imaging data and analysis to characterize
morphological and phenotypic changes of stem cells. This
could be carried out by comparing the data from cancer and
stem cells in various conditions and environmental perturba-
tions as well as coupling it with deep learning algorithms. The
data obtained would present interesting input in addressing
biosafety and bioefficacy risks in stem cells therapy. Never-
theless, we still have a long way to go to uncover and harness-
ing the potential of stem cells for therapy and to play a bigger
role in the clinical settings. Machine learning approaches
offer another attractive alternative in understanding stem cells
biology as well as their biosafety and bioefficacy risks. With
the emerging developments of machine learning application,
there will be new interpretation in the model features (as
proposed in the aforementioned sections in this review). The
interpretation could give rise to new and meaningful inputs
or predictions from stem cell biological perspectives, which
will be a challenge that is worth to explore.
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