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ABSTRACT Glaucoma is an eye disease that damages the optic nerve head (ONH) causing loss of vision.
Therefore, early diagnosis and treatment are important in preventing possible blindness caused by glaucoma.
Its current identification is based on the manual segmentation of the optic cup and disc to examine the cup-
to-disc ratio (CDR). However, experts’ annotation of these regions is a rather difficult and tedious task.
Employing a convolutional neural network (CNN) for diagnosing glaucoma could be an alternative solution.
However, its performance depends on the availability of a large number of labeled samples for the training
phase. This paper presents an automatic glaucoma diagnosing framework based on three convolutional neural
network (CNN) models with different learning methods, and compares the performance of these models
with ophthalmologists. We use transfer and semi-supervised learning methods based on both labeled and
unlabeled data. First, the transfer learning model starts with a pre-trained CNN model that was trained
with non-medical data and fine-tunes it with our labeled data. Secondly, a semi-supervised framework is
developed and trained using both labeled and unlabeled data based on two different unsupervised methods.
The experimental results using two datasets, RIM-ONE and RIGA, demonstrate the efficacy of deep
learning models when applied to glaucoma, which is a promising step towards automated screening for
identifying individuals with early-stage glaucoma. Compared with annotations by two ophthalmologists, all
the presented models achieve better performances, demonstrating the capability of artificial intelligence in
diagnosing glaucoma with a high level of reliability.

INDEX TERMS Deep learning, semi-supervised learning, glaucoma, transfer learning, autoencoder.

I. INTRODUCTION
Glaucoma is one of the most widely recognized reasons
of permanent blindness in the world. This eye disease is
caused by changes in the structure of the retina, especially
in the area of the optic nerve head (ONH) [1]. Signs of
glaucoma may appear many years before patients recognize
any changes in their visual field. Therefore, an automated
screening system for diagnosing glaucoma is needed to facil-
itate the early diagnosis of the disease, as this is critical
in preventing its progression. Nowadays, ophthalmologists
around the world depend on the classic ophthalmoscope to
visually assess the condition of the retina, which is time-
consuming and barely reproducible. A fundus camera, which
is faster, cheaper and generally more bearable for patients
than other imaging modalities, is widely considered to be
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a viable option [2]. Modern fundus cameras with improved
technology may produce high-quality images that contain
useful information about the retinal structure.

The diagnosis of glaucoma could be achieved by investi-
gating the retinal structures in fundus images; for instance,
a pale OD which varies in color from orange to pink is a
sign of the disease. These changes could only be observed
by an expert examiner [3], however, it is a sensitive pro-
cedure and produces subjective judgments. One of the vital
signs in fundus images used to diagnose glaucoma is the
ratio of the size of the optic cup (OC) to the optic disc
(OD), and the structure of these two areas. Therefore, pre-
vious research proposed to calculate parameters related to
glaucoma, such as the cup-to-disc ratio (CDR), the inferior
superior nasal temporal (ISNT) rule, the disc damage like-
lihood scale (DDLS) and the glaucoma risk index (GRI) [4].
However, the clinical evaluation involving manually labelling
the cup and disc in each image is both labor-intense and
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time-consuming. Access to screening services is becoming
increasingly important, particularly with the increase of glau-
coma patients. To facilitate access to screening, previous
works presented automated computer systems to differentiate
between the screened patients who should be examined by an
ophthalmologist and those who should be asked for screening
one year later. Such automated systems can help in reducing
the workload for ophthalmologists while maintaining a high
sensitivity of diagnosing glaucoma patients.

Developing automated diagnostic techniques that diagnose
glaucoma is beneficial for the following reasons:

1) Manual examination of fundus images to diagnose
glaucoma is a costly and time-consuming process that
required extensively trained professionals.

2) Diagnosing glaucoma at its early stage requires fre-
quent and regular visits to the ophthalmologists, which
can be difficult in places that have shortage in ophthal-
mologists.

3) Assessing the effectiveness of treatment in preventing
the disease progression is one of the key role of such
automated diagnostic techniques.

Convolutional neural network (CNN) models have played
a vital role in many computer vision applications including
classification, detection and tracking. Such models can detect
distinctive features from input images without pre-processing
steps such as segmentation. However, developing these mod-
els and achieving the desired results requires large annotated
training sets. Instead of the intensive and expensive training
process, the pre-trained CNN models were used to solve
different tasks from those that they were originally trained for
[5]. These pre-trained models are usually developed using a
very large dataset for a specific task, and then transferred to
be used as a feature extractor for the problem at hand. The
extracted features are then used to train another classifier,
with a small dataset, for the new tasks. With limited amounts
of labeled data, semi-supervised approaches tackle this issue
by expanding the labeled data with a large number of unla-
beled data to improve the performance in various medical
imaging tasks, such as brain image segmentation [6], skin
cancer diagnosis [7], dental X-ray image segmentation [8]
and retina vessel segmentation [9]. With a limited amount of
labeled data, the performance can be improved by using the
unlabeled data to learn the feature representations. However,
the previous semi-supervised approaches for glaucoma anal-
ysis focused on handcrafted features. Thus, the unlabeled data
was not used for learning the features.

A. RELATED WORKS
Previous supervised deep learning methods have been suc-
cessfully presented in ophthalmology [10]–[13]. However,
most of these works trained their models using large but
private datasets. Fu et al. [14] presented a disc-aware
ensemble network based on an ensemble of four indepen-
dent networks whose predictions were fused to obtain the
final decision. Haleem et al. [15] proposed an approach

for automatic glaucoma detection based on Regional Image
Features Model (RIFM) that extract both geometric (e.g. ,
morphometric properties) and non-geometric based proper-
ties (e.g. , pixel appearance/intensity values, texture) from
images. These features were then classified using a support
vector machine (SVM) classifier. Chai et al. [16] devel-
oped a two-fold CNN for glaucoma detection. They fed the
entire image to the first CNN to segment the OD that was
fed to the second network. A concatenation of the CNN
models was used followed by a fully-connected layer for
the classification. Pal et al. [17] presented a multi-model
network consisting of an autoencoder and a CNN classifier
that shared the encoder framework. Zhao et al. [18] per-
formed an optic disc segmentation using a weakly-supervised
multi-task Learning model. Li et al. [19] detected glaucoma
using a CNN with attention mechanism, which forces the
network to pay more attention to a specific region of the
image. The attention mechanism achieved good results but
required extensive labeling by ophthalmologists to indicate
where the network should focus when reading the images.
Singh et al. [20] diagnoses the glaucoma by training multiple
classifiers, like support vector machine (SVM), K-nearest
neighbors (KNN), and Naive Bayes, using various features
including inferior, superior, nasal, and temporal region area,
and cup-to-disc ratio. They achieved good results but extract-
ing all these features is a time and effort-consuming.

The lack of annotated data encourages approaches that
extend the traditional supervised learning by using unlabeled
data that might be more available. In retinal imaging, few
works have followed this path by exploring semi-supervised
learning [21] and transfer learning [22]. Transfer learning can
be performed using one of two methods [5]. The first method
involves using the new images as an input to the pre-trained
network and using the outputs before the fully connected
layers as feature vectors to train a specific classifier for the
new domain. The second method performs backpropagation
to fine-tune the weights of the pre-trained model. Either all
the weights are fine-tuned or the weights of some of the
early layers are frozen and the weights of the later layers
are adjusted. This is based on the assumption that the earlier
layers of the network consist of generic features that can
be used by multiple applications ( e.g. , edges or texture
detectors), while the later layers contain more specific details
of the classes contained in the training dataset [5].

Different eye diseases other than glaucoma, e.g. , dia-
betic retinopathy (DR), have been well-studied using fundus
images and CNN with transfer learning [23], [24]. This is
because the DR has a large annotated dataset available for
researchers, which is not the case for the other diseases.
Some of the research that examines glaucoma using CNNs
on private datasets includes Chen et al. [25] and Chai et
al. [16]. Chen et al. [25] extracted the features from pre-
processed images and trained a CNN model on a large pri-
vate dataset for glaucoma detection. In contrast, Chai et
al. [16] developed a two-branch CNN model to analyze
the whole image in one branch and the OD region in the
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other branch. Their dataset contains around 3, 554 images.
Perdomo et al. [26] presented a three-stage deep learning
model for glaucoma detection using the publicly available
RIM-ONE dataset. During the first stage, a segmentation
of the OD and PC is performed using a deep CNN. The
second stage used another CNN to predict multiple features
including geometric, distance, axis and ratio features. Finally,
the third stage applies a multilayer neural network to detect
the glaucoma in the test images. Yu et al. [27] extended the
U-Net network with the pre-trained ResNet-34 model used
in the encoder path for OC and OD segmentation. More
recently, Hemelings et al. [28] combined the ResNet-50 with
the active learning technique to diagnose glaucoma from a
collected private dataset with 2072 images. Gour and Khanna
[29] proposed a dual CNN model based on the VGG-16
for classifying fundus images into eight ocular disease cat-
egories. The first CNN process the left eye, while the second
CNN process the right eye of the patient. Features from both
eyes are then concatenated for classification.

Instead of performing an expensive and dedicated training,
researchers have used CNNs that were pre-trained using large
datasets for specific problems and applied transfer learning to
extract discriminative features in different domains. In the
literature, transfer learning is used for glaucoma detection
by [5], [30]–[33]. Orlando et al. [5] analyzed the effect
of using different types of image pre-processing methods
on the performance of the pre-trained CNNs for glaucoma
detection. Two off-the-shelf CNNmodels known as OverFeat
and VGG-S were employed as feature extractors followed
by a regularized logistic regression model. Two small public
datasets were used for experiments, Drishti-GS and DRIVE,
which were manually annotated for detecting glaucoma.
Al-Bander et al. [30] proposed a framework for glaucoma
detection from fundus images using the publicly available
dataset RIM-ONE. A pre-trained CNN model (AlexNet) was
used as a feature extractor. These featureswere extracted from
the last layer located before the output layer and then used
to train SVM classifier. Their performance was affected by
their use of the AlexNet model which was reported to be the
least efficient model in the ILSVRC competition among the
other available models [34]. Furthermore, they did not use
any data augmentation techniques and did not perform fine-
tuning for the AlexNet. Cerentini et al. [31] used GoogleNet,
a pre-trained model, in two steps for feature extraction and
image classification. In the first step, GoogleNet was com-
bined with a sliding-window approach to detect the region of
interest (ROI). The second step used the extracted ROI to train
another GoogleNet for detecting glaucoma. They evaluated
the performance of their approach on the publicly available,
RIM-ONE, dataset. Their model uses only the ROI which
is not the only important area in the retina to detect glau-
coma. Gomez-Valverde et al. [35] compared the perofrmces
ofmultiple pre-trainedmodels for glaucoma detection includ-
ing: VGG-19, RerNet, GoogLeNet and DeNet. The best
performance was achieved by the VGG-19 on 2313 images
collected from Drishti-GS, RIM-ONE and a privet dataset.

Maheshwari et al. [33] diagnoses the glaucoma by re-training
the Alexnet with features extracted using the local binary
pattern (LBP) technique on the red, green and blue channels
of the fundus images.

Recently, Jammal et al. [32] compared the grading per-
formance of human vs ResNet model, which was further
tuned with a pairs of fundus images and OCT scans to detect
the retinal nerve fiber layer defect as a sign of glaucoma.
Sreng et al. [36] presented a two-stage glaucoma screening
system, of which the first stage segmented the optic disc
region, while the second one classify the images using pre-
trained models. The above models boosted their accuracy
by combining the CNN with other steps such as segmen-
tation, pre-processing, logistic regression or SVM. None of
these models presented a complete CNN model to extract the
underlying features of the fundus images, train the classifier
and predict the likelihood of glaucoma from the test images.
Moreover, none of thesemodels performed fine-tuning for the
pre-trained models.

Other researches [37], [38] presented promising results for
glaucoma analysis by adopting a large number of unlabeled
retinal images, which are more readily available than the
labeled ones. Sedai et al. [37] developed a semi-supervised
method to segment the OC with two autoencoders. The first
autoencoder is used to learn the features from the unlabeled
images. The second autoencoder uses the features learned by
the first autoencoder to detect glaucoma. Their model was
evaluated on a large private dataset. However, they only con-
sider the OC area to diagnose the glaucoma while there are
many signs of the disease that usually appear in different parts
of the retina. Bechar et al. [38] presented a semi-supervised
superpixel-by-superpixel OD and OC segmentation frame-
work using three steps. The first step involved pre-processing
the labeled and unlabeled data by applying the superpixel
method followed by manually annotating the regions at these
pixels. In the second step, features were extracted from the
annotated regions. In the final step, a semi-supervised model
was trained using a small number of labeled superpixels and
a large number of unlabeled superpixels. The experiment was
performed on the publicly available RIM-ONE dataset. These
two methods [37], [38] depend on segmentation for their
glaucoma detection, therefore, the performance is affected by
the accuracy of the segmentation. In addition, they ignore the
other important parts in the retina that usually hold signs of
the glaucoma.

B. DIAGNOSING GLAUCOMA USING DEEP LEARNING
Majority of the recent methods in diagnosing glaucoma start
with the segmentation of the region of interest, which can
be examined later to identify the disease. Therefore, manual
annotations and pre-processing steps are key parts of these
methods. In addition, none of the previously developed deep
learning models used the large number of unlabeled retinal
images, which are more readily available than the labeled
ones. This paper focuses on using deep convolutional neu-
ral networks (CNNs) for automated diagnosing glaucoma
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from retinal images. These algorithms would be valuable in
clinical evaluation of new treatments for glaucoma. Also,
these algorithms can be used to automatically and remotely
observe the progress of glaucoma in patients. Employing
automated systems in clinical practice require extensive and
regular evaluation [3]. One of our goals is to demonstrate that
automated systems outperforms human experts in diagnosing
glaucoma, which can help reduce the workload on ophthal-
mologists. Evaluation of these systems should be conducted
using independent and publicly available datasets so that
different research groups can compare the performance of
their algorithms using the same dataset. The performance
of human experts on the same dataset should also be avail-
able to evaluate the automated systems’ performance against
humans.

This paper is an extended version of our earlier work
published in [39], which presented a semi-supervised learn-
ing model for diagnosing glaucoma from fundus images. In
this paper, we present the performances of three different
comprehensive automated glaucoma classifying systems and
evaluate their performances on the multiple public datasets
and compare their performances against two human experts.
Ophthalmologists usually use other information in addition to
fundus imageswhen theymake their decision, but in this work
they were only provided with the fundus images to make a
fair comparison with the automated approach. These systems
are based on different deep learning techniques including
supervised and semi-supervised training:

• TCNN: Transfer Convolutional Neural Network
model which learns the signs of glaucoma by using an
off-the-shelf CNN and tunes it in the context of diagnos-
ing glaucoma with relatively a small size dataset.

• SSCNN: Semi-supervised Convolutional Neural Net-
work model with self-learning which trains a neural
network in a semi-supervised fashion in two stages [39].
The first stage uses the TCNN model as a glaucoma
diagnosing classifier. The second stage is a self-learning
method that is used to increase the training set with
samples from the unlabeled dataset, and hence improve
the performance of the pre-trained CNN. For each unla-
beled sample, the self-learning method generates what is
known as pseudo-label by selecting the class label with
the highest prediction probability and considers it as the
true label.

• SSCNN-DAE: Semi-supervised Convolutional Neu-
ral Network model with autoencoder presents a glau-
coma classifier based on a convolutional denoising
autoencoder (CNN-DAE) to extract discriminative fea-
tures and then use these features to train fully connected
layers in a supervised fashion. The CNN-DAE is used to
learn the discriminative features in fundus images from
the unlabeled data. Once the model is robust enough to
represent the fundus images, the training data from the
labeled set is then used to obtain the featuremaps that are
used later to train fully connected layers in a supervised

fashion. The resulting classifier is then evaluated using
the testing dataset.

The contributions of our paper are three-fold:
• We presented three convolutional neural networks for
diagnosing glaucoma from fundus images using three
learning methods (i.e., supervised, transfer, and semi-
supervised) chosen based on the availability of anno-
tated data.

• We conducted several experiments using two public
datasets to evaluate the performance of the presented
models. Compared with the performance of two human
experts, the presented model confirms the deep learning
ability to perform better than human experts for this task.

• We make our three models publicly available1 so that
other researchers and practitioners in the community
can easily build high performance disease diagnosing
models that can be further trained on their datasets using
our structure.

The remainder of the paper is organized as follows: the pro-
posed CNNmodels are introduced in Section II. Datasets and
the experimental setup are presented in Section III, followed
by results and discussion. Finally Section IV concludes the
paper.

II. CONVOLUTIONAL NEURAL NETWORK (CNN) MODELS
In this paper, the proposed models are based on CNNs.
All the developed CNN models contain convolutional layers
followed by fully connected layers. The output of the last
fully connected layers is used as input to a softmax classi-
fier for diagnosing glaucoma. The first model presented in
Section II-A utilizes transfer learning which involves using
a pre-trained CNN along with a limited-size labeled glau-
coma dataset. The second model presented in Section II-B
combines transfer learning (Section II-A) with a self-learning
technique to perform semi-supervised learning. The final
model in Section II-C combines a convolutional autoencoder
( unsupervised learning) with a supervised learning stage to
perform semi-supervised learning.

To make the paper self-contained, we start by defining the
symbols used in the following sections. The training dataset
X contains two parts: X = [L,U ] ∈ Rd×N , where L =
[x1, x2, . . . , xl] ∈ Rd×l refers to the labeled samples and
U = [xl+1, xl+2, . . . , xl+u] ∈ Rd×u refers to the unlabeled
samples.

A. TCNN: TRANSFER CONVOLUTIONAL NEURAL
NETWORK MODEL
We employ the VGG-16 model [40], which has been widely
adopted for transfer learning in medical image processing
tasks, including glaucoma diagnosis, and reported a good
performance in previous studies [29], [41]–[43]. It consists
of 16 layers where 13 convolution layers of size 3 × 3 are
stacked followed by five 2×2 max-pooling layers with stride

1Codes are available here: https://github.com/manal-
asdg/CNNs_medical.git
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FIGURE 1. The structure of the transfer CNN (TCNN) model for diagnosing
glaucoma. It consists of two stages: feature extraction using VGG-16 [40]
and fine-tuning using the fundus images.

of 2 to reduce the spatial dimensions. After each convolution
layer, a rectified linear unit (ReLU) activation function is
applied. Then, three fully connected layers are used where the
final layer has a softmax activation to produce the probabili-
ties for each class. The weights of this model are obtained and
used as input to our network, therefore, the full model (except
the fully connected layers) is used to extract discriminative
features.

Two stages of training are performed, as shown in Figure 1.
The first stage extracted the features from the layer immedi-
ately before the output layer. Thus, the top fully connected
layers and softmax layer were removed and new layers were
added while the remainder of the layers were frozen to stop
the weights from changing. The new layers consist of a flat
layer, two batch normalization layers and a softmax layer to
convert the output into two categories. For optimization, the
Adammethod [44] was used, which has the ability to perform
well even with minimal tuning [45].

The second training stage performs fine-tuning by unfreez-
ing and re-training the last convolutional block of the
VGG-16 repeatedly to make it more specific to our dataset.
The Adam optimizer was replaced at this stage by the
Stochastic Gradient Descent (SGD) that empirically achieves
better performance than Adam at this stage [45], [46]. This
takes advantage of the fast convergence of Adam at the begin-
ning of the training and later makes the model generalize
better by using SGD. The learning was performed using the
cross-entropy loss [47] on the softmax normalization score
defined as:

J = −
1
L

(
L∑
i=1

yi · log
(
ŷi
))

(1)

where yi is the ground-truth for sample xi, ŷi is the estimated
value and L is the size of the labeled samples.
In this model, data augmentation was used to overcome the

overfitting by artificially enlarging the set of training samples
with class-preserving transformations. This helps ‘produce’

FIGURE 2. The structure of the semi-supervised transfer learning
CNN (SSCNN) model for diagnosing glaucoma. It starts by using the TCNN
for feature extraction followed by the self-learning method to increase
the training set using the unlabeled data.

more training data, prevents overfitting and accounts for obvi-
ous invariances for the classification task at hand (e.g. , flip-
ping an image should not affect the existence of the disease)
[48]. In our experiment, four types of data augmentation were
employed: vertical shift, which randomly shifts the images up
and down using the nearest pixel to fill the blank; horizontal
shift, which randomly shifts the images left and right using
the nearest pixel to fill the blank; horizontal flip, which
randomly flips the image horizontally; and random zoom-
in of the image. These affine transformations are the most
effective when applied to fundus images since they do not
affect the signs of the disease in the image [25]. In addition,
they help themodel to have a better representation of the input
image since it views the images in many transformed views
including different scaling.

B. SSCNN: SEMI-SUPERVISED CONVOLUTIONAL NEURAL
NETWORK MODEL BASED ON SELF-LEARNING
We combined the TCNN (Section II-A) with the self-learning
to perform semi-supervised learning for diagnosing glau-
coma [39]. The training process of the proposed method
consisted of two stages, as shown in Figure 2. The first
stage transfers and fine-tunes the pre-trained CNN model to
learn the discriminative features of retinal images. The second
stage extends the updated CNN model with the self-learning
method to increase the training set by selecting the most
reliable samples from the unlabeled data.

To improve the robustness of the classifier, especially with
a limited-size labeled samples, it is necessary to expand the
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initial training set [49]. Thus, the self-learning method [50] is
employed to expand the initial training dataset L with samples
from the unlabeled set that have high confidence when clas-
sified with the model presented in Section II-A. The obtained
labels of these samples are called pseudo-labels. Adding them
to the training dataset is performed in an iterative manner by
modifying the classifier after each iteration and labeling the
samples in the remaining unlabeled set. Given two datasets
i.e., labeled data L and an unlabeled data U , the self-learning
process can be summarized as follows:

1) The unlabeled dataset U is firstly classified using the
pre-trained CNN model from Section II-A.

2) The prediction scores from step (1) are ordered and the
samples with the highest confidence scores U ′ ⊂ U ,
are added to L and dropped from U . As mentioned
above, the labels for the samples in U ′ are called
pseudo-labels.

3) The classifier is then re-trained by the new training set
L + U ′.

These steps are repeated until the algorithm converges. The
unlabeled samples that remain unclassified at the end of the
learning process are discarded because they are not reliable.

To avoid overfitting, increasing the size of the training set
by samples U ′ was performed with a normal to glaucoma
ratio which is the same as the distribution of labeled data [51].

The loss function in Eq 1, from the supervised learning,
is also used for the self-learning in this model. Finally, the
new glaucoma-specific classifier is evaluated with the testing
dataset.

C. SSCNN-DAE: SEMI-SUPERVISED CONVOLUTIONAL
NEURAL NETWORK MODEL BASED ON DENOISING
AUTOENCODER
We combined both unsupervised ( II-C1) and supervised ( II-
C2) learning to perform semi-supervised learning for diag-
nosing glaucoma. In both learning stages, we utilize convo-
lutional layers instead of the fully connected layers because
they provide stable latent representations at each network
level, which preserves the localization. The semi-supervised
learning consists of two stages as shown in Figure 3, and can
be summarized as follows:
1) Unsupervised learning is performed using a CNN

denoising autoencoder (CNN-DAE) to learn the repre-
sentative features from the unlabeled data.

2) The encoder part of the CNN-DAE is used to extract
features to perform supervised learning. The features
are used to train fully connected layers and build the
glaucoma-specific classifier.

The glaucoma-specific classifier is then evaluated using the
testing data from the labeled dataset. More details about each
stage are presented in the following sections.

1) UNSUPERVISED LEARNING
For the first stage of learning, we extended the standard
denoising autoencoder (DAE) with convolutional encoding

and decoding layers that share the weights between all input
locations and discover strong spatial correlations [52]. Previ-
ous studies have shown that this extension improve the DAE
performance in exploiting the image structures and detecting
discriminative features [53], [54].

To make the paper self-contained, we begin by reviewing
the classic autoencoders (AE), followed by the denoising
autoencoder (DAE), the CNN autoencoder (CNN-AE) and
finally the proposed convolutional denoising autoencoder
(CNN-DAE).

AUTOENCODERS (AE)
are used to learn functions that can be used to reconstruct the
inputs. These models are developed as a neural network with
a single hidden layer that contains activations extracted as the
new representation [55]. Mathematically, for a collection of
unlabeled dataU = xi, i ∈ [l+1, l+u], where l is the number
of the labeled samples and u is the number of the unlabeled
ones, the objective function of AE is defined as:

min
∑
i

D
(
x̂i, xi

)
s.t. hi = g (Wxi + b) ,

x̂i = f
(
W ′hi + b′

)
(2)

whereW , b,W ′, b′ are the parameters to be optimized, D is a
loss function, which can be a squared error or cross-entropy,
g and f are the encoder and decoder nonlinear functions, hi is
the learned representation; and x̂i is the reconstruction.

DENOISING AUTOENCODER (DAE)
extends the classic autoencoder by forcing the network to
reconstruct the input given its noisy version [56]. The idea is
that a robust network should be able to learn reconstructions
of the input even with noises, which are caused by the inter-
correlation between the features. Formally, given a predefined
noise distribution q(x̄|x), and a noisy version, x̄, of input x :
x̄ ∼ q(x̄|x) [55]. The objective function sums the expectations
over all the noisy versions:

min
∑
i

Eq(x̄i|xi)D
(
x̂i, xi

)
s.t. hi = g (Wx̄i + b) ,

x̂i = f
(
W ′hi + b′

)
(3)

where x̂i denotes the reconstruction calculated from the noisy
input x̄i.

CNN AUTOENCODER (CNN-AE)
extends the standard DAE architecture with convolutional
encoding and decoding layers. Although the architectures of
both the CNN-AE and DAE are similar, the CNN-AE is more
efficient because it allows the weights to be shared and it
preserves the locality of the 2D image.

CNN DENOISING AUTOENCODER (CNN-DAE)
In this model, we extended the DAE as a CNN denois-
ing autoencoder (CNN-DAE) for diagnosing glaucoma.
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FIGURE 3. The structure of the semi-supervised learning CNN (SSCNN-DAE) model for diagnosing glaucoma. Two stages are
performed: Unsupervised learning for feature extraction from the unlabeled data, followed by supervised learning to classify the
labeled data.

It extends the standard DAEwith convolutional encoding and
decoding layers [57]. Compared with the classical DAE, the
CNN-DAE is better suited to image processing. In addition,
it improves on the CNN-AE by distorting the input image
using noise, which makes it difficult to reconstruct the input.
For that, the autoencoder will be forced to learn the repre-
sentative features of the input image rather than just copying
it.

The SSCNN-DAE model is built with a 6-layer CNN
divided between the encoder and the decoder paths as illus-
trated in Figure 4. The encoder path contains three CNN
layers with noise injected into each layer including the input
layer, and the decoder contains three deconvolutional lay-
ers. Similar to [58], our model replaces the max-pooling
layers in the encoder path with strided convolutional layers
to downsample the feature space. Alternating 2 × 2 strided
convolutional layers instead of 1 × 1 was enough to reduce
the features space from preceding layers. The decoder path
mirrors the encoder path; therefore, it contains three CNN
layers with no upsampling layers. Constructing the original
image at the decoder path was achieved using transposed
convolution, which perform upsampling by swapping the
forward and backward operations of the convolution [59]. In
all layers, the rectified linear unit (ReLU) was applied as an
activation function. The Adam method [44] was used as our
optimizer to control the learning process [45].

Formally, let q(x̄|x) be a Gaussian noise with normal dis-
tribution, and x̄ be a noisy version of the unlabeled sample
x : x̄ ∼ q(x̄|x). The objective function calculated as the sum
of predictions over all the noisy versions:

min
∑
i

Eq(x̄i|xi)D
(
x̂i, xi

)
s.t. hi = g (W ∗ x̄i + b) ,

x̂i = f
(
W ′ ∗ hi + b′

)
(4)

FIGURE 4. The structure of the 6-layer CNN denoising autoencoder
(CNN-DAE) model, which is the first part of the the Semi-supervised
Convolutional Neural Network model with autoencoder (SSCNN-DAE).

where x̂i is the reconstructed version of the noisy input x̄i and
∗ is the convolution operation.

The Gaussian noise is first injected into the unlabeled data
to produce the noisy version which is then transformed to a
more abstract representation, x̄i, through the encoder. After
each decoding path, the cost is computed as the averaged
square error between the reconstructed output x̂i and the input
xi. The coefficients of the CNN-DAE are iteratively updated
until the reconstructed image retains the most important fea-
tures of the original image. The resulting encoder is used to
generate feature maps that are used to define a classifier for
the supervised learning in Section II-C2.

2) SUPERVISED LEARNING
Once the CNN-DAE is robust enough and the reconstruction
error is as small as possible, the labeled data is used to gener-
ate the feature maps. At this stage, the labeled data is divided
into a training set and a validation set. The training set is fed
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FIGURE 5. Structure of the CNN supervised learning, which is the second
part of the the Semi-supervised Convolutional Neural Network model
with autoencoder (SSCNN-DAE).

into the encoder path to generate the feature maps, which
are then used to train fully connected layers and obtain a
glaucoma-specific classifier. The predictions were performed
using a softmax layer based on the same loss function defined
in Eq 1. Only two fully connected layers were used, to avoid
overfitting, followed by a softmax layer that maps the output
into two categories. The structure of the supervised learning
stage is presented in Figure 5.

III. EXPERIMENTS
To evaluate the glaucoma diagnosing performance of our
proposed CNNmodels, we conducted experiments using two
publicly available datasets as follow:
• RIM-ONE [60], which was utilized to fine-tune and
evaluate TCNN model as well as to evaluate the
SSCNN and SSCNN-DAEmodels. It contains 455 high-
resolution retinal images where 255 images belong to
normal individuals and 200 images belong to glaucoma
patients.

• RIGA [61], which has been used as the unlabeled dataset
in the SSCNN and the SSCNN-DAE models. This
dataset consists of 750 retinal fundus images collected
from three resources as follows:
1) A subset of the MESSIDOR [62] dataset that con-

sists of 460 retinal images with a resolution of
2, 240× 1, 488 pixels.

2) The Bin Rushd Ophthalmic Center dataset that
contains 195 retinal images with a resolution of
2, 376× 1, 584 pixels.

3) The Magrabi Eye Center dataset that con-
tains 95 retinal images with a resolution of 2, 743×
1, 936 pixels.

The RIGA dataset was released by the University of
Michigan to evaluate their segmentation method for a
glaucoma diagnosing application. Almazroa et al. [61]
stated in their paper that the images belong to both
healthy and glaucoma eyes, however, the ground truth
was not provided. The images were cropped to be con-
sistent with the labeled training samples.

A. EVALUATION CRITERIA
We used the classification accuracy to evaluate the perfor-
mance of diagnosing glaucoma. The evaluation was based on
20%of the 455 labeled images. The achieved accuracy at each
epoch is plotted as a curve which is computed from sensitivity
(true positive rate) and specificity (true negative rate), defined
as:

Accuracy =
Tp + TN

TP + Fp + FN + TN
(5)

Sensitivity =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
(7)

where TP, TN , FP and FN are the number of true positives,
true negatives, false positives and false negatives, respec-
tively. The area under the curve (AUC) of the sensitivity and
specificity is also considered, because it is widely used for
binary classification especially for medical images. It is also
known as the receiver operation characteristic (ROC) curve
[63]. Sensitivity means the ability of the method to correctly
classify the image, while specificity is the inability of the
method to classify the image correctly.

The models’ performances were further assessed by com-
paring them with results obtained by two physicians. Specif-
ically, two ophthalmologists independently classified the
RIM-ONE 455 fundus images and their results were com-
paredwith the accuracies of the threemodels. For each image,
the ophthalmologists were askedwhether the presented image
belonged to glaucomatous or to healthy eyes.

B. EXPERIMENTAL SETUP
For implementation, an NVIDIA GTX 1080TI 11GB GPU
card with a 3584 CUDA parallel-processing core was used.
All models were developed using Keras API [64] which was
built on the top of the TensorFlow 2.0 [65].

For the transfer learning setup (Section II-A), the weights
of VGG-16 were obtained from the Keras GitHub.2 The
first stage of the training includes 20 iterations to train the
fully connected layers and the softmax layer. For the Adam
optimizer used the learning rate was set to 0.001. The second
stage of the training includes 50 iterations which are higher
than the initial training to allow the top convolutional layers to
detect more discriminative features. Performing fine-tuning
needs a steady training process with smaller learning rate
compared to the starting rate used in the first stage, otherwise
the extracted features at the first stage will be destroyed and
the optimization will destabilize [45]. Thus, the optimizer at
this stage was chosen to be SGD and with a small learning
rate set to 0.0001.

For the self-learning setup (Section II-B), the last learning
rate and optimizer method from the TCNN model were used.
The subsetU ′, which represents the pseudo-labels, containsA
samples with the highest scores as normal and B samples with

2https://github.com/fchollet
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the highest scores as glaucoma. The ratio of A : B is chosen
to be 1 : 1.3, which is the same as the ratio for the labeled
data. The initial sizes of A and B were chosen to be 30 and
39 samples, respectively. With more iterations, the classifier
performance improves, thus, these two sizes were increased
during the learning process iteratively by 30 + 3 × i, where
the number 30 is the initial size of A and i is the number of
iterations. The number of epochs was firstly selected to be
12 to be suitable for the limited-size labeled dataset and then
increased in an iterative manner by epoch+ 4× i [49], where
i represents the iterations number.

In the last CNNmodel, all the unlabeled samples were used
to train the autoencoder. The images were resized to 200 ×
200. The strides and the size of the convolutional kernel in
each layer were set to 2 and 3× 3, respectively. The number
of convolutional kernels in the 1st, 2nd and 3rd convolutional
layers were 32, 16 and 8, respectively. The l2 regularizer was
used in the training process. The learning rate for the Adam
optimizer was set to 0.0001, the batch size to 40 and the epoch
to 1600. The injected noise into the input to the encoder was
chosen to be Gaussian noise with µ = 0 and σ = 1. In its
supervised learning stage, the labeled images were divided
into 80% for training and 20% for validation. All the labeled
images were fed into the encoder path of the CNN-DAE to
extract the feature maps that were later used to train the fully
connected layers in a supervised fashion. Two fully connected
layers were used with 512 nodes at the first layer and two
nodes representing the output at the second layer. The same
regularizer, optimizer and learning rate that were used for the
unsupervised learning were used. The batch size was set to
40 and the epoch to 100.

C. EXPERIMENTAL RESULTS
We performed various types of comparisons to evaluate the
presented models. The first comparison in Section III-C1
was performed to compare the effectiveness of the proposed
models using RIM-ONE dataset with two experts. The second
comparison in Section III-C2 was performed to compare the
presented performances with the related methods that were
reviewed in Section I-A. The purpose of this comparison is
to position our results with respect to the recent state-of-the-
art techniques in the context of glaucoma diagnosing using
deep learning. The third comparison in Section III-C3 aims
to demonstrate the effectiveness of the self-learning method
in the SSCNN, by comparing it with another method. The last
comparison in Section III-C4 was performed to compare the
effectiveness of using the CNN-DAE unsupervised learning
in the SSCNN-DAE with that when using different types of
autoencoder architectures.

1) THE PERFORMANCES OF THE MODELS
After fine-tuning, training the TCNNmodel and also expand-
ing the initial labeled training set using the SSCNN and
SSCNN-DAE, all three models were evaluated using the
same testing set. The results are presented in Figure 6. It
is clear that the semi-supervised learning models performed

FIGURE 6. Comparing the classification accuracy of the presented deep
learning models, where the semi-supervised learning models performed
better than the transfer learning one.

better than the transfer learning one. The SSCNN and
SSCNN-DAE models improved their classification accura-
cies by expanding their knowledge about the glaucoma by
utilizing the information contained in the unlabeled samples.
The best performance was achieved by the SSCNN-DAE
model. This is because the CNN-DAE, with its added noise
and convolutional layers, was more able to learn the discrim-
inating features of the glaucoma from the unlabeled samples
and produce a more accurate classifier than the other two
models. The lowest performance was achieved by the TCNN
model, because the transfer learning and the fine-tuning of
the pre-trained network layers utilized a small set of labeled
samples. Note that the curves for the three models have slight
fluctuations, but they are nevertheless within a reasonable
range. Almost all neural networks are trained with different
forms of stochastic gradient decent and batch sizes, which
determines how many samples are randomly used to make
one update to the model parameters [66]. If we use all the
samples for each update, we should see more stable curves.

Another performance measurement, the ROC, is presented
in Figure 7. According to [67], an AUC value above 90%
indicates an excellent diagnostic test, from 80% to 90% a
good diagnostic test, from 70% to 80% a fair diagnostic test,
from 60% to 70% a poor diagnostic test, and below 60%
indicates a failed diagnostic test. On this basis, all presented
models including; TCNN with AUC = 92.3%, SSCNN with
AUC = 93.6% and SSCNN-DAE with AUC = 95% are
effective in glaucoma diagnostic task.

We also compared the performance of the CNNmodels and
that of two certified ophthalmologists in terms of glaucoma
classification. Both ophthalmologists have been in practice
for 17-20 years with experience in diagnosing and treating
eye diseases, including vision loss, detached retinas, cataracts
and glaucoma. The TCNN achieves 91.5%, the SSCNN
achieves 92.4% and the SSCNN-DAE achieves 93.8% overall
accuracy, while the two experts attain 59.2% and 55.4.0%
accuracy. It is evident that the three deep learning CNN
models outperform the performances of both ophthalmolo-
gists with clear margins. The margins were even wider for
the semi-supervised learning models where the unlabeled
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FIGURE 7. Comparing the ROC curves of the presented deep learning
models with AUC=92.3% for TCNN, AUC=93.6% for SSCNN and AUC=95%
for the SSCNN-DAE.

samples were used to automatically learn the retinal struc-
tures from the fundus images without any segmentations or
pre-processing. Instead of the tedious process used by experts
in a clinic to diagnose glaucoma, the CNNmodels were better
able to capture the characteristics of glaucoma efficiently.
This is an extremely promising outcome for the deployment
of such models in clinical environments and to assess their
use in the early diagnosing of glaucoma.

The obtained results are promising since the proposed
models do not use any prior knowledge about the retinal
image features such as OD or blood vessels structure. In
addition, they are computationally simple since extracting
the features from the region of interest is done automatically
by the CNN from the images themselves without requiring
any manual feature extraction. We evaluated the running time
for all three models (i.e.TCNN, SSCNN and SSCNN-DAE),
which include the training time per batch on a single NVIDIA
GPUwith 11GBmemory. Note that, the testing time is around
1/3 of the training time [68]. All layers, consisting of convo-
lution, pooling, fully connected and others, are included in
the actual running time. The TCNN takes about 0.52 second
for training per batch, with 1.5 days training in total. While,
the SSCNN-DAE takes around 0.61 second for training per
batch with 2 days training in total. Gradually increasing the
training set in the SSCNN using the self-learning method
increases the time to around 0.68 second for training per
batch, with 2.5 days training in total. The achieved results,
within these training times, validate the effectiveness of the
presented models which can be integrated into a computer-
aided diagnosis system and large scale screening of retinal
images. Such a system can also be used to monitor the pro-
gression of disease under therapy in longitudinal studies.

2) COMPARISON WITH RELATED METHODS
An extensive comparison with the previous related methods
is not practical because few studies have used the semi-
supervised learning concept for diagnosing glaucoma, and
also because most of the existing studies used their own
private datasets. Therefore, we performed the following
comparisons:

• To evaluate the performance of our two semi-supervised
models against the related works, we compared with the
only study that we could find by Bechar et al. [38] that
used a semi-supervised learning model and evaluated it
using RIM-ONE.

• To evaluate the performance of our transfer model
against the related works, we compared it with the two
studies by Al-Bander et al. [30] and Cerentini et al. [31]
whichwere evaluated on RIM-ONE using transfer learn-
ing CNN.

We also compare our results with the models presented by
Perdomo et al. [26] which use a supervised multi-stage CNN
to diagnose glaucoma in the RIM-ONE dataset.

The results are presented in Table 1 and illustrate that our
three models outperformed the other approaches by clear
margins. The results reveal that the SSCNN-DAE model
achieves the best performance. This was due to its ability
to leverage the information from unlabeled samples by first
learning the discriminative features using the CNN-DAE and
then training simple fully connected layers with the gener-
ated features to find the disease. The SSCNN achieved the
second best performance after the SSCNN-DAE. This was
due to increasing the training set in an iterative fashion which
causes the accuracy of the CNN model to increase gradually.
Both our semi-supervised models outperformed the semi-
supervised one presented by Bechar et al. [38]. Bechar et
al. [38] focused only on the segmentation of the OD and
OC to detect the disease, while SSCNN-DAE and SSCNN
learned the glaucoma features from the entire structure of
the fundus images. The TCNN model achieved the third best
performance, outperforming the other related approaches by
a clear margin. This is due to the fine-tuning of the weights
of the pre-trained network that makes the later layers more
relevant to the details in our dataset.

The results also demonstrate that the supervised methods
[30], [31], even with transfer learning, are less accurate than
all our presented models because they did not perform any
fine-tuning of the pre-trained network layers. On the other
hand, the supervised learning in [26] performed better than
the transfer learning methods since it relies on detecting the
disease from pre-extracted features. However, fine-tuning the
pre-trained network layers, iteratively increasing the training
set using unlabeled samples, and finally learning the distinc-
tive features from the unlabeled data using the autoencoder
increase the classification accuracies of our models.

3) THE EFFECTIVENESS OF THE SELF-LEARNING METHOD
The self-learning method was utilized in the SSCNN model
to extend the training set iteratively. At each iteration, the
predicted scores for the unlabeled samples were ordered by
the self-learning method and the ones with the highest con-
fidence were chosen to increase the training set. To show
the effectiveness of the self-learning method, we compared it
against the random selection method. At each iteration in the
random selection, a fixed number of the unlabeled samples
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TABLE 1. Comparison of the proposed glaucoma models’ results (TCNN,
SSCNN and SSCNN-DAE) with related methods, n/a means not available.

FIGURE 8. Comparing the performance of self-learning and the
performance of random selection. The classification accuracies of these
two methods are calculated per iteration.

were randomly chosen and the highest predicted class for
each sample was selected as the true label. The classification
accuracies of these two methods are calculated per iteration
and presented in Figure 8. Clearly, the self-learning method
performed better than the random selection method. Thus,
this proves the efficacy of the self-learningmethod in utilizing
the unlabeled samples.

4) THE EFFECTIVENESS OF THE CNN-DAE
The CNN-DAE method was used in the SSCNN-DAE model
to generate representative feature maps for glaucoma from
unlabeled data. These maps were then used to train fully
connected layers as a glaucoma-specific classifier. To demon-
strate the effectiveness of the CNN-DAE method, we com-
pared it with the other unsupervised methods reviewed in
Section II-C1, including autoencoders (AE), the denoising
autoencoder (DAE) and the CNN autoencoder (CNN-AE).
For each of these models, the autoencoders were used to learn
the feature maps from the unlabeled data. These feature maps
were then extracted from the labeled data and used to train the
fully connected layers as a glaucoma-specific classifier. The
same setup described in Section III-B was used for all these
models.

The classification performance results are presented in
Figure 9. The results highlight that the CNN-DAE method
performed better than the other unsupervised methods.
The DAE outperformed the AE because it corrupted the input
with random noise at the training stage, which helped to learn

FIGURE 9. Evaluating the CNN-DAE against other unsupervised learning
architectures, including autoencoders (AE), the denoising
autoencoder (DAE) and the CNN autoencoder (CNN-AE).

more noise-resistant features. However, the CNN-AE outper-
formed both the DAE and the AE because its convolution
structure helped the model to share weights and preserve the
localization of features, thus preserving the spatial informa-
tion of the input data. Therefore, combining both the DAE
and the convolution structure helps our model to learn more
robust and abstract features, which improves the performance
of learning the representation.

IV. CONCLUSION
This paper presented an automatic glaucoma diagnosing
framework based on convolutional neural network (CNN)
models with different learning methods, and compared
their performances with the performance of trained
ophthalmologists. We have presented transfer and semi-
supervised learning methods using both labeled and unla-
beled data. The transfer learning model is based on CNN
pre-trained with non-medical data and fine-tuned using
domain specific labeled data. The semi-supervised models
were constructed based on two different approaches and
trained using both labeled and unlabeled data. Unlike the pre-
vious works where the optic disc features were handcrafted,
the presented models automatically extract the key features of
the disease from raw images without any enhancement or pre-
processing steps. The experimental results on the RIM-ONE
dataset demonstrated the efficacy of deep learning models
when applied to glaucoma, which is clinically very significant
as it helps to identify individuals with early-stage glaucoma.

Making improvements to generalize the models to diag-
nose more eye diseases is part of the authors’ ongoing
research. We believe, in addition to glaucoma, the diagnosis
of other diseases from retinal images can benefit from the
presented models, including for example diabetic retinopa-
thy (DR) and age-relatedmacular degeneration (AMD).More
importantly, these models could be beneficial in not only
assisting diagnosis, but also in classifying the severity of a
specific retinal disease.
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