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ABSTRACT Orbital perturbations caused by the space environment will induce deviations compared
with the prescribed motion trajectory or dynamic performance of the tethered satellite system (TSS).
To comprehensively investigate the effects of the orbital perturbations on the TSS, a precise variable-length
element that can describe the large deformation and flexibility of the tether is adopted in this paper to predict
the deployment dynamics considering orbital perturbations, including atmospheric drag, solar pressure,
lunisolar gravitation, and J2 perturbation. To this end, the variable-length element using arbitrary Lagrangian-
Eulerian (ALE) description in the framework of absolute nodal coordinate formulation (ANCF) is developed
firstly. Subsequently, the dynamic governing equations for the TSS are established in the context of ANCF
with the employment of ANCF reference node (ANCF-RN). Effects of orbital perturbations including
atmospheric drag, solar pressure, lunisolar gravity and J2 perturbation on the dynamics of an optimal
deployment are analyzed numerically. It is shown that the orbital perturbations except the J2 perturbation
will induce the out-of-plane motion of the TSS. Additionally, the tether tension is less affected by the orbital
perturbations. By contrast, the lunisolar gravitation will induce a deviation on the motion path of satellite,
which should be considered in the design phase of the TSS.

INDEX TERMS Tethered satellite system, orbital perturbations, ANCF-ALE, Gauss pseudo-spectral
method.

I. INTRODUCTION
Recent decades, increasing attentions have been paid to the
tethered satellite system (TSS) with respect to tether dynam-
ics [1], satellite attitude stabilization [2], control strategy [3].
With two ormore satellites connected together with the tether,
the TSS has wide applications in artificial gravity [4], deep
space observation [5], orbital transferring [6], space debris
retrieval [7], and so on. Commonly, the satellites of in the TSS
system are deployed by a tether [8], which is under the control
of a deployment mechanism. For the reason that the tether is
thin and is weak to resistance in bending and torsional defor-
mation [9], complex dynamic behaviors could be appeared
in the phase of deployment when external perturbation was
considered [10]. Being a crucial component for the TSS,
dynamics modelling of the tether is fundamental to accurately
predict the deployment dynamics of the TSS. Over the past
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decades, several modes of tether have been proposed, such
as the rigid rod model [11], lumped mass model [12], spring
mass model [13], and finite element [14], to provide access
to dynamic analysis and controller design. For instance, the
dumbbell model was adopted to research the deployment
dynamics in a low-eccentricity orbit using adaptive sliding
mode controller [15]. Ma and Sun [16] proposed an adaptive
sliding mode control law based on the rigid model that can
deploy the satellite with smaller overshoot of the in-plane
angle.

Space environment would induce an undesired influence
on the dynamics of TSS deployment [17]. Numerous inves-
tigations have been performed by employing the aforemen-
tioned modes of the tether. Using the rigid rod model, effect
of the atmospheric drag perturbation on a tether-assisted
deorbit system was investigated [18], which indicated that
the atmospheric drag perturbation would induce offset of
the deployment track to a certain extent. A linear stabil-
ity analysis on a triple-mass TSS in was also exhibited
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by Razzaghi and Assadian [19]. Based on the rod model,
Wu et al. [20] developed a linearized relative motion model
of the TSS considering the J2 perturbation, and the dynamics
of a fuel-optimal deployment was discussed. On the basis
of the lumped mass model, Yu and Jin [21] investigated the
effect of J2 perturbation and thermal effect, which indicated
that the effect of J2 perturbation depends on the magnitude
of sliding friction. Further, considering the space environ-
ment including the J2 perturbation, the atmospheric drag, and
solar pressure, an analytical control low of the tether was
presented [22]. Attitude stabilization of the satellite during
flexible tether deployment that taking account of the J2 per-
turbation forces was investigated [2].

However, difficulties are encountered in precise descrip-
tion of large deformation of tether with the adoption of
preceding models. In the premise of available computation
capacity, precise mechanics model of the tether is indispens-
able for the performance evaluation of the TSS. Recently,
the absolute node coordinate formulation(ANCF) [23] was
shown advantageous in describing large deformation, which
has been utilized in a wide range of applications related
to large scale motion containing flexible components [24].
In terms of simulation on variable-length body, two method-
ologies were developed. One is the variable-domain finite
element model (VFE) [25], and the other is the arbitrary
Lagrangian-Eulerian description in the context of the ANCF
(ANCF-ALE) [26]. Also, a thin variable length plate element
of ANCF-ALE description was developed in [27] that was
applied to a topology optimization of the flexible multi-
body systems. Luo et al. [28] investigated the dynamics of
a tethered satellite formation under combination of a linear
piecewise deployment and an applied jet force. In this paper,
a variable-length element that combines arbitrary Lagrangian
and Eulerian description in the framework of ANCF is
adopted to take the length variation and large deformation of
the tether into account. For the ANCF-ALE variable-length
element, additional material coordinates are introduced to
represent the mass flow at the boundary of the tether. Further-
more, when the mass flow at the boundary node is vanished,
the ANCF-ALE variable-length element degenerates to a
conventional ANCF element.

However, few studies have been devoted to researching
the effects of orbital perturbations on deployment dynamics
using the ANCF-ALE variable-length element, which will
be addressed in this paper in the condition of an optimal
deployed trajectory. A variable-length element to describe
length variation of the tether is developed firstly, and an
optimal trajectory of the tether velocity is programmed to
take practical constraints into account. After that orbital per-
turbations including the lunisolar gravitation, to which less
attention has been paid in literatures, will also be considered
in this paper to investigate the effects on the dynamics of the
optimal deployment of the TSS.

This paper is organized as follows. Section 2 derives
the dynamic governing equations of the TSS using the
variable-length tether element and formulas of the orbital

perturbations are presented. In section 3, effects of the orbit
perturbations on the dynamics of an optimal deployment
is discussed. Finally, we conclude the presented work in
section 4.

II. DYNAMIC EQUATIONS OF TTS
The TSS in a Kepler circular orbit is schematically illustrated
in Fig.1, which comprises of a master satellite denoted as
S1 and a sub-satellite denoted as S2. To describe the motion
of the TSS system, the global coordinate frame O1XYZ and
the orbital coordinate frame O2xyz are introduced, respec-
tively. As to the geocentric inertial coordinate frame O1XYZ ,
the O1X axis is directed toward the ascending node, and the
O1Z coincides with the rotating axis of the earth. The axis
O2x ofO2xyz points to the flight direction and theO2z directs
toward the earth’s center. The axes O1Y and O2y can be
acquired by the right-hand rule. Therefore, the position of the
TSS can be determined by the in-plane angle θ and the out-
of-plane angle ϕ.

FIGURE 1. Schematic of the TSS.

A. DYNAMIC EQUATIONS OF VARIABLE-LENGTH TETHER
Differing from the conventional ANCF elements that adopt
vectors of the positions and the slopes as the node
coordinates, additional material coordinates are introduced
as the generalized coordinates in the ANCF-ALE ele-
ments [27], [28]. As shown in Fig.2, the generalized coor-
dinates of a variable-length element are defined as

q = [qTe qTl ]
T (1)

where qe =
[
rT1 rT1,x rT2 rT2,x

]T
is the vector of ANCF

element coordinates, in which ri(i = 1, 2) denote the vector
of global position vector of the nodes and ri,x = ∂r/∂x rep-
resents the vector of position gradient coordinates obtained
by differentiation with respect to the local coordinate x. ql =
[l1 l2]T is the vector of local material coordinates to rep-
resent length variation of the tether. Due to this description,
the mass stream going in or out at the node can be described
by the derivative of ql with respect to time q̇l =

[
l̇1 l̇2

]T,
detailly, if l̇i > 0(i = 1, 2) the length of the element will be
extended.

Thus, the global position vector of an arbitrary particle in
the tether element can be expressed as

r = Neqe (2)
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FIGURE 2. Variable-length element.

where Ne is the shape function matrix, which can be formu-
lated as

Ne = [N1I3×3 N2I3×3 N3I3×3 N4I3×3] (3)

in which the entries Ni(i =1,2,3,4) are given below
N1 = (ξ − 1)2(ξ + 2)/4
N2 = l(ξ − 1)2(ξ + 1)/8
N3 = (ξ + 1)2(−ξ + 2)/4
N4 = l/8(ξ + 1)2(ξ − 1)

(4)

where ξ = 2l−l1−l2
l2−l1

l1 ≤ l ≤ l2 and l = l2 − l1.
According to the Eq.(2), velocity vector and acceleration

vector of the arbitrary particle on the element can be acquired
by derivation with respect to time, respectively

ṙ = Ṅeqe + Neq̇e
r̈ = N̈eqe + 2Ṅeq̇e + Neq̈e (5)

in which we have the following formulations

Ṅe =
∂Ne

∂l1
l̇1 +

∂Ne

∂l2
l̇2

N̈e =
∂Ne

∂l1
l̈1 +

∂2Ne

∂2l1
l̇21 + 2

∂2Ne

∂l1∂l2
l̇1 l̇2 +

∂2Ne

∂2l2
l̇22 +

∂Ne

∂l2
l̈2

(6)

Thus, Eq. (5) can be transformed into a compact form and is
expressed as

ṙ = Nq̇

r̈ = Nq̈+ r̈l (7)

where N =
[
Ne Ne,l1qe Ne,l2qe

]
denote the extended

shape function matrix. Ne,li (i = 1, 2) denote ∂Ne/∂li. r̈l is
the additional inertial item that can be clarified as

r̈l = 2
(
Ne,l1 l̇1 + Ne,l2 l̇2

)
q̇e

+

(
Ne,l1l1 l̇

2
1 + 2Ne,l1l2 l̇1 l̇2 + Ne,l2l2 l̇

2
2

)
qe (8)

where Ne,lilj (i, j = 1, 2) denote ∂Ne
∂li∂lj

.
Herein the D’Alembert’s principle is used to derive

the motion governing equations due to its application in

time-varying system. For the variable-length tether element
of length l, the total virtual work done by all external forces
and inertial forces in an arbitrary virtual displacement should
be vanished∫ l2

l1
δrT

(
Ff + Fe + Fd − ρAr̈

)
dl = 0 (9)

where Ff denote the external perturbation forces and Fe is
the elastic force, Fd the damping force that constrained by
the linear viscoelasticity law [29]. ρ and A are the density
and cross-sectional area of the tether element, respectively.

Items in Eq.(9) can be formulated elaborately as∫ l2

l1
δrTFf dl

= δqT
le
2

∫ 1

−1
NTFf dξ∫ l2

l1
δrT (Fe + Fd ) dl

= −δqT
le
2

∫ 1

−1

[(
∂ε

∂q

)T

EA(ε+cε̇)+
(
∂κ

∂q

)T

EI (κ+cκ̇)

]

×dξ
∫ l2

l1
δrT(−ρA

..
r)dl = −δqT

le
2

∫ 1

−1
ρANT ..r dξ (10)

where c is the coefficient of damping, E and I are the mod-
ulus of elasticity and second moment of the cross-sectional
area, respectively. The axial strain ε and the curvature of
the element can be calculated with the following expression,
respectively

ε =
1
2

(
rT,lr,l − 1

)
κ =

∥∥r,l × r,ll
∥∥∥∥r,l∥∥3 (11)

Due to the arbitrary property of δrT in Eq.(9), the dynamic
equations of the element can be derived

Meq̈+Qi +Qe +Qf = 0 (12)

in which

Me =
le
2

∫ 1

−1
ρANTNdξ

Qi =
le
2

∫ 1

−1
ρANTr̈ldξ

Qe =
le
2

∫ 1

−1

[(
∂ε

∂q

)T

EA(ε+cε̇)+
(
∂κ

∂q

)T

EI (κ+cκ̇)

]
dξ

Qf = −
le
2

∫ 1

−1
NTFf dξ (13)

whereMe is the time-dependent mass matrix of the element,
Qi is the additional inertial force resulted from time-varying
of material coordinates.Qe denotes the generalized fore asso-
ciated with elastic deformation and damping, and Qf is the
generalized external forces.
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Considering a long variable-length tether discretized with
N nodes, which is assembled with two length time-varying
element attached on the tether boundary, and N -3 internal
elements with constant length. Thus, the dynamic governing
equations of a tether can be obtained by assembling all the
tether elements with inter-connectivity conditions

Mt q̈t +Qt = 0 (14)

where qt =
[
rT1 rT1,l rT2 rT2,l . . . rTN rTN ,l l1 l2

]
is the vector of generalized coordinates of the tether, Mt and
Qt are the corresponding mass matrix and generalized force
vector of the tether. It is noted that excessively long or short
lengths of the tether variable-length element would reduce the
accuracy of the numerical result. Therefore, an operation of
inserting or removing nodes is introduced to the boundary
element. When the length of the element is longer than the
givenmaxim length, new nodes are inserted into the boundary
element. Similarly, when the length of the element is shorter
than the given minimum length, the nodes inside the element
are removed. More description of the procedure for nodes
inserting or removal can refer to [26].

B. FORMULATIONS OF ORBITAL PERTURBATIONS
The J2 perturbation is resulted from the irregular shape of the
earth [30], the gravitational acceleration in this case can be
written as

g = −
µE

|rs|2

[
1−

R2E
|rs|2

J2P2(sinφ)

]
rs
|rs|

(15)

where µE = 3.986× 1014m3/s2 is the gravitational constant
of the Earth. RE = 6378 km denotes Earth’s equatorial radius
and J2 = 1.0826×10−3 is the harmonic coefficient. P2 means
the Legendre polynomials with order 2, and φ is the geocen-
tric latitude. rs denotes the position vector of the satellites
with respect to Geocentric inertial frame.

It is mentioned that under the condition of ignoring J2
item, Eq. (15) will degenerate into the regular spherical grav-
itational perturbation of the earth, which is the case of no
perturbation considered in this paper.

Formulation of the atmospheric drag force can be
expressed straightly as follows

Fd = −
1
2
ρCDSvr |vr | (16)

where CD is the drag coefficient and S the frontal area of the
satellites. vr is the relative velocity of satellites to the atmo-
sphere, which can be obtained by the following expression
under the assumption that the atmosphere rotates with the
earth

vr = vs − ωE × rs (17)

where vs and rs are the inertial velocity vector and position
vector of the satellites, respectively.ωE is the angular velocity
of the earth.

FIGURE 3. ANCF-RN description.

The perturbing force on the satellites due to the radiation
pressure can be formulated as

F = −ϑPSRCRAscû (18)

where PSR = 4.56µPa denotes the solar radiation pressure.
Asc is the absorbing area of the satellites. ϑ is the shadow
function with value 0 or 1, in which ϑ = 1 represents the
satellites in the earth’s shadow, otherwise ϑ = 0. CR is the
radiation pressure that varies from 1 and 2. û is the unit vector
pointing toward the sun from the satellite.

The perpetuating acceleration induced by the lunisolar
gravitation is expressed as

p∗ = µ∗

(
r3
∗/s

r3
∗/s

−
r∗
r3∗

)
(19)

where the symbol ∗ = m, o denotes the moon or the sun,
respectively. µ∗ denote the gravitational parameter for the
moon µm = 4903km3/s2 and µs = 132.712(109)km3/s2 for
the sun. r∗ is the position vector of the moon or sun relative to
the earth and the r∗/s means the position of the moon or sun
relative to the satellite. Detailed information for the inertial
position vector r∗ can be referred to [31].

C. DYNAMIC EQUATIONS OF TSS
Dynamic equations of the TSS can be obtained with the
employment of the ANCF-RN [32], in which the rigid body
was described in the frame work of ANCFmesh. As shown in
Fig.3, the coordinates of a three-dimensional ANCF-RN are
defined as

qk =
[
rTk rTk,x r

T
k,y r

T
k,z

]
(20)

where rk is the position vector of node k, rk,x , rk,y, rk,z are
vectors parallel to the axes of ANCF-RN local coordinate
system, respectively. Additionally, following six constraints
are added to describe the rigid motion of the satellites{∥∥rk,x∥∥ = 1,

∥∥rk,y∥∥ = 1,
∥∥rk,z∥∥ = 1

rk,x · rk,y = 0, rk,x · rk,y = 0, rk,y · rk,z = 0
(21)
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Thus, the position vector of an arbitrary point on the satellite
can be derived as

rp = rk + rkr (22)

where rkr is the local position vector and can be formulated
as

rkr = [rk,xrk,yrk,z][xyz]T (23)

where (x, y, z) is the coordinates of the local position of the
arbitrary point on the rigid body.

Substitute Eq.(23) into Eq.(22), Eq.(22) can be recast as

rp = rk + [rk,xrk,yrk,z][xyz]T

= Srqk (24)

where Sr is the shape function of the reference node.
The constant symmetrical mass matrix of the ANCF refer-

ence node can be obtained by

Mr =

∫
Vr
ρrSTr SrdV (25)

where ρr and Vr are the material density and spatial domain
of the rigid body.
In order to connect the satellites to the tether, the following

linear constraint equations is imposed

rk = r (26)

where r is the global position of the node on the tether, rk is
the global position of the reference node.

The nonlinear constraint equations Eq.(21) and the linear
constraint equation Eq.(26) can be written in a vector form
as 8(q, t) = 0.Using the Lagrangian multiplier method,
dynamic equations of the TSS can be derived in a compact
form and expressed as

Mq̈+8T
qλ+ F(q) = Q(q)

8(q, t) = 0 (27)

where q =
[
qTt q

T
k

]T
is the generalized coordinates of sys-

tem, M is the system mass matrix, and 8(q, t) is the vec-
tor of constraint equations. 8q is the Jacobian matrix of
constraint equations. F(q) and Q(q) are the system gener-
alized elastic forces and generalized external perturbation
forces respectively. Numerical integration of generalized-
alpha method [33] is adopted to pursue the numerical solu-
tion of Eq.(27).After substitution of the foregoing equations
Eqs.(15-19) that formulate the orbital perturbations into the
Eq.(27) in a generalized form, dynamic equations of the TSS
considering orbital perturbations are obtained. It is noted that
due to the variation of the tether length, the mass matrix
of the system is time-dependent. Therefore, mass matrix of
the system must be Cholesky factorized at each integration,
which can degenerate the computational efficiency.

III. DYNAMIC ANALYSIS OF TSS
A. OPTIMAL TRAJECTORY PROGRAMMING
To take practical constraint states into account, an optimal
procedure for the tether deployment using nonlinear pro-
gramming is performed in this section. Herein, the Gauss
pseudo-spectral method [34], which transforms the contin-
uous optimal control problem into nonlinear programming,
is employed to project the optimal trajectory of tether velocity
that satisfies the dynamic constraints. It’s noted that the opti-
mal trajectory is obtained with the dumbbell model, which
was usually adopted in the optimal control of TSS [35].
The time interval in the Gauss pseudo-spectral method

is transformed from [t0, tf ] into [−1,1] with interpolation
of discretized points firstly. Then a nonlinear programming
procedure is conducted to search the optimal solutions, which
satisfies the boundary conditions and the dynamic con-
straints. In this paper, the vector of the selected state variables
in the optimal procedure is defined as

x =
[
L L̇ θ θ̇ ϕ ϕ̇

]
(28)

in which L denotes the length of the tether, and θ, ϕ are
the in-plane angel and out-of-plane angle, respectively. The
tether tension T in the dumbbell model is defined as the
control variable, which subject to an inequality constraint
given in Eq. (29) to avoid the slack phenomenon of the tether.

Tmin < T < Tmax (29)

where Tmin and Tmax are the minimum or maximum ampli-
tude of the tether tension. The constrains used in the optimal
procedure is explicitly shown in Table 1.

TABLE 1. Constraints in optimization.

To guarantee a relatively smooth deployment characterized
with slowly variation of both tether length and in-plane angle,
the objective function of the optimal procedure is defined as

J =
∫

(L̈ + θ̈ )dt (30)

B. EFFECTS OF ORBITAL PERTURBATION
In this section, dynamic simulations in condition of different
cases considering single or multi factors of orbital pertur-
bations, as listed in Table 2, are presented. Additionally,
parameters used in the numerical simulation are displayed
in Table 3.

The optimal trajectory of tether velocity programmed in
section 3.1 is depicted in Fig.4, in which a deployed phase
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TABLE 2. Description of different cases.

TABLE 3. Parameters used in simulation.

FIGURE 4. Tether velocity.

with variable-length of the tether and a station-keeping phase
with constant length of the tether are trajected.

Responses of the in-plane angle under different conditions
of orbital perturbations are exhibited in Fig.5. Obviously,
a good agreement on the variation of the in-plane angle
indicates that a relatively slight effect is induced by the orbital
perturbations on the in-plane motion of the TSS. Due to the
optimal programming of tether velocity, the in-plane angles
swing with magnitude of 45 deg in deployed phase and keep
varying periodically with amplitude of 8.4 deg.

Fig.6 exhibits the relative distance between the satellites
over the duration of deployment and station-keeping. Obvi-
ously, a smooth and reliable deployment can be observed
due to the consideration of dynamic constraints in the opti-
mal procedure. Note that the curves from different cases
agree well, which indicate the orbital perturbations have no

FIGURE 5. In-plane angle.

FIGURE 6. Relative distance.

influence on the relative distance during the phases of deploy-
ment and station-keeping.

Fig.7 displays the responses of out-of-plane angle for the
TSS optimal deployment, in which an obvious deviation can
be observed between the different cases. Differing from the
unchanged tendency in both case1 and case5, the out-of-plane
angle changes variously for the other cases. From Fig.7(a),
it can be seen that the atmospheric drag in case 1 will induce
a small unpredictable variation during the phase of station-
keeping. By contrast, the solar pressure will change the out-
of-plane angle with amplitude of 7.2 × 10−5 deg during the
deployment phase compared with what in station-keeping
phase. Additionally, the fact that the J2 perturbation can-
not induce the motion of out-of-plane can be observed in
Fig.7(b) through response variation of case 5. Effect of the
lunisolar gravity can be revealed in the case 4, wherein a
significant change of out-of-plane angle is appeared in the
phase of station-keeping. In conclusion, the solar pressure
perturbation plays a primary role in the phase of deployment
while the lunisolar gravity plays a primary role in the phase of
station-keeping.

The relative in-plane motion trajectory of the TSS is
depicted in Fig.8. Similar to the in-plane angle, the orbital
perturbations have no influence on the in-plane relative
motion of the TSS. During the deployment for each case,
the amplitude of the relative motion swings around 310m and
forms into a liberationwith amplitude of 150m in the phase of
station-keeping.
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FIGURE 7. Out-of-plane angel.

FIGURE 8. In-plane relative motion.

To analysis the effect of orbital perturbations on the out-
of-plane motion, Fig.9 exhibits the out-of-plane trajecto-
ries of relative motion for all cases, respectively. It can be

FIGURE 9. Out-of-plane relative motion.

seen from Fig.9(a) that the deviation caused by solar pres-
sure during deployment is relatively more intense compared
with other cases. Meanwhile, the lunisolar gravity affects
the out-of-plane motion more significantly in the phase of
station-keeping.

Responses of the tether tension for different cases are
illustrated in Fig. 10 respectively, in which an obvious
increase and a periodical oscillation in the amplitude of the
tether tension can be observed. It is noted that the tension
variation is influenced seldomly by the orbital perturbations.
Furthermore, around the instant of time t = 1000 s, there
is an obvious oscillation on the tension response, and it is
noted that the tether velocity experiences a rapid change
during that period, which implies that the variation ratio of
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FIGURE 10. Tether tension.

FIGURE 11. Position response of S1.

the tether velocity affects the tension response significantly.
This conclusion can also be verified by the phenomenon of
rapidly drop and shake of the tether tension at the instant of
t = 4000 s.

Position response of the master satellite S1 is depicted in
Fig.11, in which a smoothly deployment can be observed.
From the responses from case1 to case3 in the Fig.11(a),
it can be found that the orbital perturbations have less
influence on the position response. By contrast, as shown
in Fig11(b), an obvious deviation is appeared during the phase
of station-keeping in the case 5 and case 6, which implies that
the lunisolar gravity will induce the deviation on the motion
path of satellites, rather than change the path of relative
motion between the master satellite and the sub-satellite.

Additionally, in order to validate the effectiveness of the
results obtained in this work, the results obtained in this work

are comparing with the results in literature [18], [36], [37].
In the work presented by Pernicka et al. [36], the dynamics
of a short tethered satellite system considering the effects
of perturbations of solar and gravity, atmospheric drag, and
solar radiation pressure are discussed. It showed that the
perturbations would induce deployment error, which will lead
to libration of the tether, but tension will still be maintained.
This statement is consistent with the observation in this work.
Specially, from a convincible perspective, the observations,
that J2 perturbation will induce some offset of the deployment
of the TSS in-planewhile has no influence on the out-of-plane
motion of the system, can be supported by conclusion pre-
sented in Zheng’s work [37]. Also, the results obtained by the
literature [18] showed that the atmospheric drag will induce
unpredictable out-of-plane motion, which is consistent with
the results of this work. So, the effectiveness of the results
obtained by the numerical simulation results in this work are
verified.

IV. CONCLUSION
In this paper, the effect of orbital perturbations including
lunisolar gravitation on the deployment dynamics of the TSS
is presented to comprehensively investigate the deviations
caused by orbital perturbations. To describe the length varia-
tion of the tether, a variable-length element of the tether that
is characterized with precise description of large deformation
is used to derive the governing dynamic equations. Addi-
tionally, an optimal trajectory of tether velocity optimized
by nonlinear dynamic programming that takes practical state
constraints into account is adopted in the deployment phase.
Based on the derived differential algebraic equations (DAES)
and the optimal release velocity of tether, subsequently
effects of orbital perturbations including atmospheric drag,
solar pressure, lunisolar gravity and the J2 perturbation on
the dynamic characteristics are discussed.

Numerical results indicate that the J2 perturbations has
less effect on the dynamic behavior during the TSS deploy-
ment. On the other hand, the out-of-plane angle would be
affected by the perturbations comprise of atmospheric drag,
solar pressure and lunisolar gravity. In detail, the atmospheric
drag induces an unpredictable change in the out-of-plane
angle with a small amplitude. By contrast, in the deployed
phase, a large deviation on the out-of-plane angel is caused
by the solar pressure, while in the phase of station-keeping,
the lunisolar gravity has a significant influence on the out-
of-plane motion. Furthermore, all the orbital perturbations
presented in this work have slightly effects on the variation
of the tether tension both in the phase of deployment and
station-keeping. As a point of attention, the lunisolar gravity
will induce a deviation on the motion path of satellite, which
should be considered in the design phase of the TSS.
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